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Highly stable electronic properties of rippled antimonene under compressive deformation
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Antimonene has attracted much attention for its high carrier mobility and suitable band gap for electronic,
optoelectronic, and even spintronic devices. To tailor its properties for such applications, strain engineering may
be adopted. However, such two-dimensional (2D) crystals may prefer to exist in the rippled form because of
the instability of long-range orders, and rippling has been shown to have a contrasting, significant impact on
the electronic properties of various 2D materials, which complicates the tuning process. Hence, the effects of
rippling on the electronic properties of antimonene under strain are herein investigated by comparing antimonene
in its rippled and flat forms. Density functional theory calculations are performed to compute the structural
and electronic parameters, where uniaxial compression of up to 7.5% is applied along the armchair and zigzag
directions to study the anisotropic behavior of the material. Highly stable properties such as the work function and
band gap are obtained for the rippled structures, where they are fully relaxed, regardless of the compression level,
and these properties do not deviate much from those of the pristine structure under no strain. In contrast, various
changes are observed in their flat counterparts. The mechanisms behind the different results are thoroughly
explained by analyses of the density of states and structure geometry. The out-of-plane dipole moments of the
rippled structures are also presented to give further insights into potential applications of rippled antimonene in
sensors, actuators, triboelectric nanogenerators, etc. This work presents extensive data and thorough analysis on
the effect of rippling on antimonene. The identification of optimal ripple amplitudes for which the electronic
properties of the pristine condition can be recovered will be highly significant in guiding the rational design and
architecture of antimonene-based devices.
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I. INTRODUCTION

The existence of two-dimensional (2D) crystals was ques-
tioned and debated over for a long time [1–3]. Ever since
the successful isolation of graphene in 2004 that proves its
stability [4], other 2D materials such as antimonene [5–9],
phosphorene [10–12], arsenene [13–15], germanene [16],
monolayer MoS2 [17–19], 2D ferroelectrics including SnS,
SnSe, and SnTe [20], and 2D magnets [21] have sparked much
interest. The reduced symmetries of these emerging mate-
rials lead to inhomogeneous electron distribution, different
optical, valley, and spin responses, and properties includ-
ing ferroelectricity, magnetism, and superconductivity [22].
These properties are different from those of the bulk and may
offer more possibilities for next-generation electronic applica-
tions. However, the long-range order in 2D lattices will always
be destroyed because of thermal fluctuation according to the
Mermin-Wagner theorem [2,23], making ripple deformation
ubiquitous in 2D free-standing sheets.

Rippling has been studied in detail for graphene [24–26],
monolayer MoS2 [19], phosphorene [12], etc. The band gap
of graphene was found to be opened by corrugations with
small curvatures because of the interruption of the mirror
symmetries. Similarly, rippling was also reported to reduce
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the conductance of monolayer MoS2. In direct contrast, the
band gap of phosphorene decreases significantly when there
are corrugations in its structure. Therefore, the effect of rip-
pling on the electronic properties of 2D crystals cannot be
generalized and is inherently material dependent. To fully
exploit the potential of these materials in their respective
applications, these effects need to be independently studied
for each material.

Among all the 2D materials, antimonene has high car-
rier mobility and a suitable band gap, making it viable as
a semiconductor for potential applications in electronic, op-
toelectronic, and even spintronic devices. Moreover, it can
be easily synthesized by mechanical exfoliation and cleavage
[27,28]. However, it was only recently discovered in 2015
[13] and experimentally produced in 2016 [29], and many of
its properties under various complex situations are not fully
understood, especially with ripples. Thus, the properties of
rippled antimonene warrant further investigation.

