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In the recent advancement in graphene heterostructures, it is possible to create a double-layer tunnel decoupled
graphene system that has a strong interlayer electronic interaction. In this work, we restrict the parameters in

the low energy effective Hamiltonian using simple symmetry arguments. Then, we study the ground state of
this system in the Hartree-Fock approximation at v, = v, = 0. In addition to the phases found in monolayer
graphene, we found an existence of layer-coherent phase which breaks the layer U (1) symmetry. At nonzero
Zeeman coupling strength (E,), this layer-coherent state has a small magnetization that vanishes when E, tends
to zero. We discuss the bulk gapless modes using the Goldstone theorem. We also comment on the edge structure

for the layer-coherent phase.
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I. INTRODUCTION

After the discovery of the quantum Hall effect in two
dimensional electron gas (2DEG) [1], the interest started to
build towards bilayer 2DEG’s [2] (and for general systems
with internal quantum number [3]). In the quantum Hall
regime the ground state of double-layer 2DEG has been ex-
plored theoretically [2,4,5] and later experimentally [6] (and
the references therein). It has been observed that in 2DEG
(in this case GaAs), when the interlayer distance is small, the
system at total filling fraction v, = v, +v, = % (v, v, being
the filling fraction of each layer) and 1 forms an incompress-
ible QHS [7-9]. The individual layers at v, = 1 and % have
even denominator filling fractions of % and %, respectively,
which are known to be compressible states. This phase is
a layer-coherent phase in which the electron of one layer
forms a bound state with the holes of the other layer forming
excitons and sponteneously breaks the layer U (1) symmetry.
We can think of layer-coherent states as either easy plane
layer pseudospin ferromagnet or electron-hole bound exciton
[6]. This arises from the conservation of particle number
in the individual layers. Development in fabrication of high
quality graphene [10,11] samples has boosted the interest in
studying different structures made out of graphene and their
consequences to quantum Hall. In some recent experiments
involving double-layer graphene layer-coherent state has been
observed [12-14]. It is possible to fabricate double-layer
graphene with very small interlayer distance d (~2 nm) where
d/l <1 (I being the magnetic length) [12-20], which was
earlier difficult to achieve in GaAs systems. The separator
between the graphene layers is made out of stacked hexagonal
boron nitride (hBN) layers. Thus by changing the number of
stacked hBN layers the interlayer interaction can be tuned

“amartya.saha@uky.edu
ankur.das @weizmann.ac.il

2469-9950/2022/105(3)/035405(7)

035405-1

from weak to strong. This induced a huge interest in the
understanding and testing of the double layers of graphene,
Bernal-stacked bilayer graphene [12,18], twisted magic angle
bilayer graphene [21], etc. There have been some theoreti-
cal [22-26] and experimental [27] studies to understand the
Coulomb drag in double-layer graphene in zero magnetic
field. In Ref. [28] it has been predicted that at higher tem-
perature at the zero magnetic field there can be a superfluid to
normal transition in double-layer graphene.

In the presence of an ultrashort-range (compared to the
magnetic length /) interaction, the Hamiltonian projected to
the n = 0 Landau level manifold for monolayer graphene
(MLG) has SU@2)spin X [U(1) X Z3]valiey symmetry in the
absence of a Zeeman field [29]. There exists four different
possible phases namely ferromagnet (F), charge density wave
(CDW), Kekulé distorted phase (KD), and antiferromagnet
(AF). AF becomes canted antiferromagnet (CAF) in the pres-
ence of Zeeman coupling [30]. The predicted phase transition
from CAF to F [31-36] by changing the Zeeman coupling has
been verified in the experiment [37]. This understanding of
symmetry has been used to study the ground state of MLG at
fractional fillings as well [38].

In the case of double monolayer graphene electron fillings
of each layer (v, and v,) can be controlled independently
[12,13,18]. Some of the states found in these experiments can
be explained using interlayer Jain composite fermion states
[4], proposed for double-layer two-dimensional electron gas
[13].