The band gap, the main characteristic defining the electri-
cal conductivity of a solid as mentioned above, has been one
of the focuses in semiconductor engineering. Many studies
have been devoted to tuning the band gap and understanding
the mechanisms behind it. Additionally, the work function
(WF) is another critical property of a semiconductor. For
the normal functioning of piezoelectric devices made from
semiconducting 2D materials, the electrical contact should
possess a Schottky junction that prevents electrons from
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FIG. 1. (a) Rippled β-Sb structure with a zoomed-in schematic illustration of a unit cell (four atoms) and atoms in the neighboring unit
cells (labeled in prime) for showing bond angles α1, α2, and φ. The green dashed line indicates the normal direction. (b) Supercell construction.

crossing the interface and hence neutralizing the piezoelectric
polarization charges. The manufacture of Schottky contacts
relies on the difference in the WFs of the contacting ma-
terials. An in-depth understanding of the WF is essential
for achieving efficient charge injection and transport across
the heterojunctions. Moreover, understanding the piezoelec-
tricity and flexoelectricity of a material could provide more
insights into polarization and charge localization of the ma-
terial, which will be helpful in designing sensors, actuators,
triboelectric nanogenerators, etc. These properties can be
accurately computed using density functional theory (DFT)
calculations [30]. As demonstrated above, the band structure
(BS), WF, and polarization greatly influence the application of
an electronic material and are therefore the focus of this work.

These properties can be moderated by physical and chem-
ical means. Strain engineering is such a strategy, which has
been well studied and widely adopted to modulate the band
gap and induce phase transitions [31,32]. Epitaxial strain may
also be generated spontaneously in thin films by lattice mis-
match between the film and its substrate, during film growth,
or under thermal expansion. The common existence and uti-
lization of strain make further understanding of the material
behavior under strain and mechanisms of such behavior nec-
essary.

Here, the properties including the WF and BS of rippled β-
phase antimonene (β-Sb), which is the most stable phase [33],
under compression are studied via DFT computations. The re-
sults are compared with those of the flat counterparts to reveal
the effects of rippling. Uniaxial compression of 2.5%, 5%, and
7.5% along the armchair and zigzag directions is applied to
investigate the anisotropy of the effects. Extensive analyses
of the density of states (DOS) and structure geometry are
performed for both the rippled and flat structures to account
for the differences in the results. The trends in the out-of-plane
dipole moment of the rippled structures are also presented.

This work goes beyond the current understanding limited
to flat antimonene, which is used as the reference to reveal
the effects of rippling. The pristine form is physically difficult
to achieve because 2D lattices may prefer to have corruga-
tions, and the autonomous form will always contain ripples.
Yet, the highly consistent electronic properties of the rippled
form across all the compression levels shed light on ways to
restore the properties of the pristine form. The implied pos-
sibility to maintain constant performance under compression
makes antimonene a robust and reliable candidate for relevant
electronic applications. The results presented here are highly
practical and can be adopted for potential applications in the
future.

II. COMPUTATIONAL METHOD

A. Supercell construction

Supercells need to be constructed to accommodate cor-
rugations. The β-Sb unit cell structure used for supercell
construction [Fig. 1(a)] is obtained from the study conducted
by Kripalani et al. [34], where the x, y, and z axes are along
the zigzag, armchair, and normal directions, respectively. The
supercells are constructed by arranging 15 unit cells along
the investigated direction (armchair: 1 × 15/zigzag: 15 × 1)
as shown in Fig. 1(b). The computational results are cross
checked with those obtained using supercells with ten unit
cells. Uniaxial compression of 2.5%, 5%, and 7.5% is applied
along the two directions, resulting in different lattice constants
of the supercell along the compressed direction. It is to be
highlighted that the compression values mentioned here refer
to the contraction of the supercell size, which implies the
deformation of the overall configuration. These values are
to be distinguished from the local strain, which may vary at
different locations, as demonstrated in Sec. III C.
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B. Relaxation

With zero magnetic moments obtained in trial calculations,
non-spin-polarized DFT [35–37] calculations are conducted.
The Vienna Ab initio Simulation Package [38] is used with
the Perdew-Burke-Ernzerhof exchange-correlation functional
[39] under the generalized gradient approximation functional
methods. The DFT-D2 method of Grimme [40] is used to
correct for van der Waals forces. A kinetic energy cutoff
of 450 eV is chosen for the plane wave basis set. Using
the Monkhorst-Pack method, 12 k points are sampled in
the transverse direction, while one k point is used in the
other directions in the Brillouin zone. Periodic boundary con-
ditions are applied in the armchair and zigzag directions.
Along the normal direction, with a lattice constant of 50 Å,
free boundary conditions are enforced with sufficient vacuum
separation that eliminates spurious interactions between the
rippled slab structures. The energy convergence criterion is
set as 10–4 eV, and all the structures are relaxed until the
maximum Hellmann-Feynman force per atom is less than
0.02 eV/Å.

After full relaxation, the following parameters of the
pristine structure are obtained: d13 = d23 = d24 = d14′ =
2.879 Å, where di j represents the bond length between
atoms i and j; φ = 125.31◦ and α1 = α2 = 89.94◦, which
are consistent with values in the literature [13,33,34,41].
The structure with the lowest energy at each compression
level is determined to be the optimized rippled struc-
ture. To obtain this structure, a scanning is performed
at each compression level along the investigated direc-
tions by introducing different initial sinusoidal out-of-plane
displacements.

Lattice constant optimization in the transverse (nonloaded)
direction is performed using the 1 × 15 and 15 × 1 flat struc-
tures under 7.5% compression, where similarly, the structure
with the lowest energy is considered to possess the most stable
configuration. Only ∼0.7% increase is observed in the lattice
constant along both the zigzag and armchair directions. The
small increase indicates that the Poisson effect can be ignored
for the small compression applied, and the transverse lattice
constants can be kept constant for the different compression
levels investigated in this study.

C. Electronic property calculation

It is to be highlighted that this work is to examine the effect
of rippling qualitatively. With the relatively large supercell
sizes and great total number of cases covered, calculations
without considering spin-orbit coupling are adopted to reduce
the calculation time, which are also sufficient for observing
the general trend and effects.

For electronic property calculations, the energy conver-
gence criterion and maximum Hellmann-Feynman force per
atom are reduced to 10–6 eV and 0.01 eV/Å. The DOS, WF,
and BS are computed for each optimized structure. The high
symmetry path S–X–�–S–Y –� for an orthorhombic cell is
used for the BS computation, where 20 k points are sampled in
each subpath (100 in total). The consistent results obtained by
calculations using a single unit cell and the pristine supercells
prove that the calculations using the supercells are as reliable.

D. Polarization

The out-of-plane polarization along the z direction is cal-
culated for the rippled structures using the method adopted
by Tan et al. [42]. The born effective charge tensor Zi j

∗ of
each atom is determined from the response to a finite electric
field with a strength of 0.01 eV/Å in the x, y, and z directions.
The out-of-plane dipole moment ∂d3 of each atom can be
calculated by

∂d3 = Z∗
31∂r1 + Z∗

32∂r2 + Z∗
33∂r3, (1)

where ∂r j is the displacement of the atom along the j direction
from its original position in the flat configuration. The out-of-
plane polarization P3 can be determined as

P3 =
∑

i ∂d3

V
, (2)

where V is the volume of the involved atoms in the sum. On a
per-atom basis, i.e., only one atom is involved, P3 of the atom
is just ∂d3 scaled with a constant V , which is assumed to be
the same for all the atoms.

III. RESULTS AND DISCUSSION

Consistent results are obtained using supercells with 15
and 10 unit cells, indicating that within the specified range
of compression levels, the effects of rippling are independent
of the supercell size used for computation, i.e., the wavelength
of the corrugations. All the rippled structures exhibit similar
properties regardless of the compression level, while obvious
trends are observed in their flat counterparts, implying that
significant changes are induced by rippling. While this ripple-
free case may be nonphysical if the material is in isolation,
the ripple deformation mode could in principle be passivated
under suitable stacking configurations, for example, via strong
interlayer/substrate interactions or encapsulation by capping
layers. The comparison between the planar and rippled struc-
tures under compression reveals not only the effect of rippling
but also possible practical implications.

In the following subsections, detailed results on the opti-
mized rippled structures (Sec. III A) and the effects of rippling
on the electronic properties (Sec. III B) are presented for the
supercell with 15 unit cells, unless stated otherwise; possible
reasons for the similar properties among the rippled structures
are deduced from their DOS and structural geometry analyses
(Sec. III C). The effect of compression on the polarization
of the fully relaxed rippled structure is also investigated
(Sec. III D).