In this manuscript we propose the relevant symmetry in
double monolayer graphene which restricts the interacting
Hamiltonian to three parameters. Within the scope of this
manuscript, we restrict ourselves to understanding the mean
field ground state when two layers of graphene are at v, =
v, = 0. We show that, for certain values of the parameters, the
ground state of the system is a layer-coherent phase, which
has a small magnetization proportional to the Zeeman field.
Increasing the Zeeman field strength one can drive a second
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order phase transition from a magnetized layer-coherent phase
to the ferromagnetic phase. Here we would like to empha-
size that we want to find a low energy Hamiltonian that is
restricted by symmetry. We also focus on the translation in-
variant ground state solutions of this low energy Hamiltonian.
Here we do not talk about how a specific microscopic model
might give rise to the low energy effective model but only
discuss the properties of the effective model itself.

We describe our assumptions, method, and findings in a
few sections. In Sec. II we describe the assumptions and
the Hamiltonian. After that we describe the results and the
Goldstone modes in Secs. III and IV, respectively. We also
discuss possible lattice models and experimental signatures
in Sec. V. Then in Sec. VI we summarize our findings and
describe possible application of this work.

II. ASSUMPTIONS AND MODEL

As we are interested in the v; = v, = 0 ground state, we
restrict our calculations to the n = 0 Landau level. When the
interaction strength is much smaller than the cyclotron energy
gap the Landau level mixing can be ignored, which justifies
n = 0 being our low energy subspace. In the weak interaction
strength regime the form of the effective theory gets dictated
by the symmetry (discussed below) when we integrate out
the higher Landau levels. As the distance between layers is
increased, the interlayer interaction will go to zero where we
expect the same physics as two decoupled MLG. The valley
U (1) for each layer is conserved in order to conserve the

J

translational symmetry in each layer separately. Here we make
an additional assumption that the global spin SU (2) symmetry
can be enhanced to spin SU (2) symmetry for each layer sep-
arately. For this to be the symmetry of this theory we assume
that interlayer spin-spin interaction is zero (or negligible). In
the absence of the interlayer tunneling it is justified that the
Heisenberg term also (S - S) will be absent. Other than the
Heisenberg a long range spin dipole-dipole interaction be-
tween layers can break the spin SU (2) symmetry in each layer
to a global SU (2) symmetry. However, the spin dipole-dipole
interaction falls as 7—*. As the distance between the layers is
a few nanometers, we choose to ignore this interaction. These
assumptions allow us to enhance the symmetry to spin SU(2)
symmetry of each layer which allows only the intralayer S - §
interaction.

From this understanding and keeping in mind that the
number of particles in each layer is fixed we propose our
symmetry of the continuum model to be (in the absence of
Zeeman coupling) [SU (2)spin ® U (1)varey] for each layer, a
global (Z2)yaney and [U (1) @ Z3]1ayer for the layers. This re-
stricts the interacting part of the Hamiltonian to only three
parameters. We can write the Hamiltonian as

H = Hy + Hiy, ey

where H is the one body term coming from Zeeman coupling
such that

Hy=-E(c°®1°®y"). 2

H;,, the two body interaction term which obeys the above
mentioned symmetry, is given by

[ny > e 0" ®T®PEE ,, ("R QP
i=1,2
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Here &k = (C k1 Chykts Cupkrt Chgkrt Crgk2:

Cr k20 Chr k20 CN’K,’Z)T presents the column vector of
fermionic annihilation operators, A is the area of the sample,
and / is the magnetic length. The index k; represents the
guiding centers in the Landau gauge. We use the convention
where o/, t/, y' represents the Pauli matrices in spin, valley,
and layer, respectively. Here, P, = m is the layer
projection operator to layer L. The parameters K, and K,
arise from the intralayer interactions and are the same as the
parameters u, and u, , respectively, as defined by Kharitonov
in the monolayer graphene case [26]. The parameter L, is a
function of the distance between the layers (d) which should
go to zero as d becomes very large (disjoint MLG limit). Here
we would like to comment that we also added a capacitance
term to the Hamiltonian, which is zero when both layers have

:| 3
[

equal fillings [39],

gesnlz
A

where p;(q) is the Fourier transformed electron density op-
erator of the Lth layer and g, is the coupling strength of the
capacitance term.

We define an order parameter A matrix which specifies the
HF states |HF'),

Hep = [p1(q = 0) — p2(q = 0)]%, )

<HF|CIT<,S,a,Lck,S,/a’,L/|HF) = SE.I?’AS’OZ’L’,SO:L’ (5)

where s is the spin, « is the valley, and L is the layer index.
This A matrix can also be thought of as a sum of projection
operators of the four filled states at each momentum. The A
matrix completely determines the single Slater determinant
states and any other order parameters, e.g., electron density,
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magnetization, etc., can be calculated using it. We assume that
the HF states preserve translation symmetry, i.e., the guiding
centers are a good quantum number. Hence we drop the guid-
ing center label from the A matrix. Since the capacitance term
is a classical term, we only keep the Hartree term and drop the
Fock term. In the next section, we discuss the A matrix of the
different HF states.

III. RESULTS

At v, = v, =0 there are four occupied single particle
states in the spin-valley-layer space. For L, > 0 we find that
the phase diagram is exactly the same as the phase diagram
found for MLG in Ref. [30]. The energies of the phases
(defined as E,; = (HF|H;|HF') for the proposed HF ground
state) depend on L,. For these phases, the layer U(1) is not
broken and the A matrix is block diagonal in the layer index.
Each of this block is a four dimensional matrix in the space of
valley and spin. The four phases are as follows.

(1) Charge density wave (CDW): CDW breaks the valley
7, symmetry. At the zero Landau level, different valley in-
dices are pinned to the sublattices. In this phase in each layer
the alternate sites (A) in the lattice are occupied and the other
sites (B) are left unoccupied. The A matrix for this phase is

Acow =0’ @ (1 +H ®y° (6)
and the energy is
Ecpw = 2(K; — Lz). (N

(2) Kekulé distorted (KD): this is a bond order phase
where the valley U (1) symmetry is broken. In lattice limit
the spontaneous breaking of the valley U (1) symmetry leads
to the translation symmetry breaking in each layer. All the
excitations of this ground state are gapped. The A matrix for
this phase will be

AKD:%UO®(TO+TI)®V07 ®)
with energy
Exp = 2(ny - Lz)- (9)

(3) Ferromagnet (F): this phase breaks the spin SU(2)
symmetry in each layer. Similarly, the A matrix and energy
will be

Ar=10"+oH) ey, (10)
Er = —4E, — 22Ky + K, + Ly). (11)

(4) Canted antiferromagnet (CAF): this phase breaks the
spin U (1) symmetry in each layer. The A matrix is [35]

Acar = 5lsing(c' @ T° ® ¥?)

+cosp(@’ @@y +0'0 ' ®y%,  (12)
where ¢ is given by
o5 = = (13)
2[Kyy |
with energy
Ecar = —4E, — 22K,y + K, + Lz). (14)

T|L2KT>+|L1K'¢> T|L1KT)+|L2K'¢)

|L2K'T$/+E|L1K¢> | L4 K'T$/+E|L2K~L>

A ¢ AR ¥
\T\T

FIG. 1. Here we represent the layer-coherent (LC) phase. The
layers here are color coded (green lines and red lines). As shown
here the states are linear combinations of different layer indices. The
corresponding states are also color coded as blue and light red.

At E, = 0 the state becomes a pure antiferromagnetic state.
Increasing the Zeeman field E, beyond 2|K,| can drive a con-
tinuous phase transition from canted antiferromagnetic phase
to ferromagnetic phase.