A. Optimized rippled structure

As the applied compression increases, the optimized rip-
ple amplitude also increases, as illustrated in Fig. 2(a). As
mentioned in Sec. II B, sinusoidal out-of-plane displacements
are introduced to initiate the rippling. The amplitude A of the
optimized structure after full relaxation is constantly larger
than that of the sinusoidal waveform before the relaxation,
implying that this waveform is not an accurate description of
the ripples.

Since the supercells under compression along the two di-
rections have different dimensions, a normalized parameter
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FIG. 2. (a) Amplitude of the initial sinusoidal out-of-plane displacement introduced into the supercell and amplitude of the waveform
of the most stable (optimized) rippled structure obtained after DFT relaxation under compression along the armchair and zigzag directions.
(b) Corrugation of the optimized rippled structures. (c) Energy of the optimized rippled structures and their flat counterparts under the same
compression levels. The energy of the pristine structure is indicated by a gray dashed line for reference. Blue: armchair compression; red:
zigzag compression.

should be introduced for a fair comparison. The corrugation
C, defined as C = A/λ, is plotted in Fig. 2(b) for the optimized
rippled structures, where λ refers to the wavelength of the
ripple. The corrugation value increases with the compression
at a decreasing rate, and compression in the zigzag direction
induces rippling with a slightly greater corrugation. While
rippling in antimonene has never been studied, rippling has
been investigated in other 2D materials such as graphene in
detail [43]. The corrugation due to thermal fluctuations, edge
instabilities, strain, dislocations, etc., could vary between 0.05
and as high as 0.5. The corrugation values obtained in our
work is at the lower end of this range.

Figure 2(c) shows that all the rippled structures have lower
energies than their flat counterparts at the same compression
levels, indicating that rippling gives a more stable structure
under compression and hence should be preferred in nature,
which is consistent with the Mermin-Wagner theorem. As
the compression increases, the energy of the flat structure
increases, but that of the rippled structure remains relatively
constant and is almost the same as that of the pristine struc-
ture. It is therefore evident that under compression, rippling
deformation offers a highly favorable pathway to minimize
the strain energy and retain the stability of the nanostructure,
at least within the compression range of this study. Note that
the deviation of the energy of the rippled structure from that
of the pristine structure is slightly greater under compression

along the zigzag direction, and the deviation increases with
the compression.

B. Electronic properties

The electronic properties of a material determine its ap-
plications. Herein, the WF and BS of both rippled and flat
antimonene structures under compression are studied and
compared, and the DOS is plotted to rationalize their trends.

1. Work function

As the compression increases, the WF of the flat structure
decreases as shown in Fig. 3(a), indicating that less energy is
needed to remove an electron from the structure to a point in
vacuum immediately outside its surface. A greater change is
experienced by the structure under zigzag compression rather
than under armchair compression. On the other hand, the
WF of the rippled structure remains relatively constant and
deviates only slightly from the value of the pristine struc-
ture. The simulation results also show that deviation from
this constant value could occur for nonoptimized structures.
It can therefore be inferred that for applications where the
structure may undergo compressive strains in any direction,
rippled antimonene would be a suitable candidate to prevent
fluctuations in charge transport across its interface as long as
it is allowed to fully relax.

FIG. 3. (a) WF of both the rippled (red) and flat (gray) supercell structures with 15 unit cells under the same compression levels. Average
potential in the x-y plane of the rippled (thick lines) and flat (thin lines) structures along the z direction under (b) armchair and (c) zigzag
compression. The vacuum energy level is calibrated to be 0 eV for all.
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FIG. 4. (a) BS of pristine antimonene (unit cell model). The Fermi level is represented by Ef , and the CBM and VBM are labeled
accordingly. Variation of the CBM (top), VBM (bottom), and band gap (bar) of the flat (gray) and rippled (red) structures with compression
along the (b) armchair and (c) zigzag directions with calibration of the vacuum energy level to 0 eV. There is no band gap under 7.5% armchair
compression for the flat structure because of semiconductor-metal transition. All the supercells involved contain 15 unit cells.