Next we come to the spacial phase of the double layer
graphene. For L, < 0, we find there exists a layer coherent
phase which breaks the layer U (1) symmetry (see Fig. 2).
We find the layer coherent phase both in the presence and ab-
sence of the Zeeman energy. For a nonzero Zeeman coupling,
there are two parameters (and operators which are connected
by the left over ground state symmetry) that

@Lzolxtlxyl,
o3 x 19 x y0

2

(15a)

§° = (15b)

The magnetic layer-coherent phase becomes the ground state
at E_ # 0 with (§%) # 0. At E, = 0 we find ($°) = 0, which
we call the layer-coherent phase (LC) (see Fig. 1). We can

FIG. 2. Here we present the phase diagram for L, = —0.5 and
E_, = 0.1. As we can see the MLC phase appears and there is a second
order transition from MLC to F as marked by the broken line.
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K;

1.5

FIG. 3. Here we present the phase diagram for L, = —0.5 in the
absence of Zeeman coupling. The LC phase appears near K, = K, =
0. All the phase transitions here are first order.
write the A matrix for the MLC phase as

Amic = isinf(0c' @ ' @ y")

+cosh0’ @° @Y+’ ®@°®y",  (16)

with cos 6 defined as

2E.
cosf = = . a7
2K,y + K- +2L|
The energy of the phase is
E 2K, K 4E52 (18)
MLC — Xy 4 |2ny+Kz+2Lz|'
Here (&) =4sin6 and (5°) =2cosf. For 2E >

2Ky, + K, + 2L, with 6 =0, this A will represent a
ferromagnetic ground state. For other values of 6 the A matrix
represents the MLC phase. For the zero Zeeman coupling, we
have cos = 1 = (§%) = 0, a purely layer-coherent state. The
phase transition from MLC to F is a second order transition
(see Fig. 2). However, similar to the AF to F phase transition,
the LC to F phase transition is a first order transition. Thus
all phase transitions are first order at £, = 0 (see Fig. 3). The
phase boundary between MLC and F changes, as we change

TABLE 1. Phase boundary equations as a function of the
parameters.

Phases Boundary equation

KD,CAF K, = —K., + E*/K,,

KD,CDW K. =K,

F,.CDW K. =—K, +E.

EMLC K, = —2K,, — 2L, — 2E,
MLC,CDW —3% = (L, + 2K, — /L, + K,,)* + 3E?)
CAFEMLC K. =2(K, —L.)

KD,MLC K. = —3K,, — /(K — 2L,)> + 4E2
F,.CAF Ky =—E/2

the total Zeeman couplings at a fixed L. Here in Table I we
represent all different phase boundaries.

IV. GOLDSTONE MODES

The Hamiltonian in the presence of a Zeeman term has five
different U (1) symmetries coming from U (1)spin ® U (1)yaitey
for the two layers and a layer U(1) x Z, symmetry. For the
layer diagonal phases, the presence of a gapless bulk Gold-
stone mode is known. The CDW phase has no gapless bulk
mode. In the continuum limits it seems that the KD phase
breaks a continuous symmetry but, as valley indices are mo-
menta, it breaks lattice symmetry. Hence in this phase we will
have no Goldstone modes. The F phase has spin wave mode
and, at long wavelength, its gap is proportional to the Zeeman
coupling strength (E,). As the CAF phase breaks the spin U (1)
symmetry there will be a pair of gapless neutral modes in the
bulk [34].

Next we discuss the new layer-coherent phase and its bulk
modes. From Eq. (16) one can easily see that the ground
state has the two leftover U (1) symmetries defined by oper-
ators 0° ® 7> ® y° and 03 ® 1° ® y3. These operations can
be understood as opposite spin rotations at different valleys
or different layers. In other words, these are relative valley
and layer spin twists, respectively. Thus, out of five different
continuous symmetries, three are broken by the ground states
giving rise to three different Goldstone modes in the bulk.
However, these modes will be neutral as there is a charge gap
in the bulk and these excitations are similar to spin waves. We
remind the readers here that the breaking of the valley part of
the symmetry breaks the lattice C; rotation about a site. This
happens as the n = 0 manifold the K, K’ of each layer maps
to the A, B sublattice of each layer [30]. This means we will
count one extra Goldstone mode in the continuum analysis.

V. DISCUSSION

In this manuscript, we constructed the Hamiltonian for
double-layer graphene at v; = v, = 0 using symmetry prin-
ciples without discussing the nature and details of the
interaction at the lattice scale. The model only assumes the
lattice interactions are local and thus their Fourier transform
is a function independent of momentum.

In principle we can reproduce the interactions in the contin-
uum model by projecting the microscopic Hamiltonian to the
lowest Landau level. We present a very simplified example
which includes the on-site Hubbard interaction (U;), nearest
neighbor interlayer electron density-density interaction (U,),
and an intralayer nearest neighbor spin-spin interaction (J),

Hyy = U E SNy LNy r Lt +U, E Ny L Ny Ly -
51,82 51,52
r,L rr'

Li#Ly

+7 Y 8 Sen (19)
(r,r'),L

Here n is the fermion number operator and § is the local spin
operator. Though we assumed ultrashort interactions, adding
finite range to these interactions does not change the symme-
try of the continuum model when we project the Hamilitonian
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in the zero Landau level manifold. We can write the
relation between the continuum parameters in Eq. (3) in terms
of the parameters of Eq. (19) as K, o« —J, K; o« Uj, and
L, «x U;/2 — U,. This example shows us that it is possible for
the parameter L, to be negative. We know that the interaction
between the two layers (U,) will increase as we reduce the
distance between the layers. That means L, can change sign
as we change the distance between the layers.

We would like to emphasize here that the Hamiltonian
presented here is just an example to show that, even at
the simplest model at the lattice level, we can achieve the
Hamiltonian in Eq. (3). Here we are not concerned with the
values/signs of different parameters K, K, L, but showing
the phases that are determined by these parameters. Modeling
a generic lattice theory with physically motivated parameters
and their values is an interesting study but out of the scope for
the current manuscript. We hope to study a lattice microscopic
model of a double-layer graphene in the future.

From Eq. (16) we can see that the states are mixtures of
K, K’ of different layers. Near the edge the dispersion will
contain two pairs of particlelike bands and another two pairs
of holelike bands due to the breaking of the translation sym-
metry [40]. There will be a pair of counterpropagating modes
only if we have identical layers near the edge of the system.
Near the edge, both the valley U (1) symmetry and the layer
U (1) will be broken generically due to edge mismatch. Thus
the edge of a double-layer graphene will be gapped if the
bulk is in MLC phase. As the states are a superposition of
two different layers, there will be a drag in the two terminal
measurements at least for finite temperature [16]. However,
we know that there will be two pairs of counterpropagating
modes at the edge for each layer in the F phase [33,37,40].
Thus, by changing the Zeeman energy with respect to the
interaction energies, one can make a transition from MLC
to F. This should show up in the two terminal conductance
measurement [37]. It will also be interesting to measure the
lattice scale structure using both the spin resolved and spin
unresolved [41] tunneling electron microscope to confirm the
phase directly [42,43].

VI. SUMMARY AND OUTLOOK

Here we argued that the continuum limit of the double-
layer graphene at v, = v, =0 can be assumed to have a
big symmetry group that restricts the interacting part of the
Hamiltonian severely to only three parameters at the n = 0
Landau level. Further, we find a candidate ground state using
the HF approximation that breaks the layer U (1) symmetry
(generally called the MLC). We also find a second order phase
transition from MLC to F as a function of Zeeman energy.
We argued for a general system; the edge of the MLC will
be gapped. This leads to the possible experiment to find two

J

2

ml ; 2 PP
_ —iqy (ki —ko—qy)l"— AT il .
Hin = A E e a5 Vabed : Cky—gy,aC1.6Cky4q,,cChasb

q.k1,k
a,b,c,d

terminal conductance that will change when we go from the
MLCto F

This study is just the beginning of understanding the
double-layer graphene ground state in the quantum Hall
regime. It was previously shown that the phase transition from
CAF to F connects the bulk gapless modes of the CAF to the
gapless edge modes of F [34]. We hope to study the edge
theory of double-layer graphene in the future in more detail
to answer the question of the phase transition from MLC to F
by changing Zeeman energy.