Significant changes in the plot of the average potential in
the x-y plane along the z direction are induced by rippling, as
shown in Figs. 3(b) and 3(c). Different from the flat struc-
ture where the two sublayers possess only two different z
coordinates, the rippled structure has atoms with a range of
z coordinates, thereby widening the dip and decreasing the
depth of the potential well. The flat potential from z = 30 Å
onwards indicates that the selected lattice constant of 50 Å
along the normal direction is big enough to eliminate spurious
interactions between the rippled slab structures under periodic
boundary conditions.

2. Band structure

Pristine antimonene is a semiconductor with an indirect
band gap. As shown in Fig. 4(a), its conduction band mini-
mum (CBM) is along the Y-� path, while the valence band
maximum (VBM) is at the � point. The band gap (CBM
– VBM) computed for the unit cell and pristine supercells
are both 1.13 eV, consistent with the results obtained by
Kripalani et al. [34]. Depicted in Figs. 4(b) and 4(c), as
the compression increases, the band gap of the flat structure
narrows down. The reduction in the band gap is mainly due
to the decrease in the CBM. When the armchair compres-
sion reaches 7.5%, the band gap closes, which indicates a
semiconductor-metal transition. Such a transition does not
occur in the zigzag-compressed flat structure within the com-
pression range investigated. In contrast, the rippled structure
still exhibits a finite band gap, which is of relatively constant
value at all the compression levels. The electronic properties
at other ripple amplitudes are also calculated. Similarly to
the case of WF, a small deviation in the amplitude from the
optimized value could result in a big change in the band gap
or even shift the CBM position.

The highly stable WF and band gap of rippled antimonene
under compression may find their applications in strain en-
gineering. From this study, it becomes clear that rippled
antimonene needs to be fully relaxed to maintain its electronic
properties and performance under complex working environ-
ments where the structure is prone to strains. Meanwhile, the
results highlight the interesting possibility of tuning the WF
and band gap of antimonene across a big range of values
simply by controlling the corrugation of the 2D material.

3. Density of states

To investigate the orbital contribution in the BS and explain
the mechanism behind the relatively constant electronic prop-
erties, the total and projected DOSs are plotted. As shown in
Figs. 5(a) and 5(c), the p orbital states dominate the regions
around the CBM and VBM. They are highly delocalized near
the VBM, implying that antimonene possesses exceptional
carrier mobility and great transport efficiency. The contribu-
tion of the s orbital states increases at the low-energy region
of the valence band, and the contribution of both the s and d
orbitals increases at the high-energy region of the conduction
band, indicating the presence of orbital hybridization at these
energy levels. The DOSs in Fig. 5(b) are continuous because
antimonene becomes a metal in this case.

The contribution of each p orbital (px, py, and pz) is further
investigated [Figs. 5(d)–5(f)]. From the comparison between
the DOS of the rippled and flat structures under armchair
compression, it can be inferred that for the flat structure, the
increase in compression mainly causes a downward shift of
the energy of py and pz orbitals in the conduction band with
reference to the Fermi level, which eventually leads to the
closing of the band gap at 7.5% compression. The px orbital
is less affected because the compression is applied along the
y direction. Similarly, the energy of the py orbital shifts less
than that of the other p orbitals under zigzag compression.
This energy shift could be attributed to the increase in overlap
between the orbitals of neighboring atoms under strains. On
the other hand, the rippled structures maintain the energy
of these orbitals and have the same DOS pattern at all the
compression levels along both directions.

C. Geometry analysis

To understand the energetics of β-Sb under compression
and rationalize the highly stable electronic properties of the
rippled structures, the geometric characteristics of the or-
thorhombic cell during structural deformation are investigated
in detail. As shown in Fig. 6(a), the rippled structure is curved
at the peak and trough but rather flat in between.

The bond lengths and angles define the configuration of the
2D lattice of antimonene. For the supercell with 15 unit cells
under low armchair compression [Fig. 7(d)], the variations in
the bond lengths are rather symmetric with slightly greater
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FIG. 5. DOS of the (a) rippled and (b) flat structures under 7.5% armchair compression and (c) DOS of the flat structure under 5.0% zigzag
compression. (d)–(f) Respective zoomed-in plots for the p orbitals around the Fermi level.

values in the flat regions of the structure. The rest of the cases
under armchair compression [Figs. 7(a)–7(c), 7(e), and 7(f)]
exhibit asymmetric variations: the left and right sides deviate
in opposite directions from the average value, especially in
the supercells with ten unit cells. However, the scale of such
variations is small compared to the magnitude of the bond
lengths, especially for d13 and d24. The small deviation and
fluctuation of these two zigzag bonds may be attributed to the
bulky configuration around them as shown in Fig. 6(a).

While the bond lengths exhibit different variations, the
bond angle changes under armchair compression are more
regular, as shown by Figs. 7(g)–7(l). The bond angle α1 re-
mains constant because there is no transverse movement of
the atoms.

FIG. 6. (a) Rippled structure under 7.5% compression along the
armchair direction. (b) Top view showing the configuration of the
distorted optimized rippled structure under 7.5% zigzag compres-
sion, where the part highlighted in yellow (peak) and the end (trough)
are the least distorted regions.

The structures under zigzag compression exhibit similar
behaviors. The shape of the originally buckled honeycomb
structure is highly distorted, except at the curved regions
of the wave, as shown in Fig. 6(b). Atoms 2 and 3 form
bonds with atoms 4 and 1, respectively, on both sides. The
variation of all the bond lengths across the optimized rippled
structures are depicted in Figs. 8(a)–8(f). More symmetri-
cal results are obtained for supercells with both 10 and 15
unit cells under zigzag compression than under armchair
compression. The lengths of the zigzag bonds (d13 and d24)
experience greater fluctuations, while the armchair bonds
(d23 and d14′ ) are relatively constant and generally longer
because they are less affected by the zigzag strain. The ex-
ception is in the supercell with ten unit cells under 7.5%
compression, where the armchair bonds are shorter in the
curved region of the wave. The reason could be that the
length of the supercell along the zigzag direction is insuf-
ficient to accommodate the high corrugation under the high
compression. The difference between the zigzag and armchair
bond lengths decreases as the compression increases. There
is high overlap between the variations of d13 and d24′ as
well as d31′ and d24. It could be due to the similar force
fields experienced by the parallel bonds in proximity. All
the bond lengths are directly related to the curvature of the
structure.

Different from the case of armchair compression, all the
bond angles experience significant variations across the struc-
ture under zigzag compression, as shown in Figs. 8(g)–8(l).
The bond angle α1 decreases at the peak of the structure
because the atoms along the x axis (atom 1 in each unit cell),
being located in the bottom sublayer of the structure, are
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FIG. 7. (a)–(f) Bond lengths and (g)–(l) bond angles of the optimized rippled structures with 10 [(a)–(c) and (g)–(i)] and 15 [(d)–(f) and
(j)–(l)] unit cells in the supercell under compression of 2.5% [(a), (d), (g), and (j)], 5% [(b), (e), (h), and (k)], and 7.5% [(c), (f), (i), and (l)]
along the armchair direction.

compressed together. The distortion of the structure is re-
flected by the variation of α2 as the parallel bonds fluctuate
together. The angle φ has similar variations to the case of
deformation under armchair compression.

After observing the variations of the bond lengths and
angles along the compression direction, it is important to see
the overall effect of rippling by comparing the mean values

to those of the flat counterparts. As shown in Figs. 9(a) and
9(b), the mean bond lengths of the rippled structure (15 unit
cells) remain relatively constant under different compression
levels and are only slightly shorter than those of the pristine
structure. This negligible deviation from the case of the pris-
tine structure may be attributed to the relaxation that allows
the bonds to be stretched overall to release the strain energy.
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FIG. 8. (a)–(f) Bond lengths and (g)–(l) bond angles of the optimized rippled structures with 10 [(a)–(c) and (g)–(i)] and 15 [(d)–(f) and
(j)–(l)] unit cells in the supercell under compression of 2.5% [(a), (d), (g), and (j)], 5% [(b), (e), (h), and (k)], and 7.5% [(c), (f), (i), and (l)]
along the zigzag direction.