It has been shown that if we have finite range interactions
in MLG then we can have coexistence of phases [44]. Sim-
ilarly, in a lattice model coexistence can also be shown by
doing HF calculation in the lattice limit [45]. This explains
the experimental results [41], where bond order was observed
using a scanning tunneling microscope. This question may
also be important in the double-layer graphene case, as we
might have a similar coexistence. However, increasing the
range of the interaction from ultrashort range will not change
the symmetry on the theory but will only make the interac-
tion parameters Ky, K, L, functions of 4. To understand that
possibility one needs to study the lattice Hamiltonian similar
to the one mentioned in Eq. (19). Furthermore, this theory
can be used to explore the phase diagrams at other filling
fractions in the parameter space of K.y, K; and L, similar
to the MLG case [38]. There is also a surge of interest in
understanding the BCS/BEC condensation [6,17,18,46] in
double-layer graphene systems. As previously mentioned this
state breaks the layer U(1) symmetry just like a superfluid
state. At low enough temperatures these excitons can form a
superfluid state where the interaction between the electron and
hole can be tuned by tuning the L, parameter (which depends
on the interlayer separation d).
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APPENDIX: DETAILS OF THE TECHNIQUE

The interacting Hamiltonian in Eq. (3) can be written in a
simplified form as

(A
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where

Va,b,c,d = ny Z (00 ® Ti ® PL)u,b(ao ® ‘Ci ® PL)c,d + Kz(oo & 73 ® PL)a,b(UO ® T3 ® PL)c,d

i=1,2

+L0"®1" @y up(@’ @1 ®@ ¥ )ea

(A2)

To calculate the total HF energy E = (HF |Hy + Hin|HF) we write the average of the four-fermion term that arises in the

interacting Hamiltonian Hjy as

i T
(HF |ck1 _‘I_v:uckl ,bckz+qy,c

CrdHF) = Db ala,c8g,.0 — Adalp,cBqy ki —k, -

(A3)

The first term gives the Hartree term and the second term is the Fock term. Using this, we can calculate the energy from the

electron-electron interaction given by Ei« = (HF |Hi |HF),

2
7Tl . 2 P2
iU —kp—qy )=
Ein = - E E e~ astbi—ha=a)l" =5 Vabed (BbaBacdg.0 — Adalpcdi—g k)
ab 4

cid ki
ml? gy —ko )P — B2 -2
= T a,b,c,d Ze : B T ApaAge — Ze T Ny alpe
a,b,c,d qu,xkz q.k
1 NoA 212
= — % NiApaDge — —— [ dqe™ = AgaA
2Nq> : a,h,c,d( dBb,aRd,c (27T)2 A q d,a b,c)
a,b,c,d
1 , NoA
- m . Va,b,c,d <N<1>Ab,aAd,c - mAd,aAb,c) s (A4a)
No
Ein = - Z Vaped(BpaBac — Da.alp.e), (A4b)

i
a,b,c,d

where A is the area of the system and Ny = A/(21?) is the number of guiding centers in the system. Hence the total energy of

the system per guiding center is
E
Ny

1
— =E(03Q1® VO)abAb,a + E Z Va,b,c,d(Ab,aAd,c - Ad,aAh,c)-
a,b,c,d

(AS5)

The first term is the Zeeman contribution and the second term comes from the electron-electron interaction.
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