In contrast, the flat structures are unable to reorientate the
atoms, leading to more compact configurations in general as
demonstrated by the much shorter mean bond lengths, which
have lower values as the compression increases. For the same
structure, the zigzag bonds d13 and d24 have the same mean
value, and the armchair bonds d23 and d14′ have the same mean
value. The zigzag bonds are on average less compressed than

the armchair bonds under armchair compression and more
compressed than the armchair bonds under zigzag compres-
sion.

Similarly, although the bond angles exhibit variations at
different curvatures of the rippled structure, the mean values
across the supercell remain relatively constant under different
compression levels and are almost the same as those of the
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FIG. 9. Mean bond lengths (a),(b) and mean bond angles (c),(d)
of the optimized rippled structures (red) and their flat counterparts
(gray) under armchair (a),(c) and zigzag (b),(d) compression, nor-
malized with the values of the pristine structure. The mean value
of d13 and d31′ (d24 and d24′ ) is plotted as d13 (d24) for the zigzag
compression.

pristine structure, as shown in Figs. 9(c) and 9(d). In contrast,
because the configuration of the flat structure becomes more
compact when the compression increases, φ increases under
both the armchair and zigzag compression. The direction of
the compression determines the change in α1 and α2. The an-
gle α1 increases slightly under armchair compression but de-
creases under zigzag compression, while α2 decreases in both
cases with a greater magnitude under armchair compression.

To characterize the variations in the bond lengths and
angles across the wave, discrete geometry analysis (DGA)
[44] is performed. DGA is a well-established way to
determine strain in 2D materials, and it has been applied
by Kistanov et al. [45] to determine the strain induced by the
cross-sheet motion of lithium through antimonene sublayers.
In our work, using the method of triangulation over a finite
mesh of atomic positions, the metric tensor g , mean curvature
H , and Gaussian curvature K for each of the two sublayers of
the rippled antimonene structure are computed. The invariants
Tr(g) and Det(g) represent the local strain of the material:
they take on values greater than 1 under in-plane tension

but less than 1 under in-plane compression. The curvature
values represent the out-of-plane deviation from planarity
and character of the surface profile (H = K = 0 for planar
configuration, K > 0 for elliptical configuration, and K < 0
for hyperbolic configuration).

As shown in Fig. 10, the top and bottom sublayers of the
rippled structure exhibit opposite changes in both Tr(g) and
Det(g), which proves the existence of local strain within a
single sublayer, although the average values are around 1. A
similar trend is also observed in rippled structures at other
compression levels, which explains the consistent electronic
properties of the optimized rippled structures regardless of
the compression level. In contrast, the flat structure under the
same compression level experiences high, uniform compres-
sive strain. Compared to the flat structures (the flat structure
under 7.5% armchair compression and pristine structure under
no strain), the rippled structure exhibits hyperbolic config-
uration for its both sublayers. The significant, nonuniform
curvature exemplifies structural deformation from the pristine
structure. The unity value obtained for Tr(g) and Det(g) of the
pristine structure and zero value obtained for the curvature of
the flat structures proves the validity of the calculations.

It can be concluded that by introducing ripples and
allowing full relaxation of the antimonene structure, the
configuration of antimonene can be preserved overall un-
der compression, as long as the wavelength of the ripple is
long enough to accommodate the corrugation. Under uniaxial
compression along both the armchair and zigzag directions,
antimonene is able to release the strain energy through rip-
pling, unlike phosphorene, where ripple deformation under
compression occurs only along the zigzag direction [46].
This behavior may make tuning of antimonene easier because
the strain direction is not a concern. The relatively constant
configuration of the rippled structure proves that the overlap
between the p orbitals of the neighboring atoms is less altered
on average, which helps to retain the electronic properties of
the pristine structure.

D. Piezoelectricity

To explore the effect of rippling on the piezoelectric prop-
erties of β-Sb, the out-of-plane dipole moment is computed
according to Eq. (1) and plotted for the rippled structures

FIG. 10. DGA of rippled (top and bottom sublayers) and flat antimonene under 7.5% armchair compression and pristine antimonene (strain
free). Since the same results are obtained for both sublayers of the flat and pristine forms, only those of the bottom sublayers are presented.
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FIG. 11. Out-of-plane dipole moment of the optimized rippled structures with 15 unit cells under (a)–(c) armchair and (d)–(f) zigzag
compression of 2.5% (a),(d), 5% (b),(e), and 7.5% (c),(f).

under compression (Fig. 11). The moment values approach
zero where the antimonene structure is rather flat and reach
a maximum where it has the maximum curvature. As the
compression increases along the armchair and zigzag direc-
tions, the magnitude of the dipole moment also increases
proportionally with similar values in both cases, which may
potentially serve as a driving mechanism for contact electrifi-
cation.

Different from the case of graphene [42], of which the
structure is perfectly planar and only one atom thick, the
moment plots of buckled antimonene have two curves, which
show obvious symmetry with atoms 1 and 2 having the neg-
ative values and atoms 3 and 4 having the positive values.
Note that atoms 1 and 2 are in the bottom sublayer of the
antimonene structure, while atoms 3 and 4 are in the top
sublayer, which could be the reason for the opposite moment
values upon bending of the structure. According to Eq. (2),
for a free-standing rippled monolayer, these values may be
canceled out and give rise to zero polarization overall.

Nevertheless, in antimonene multilayers and its het-
erostructures, polarization changes induced through corruga-
tions may still be utilized for charge transfer and contact
electrification. It has been found through both simulations
[42] and experiments [47,48] that the rippling of materials in
contact can enhance charge transfer and thus cause depletion
and accumulation of electrons near the concave and convex
surfaces, respectively. Electrostatic potential differences can
therefore be induced across the interfaces. Having a low elec-
tron affinity [49] and great number of electrons, antimonene
exhibits high transport efficiency. Antimonene-based materi-
als could hence be a suitable candidate for piezoelectric and
flexoelectric devices.

IV. CONCLUSION

The electronic properties including the WF and BS of rip-
pled β-Sb under uniaxial compression along both the armchair
and zigzag directions have been investigated and compared
with those of the flat counterparts to reveal the effects of
rippling. It has been found that under such compression,
the rippling deformation mode is energetically favored over
the flat structure along both directions. The introduction of
rippling preserves the properties of the pristine antimonene
structure (flat and strain free), and these properties do not
vary with the compression level applied, at least within the
range examined in this study (below 7.5%). The underly-
ing mechanism for this behavior is explained by the orbital
contribution based on analyses of the DOS and structure
configuration. It is deduced that full relaxation of the rippled
structure under compression allows the atoms to rearrange and
stabilize to release the strain energy. The relatively constant
mean bond lengths and angles of the optimized structures
under compression minimize overall changes in the overlap
between the p orbitals of the neighboring atoms, which in
turn helps to maintain the electronic properties. The extensive
computation and thorough analysis highlight the rich strain-
amplitude configuration space of rippled antimonene, which
can be exploited to tune its electronic properties for advanced
functional applications. Additionally, it has been shown that
the curvature of the structure and its double-sublayer layout
play an important role in its piezoelectric properties.

While the effect of rippling on the electronic properties
of antimonene has been demonstrated, the impact on the
mechanical or even chemical properties can be further in-
vestigated in the future. Dynamic analysis on spontaneous
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rippling may also be performed to understand the deformation
mechanism. Beyond rippling, other factors such as doping,
defects, and number of layers may also alter the properties
and remain to be studied in future investigations. This work
provides compelling theoretical guidance for the investiga-
tion of rippling phenomena in other 2D materials, for which
the strain-amplitude-property relationship, to the best of our
knowledge, has never been comprehensively examined.
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