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Terahertz-field-induced second optical harmonic generation from Si(111) surface
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We study, both experimentally and theoretically, the second-harmonic (SH) generation (SHG) of optical
radiation assisted by intense terahertz electromagnetic pulses from the surface of high-resistivity Si(111). The
study was performed within the framework of the analysis of the superposition of different SH sources, including
the surface-dipole, bulk-quadruple, and electric-field-induced (EFI) bulk-dipole (arising from internal built-in
and external terahertz fields) contributions. Azimuthal rotation anisotropy of SHG for an arbitrary mutual
polarization of the terahertz, fundamental, and SH optical fields was calculated and experimentally verified.
The strongest impact of the terahertz field on SHG was observed in the case where the polarizations of the
terahertz and SH fields coincide. In these polarization configurations, the terahertz field added mainly an isotropic
term to the SH azimuthal dependences. It has been demonstrated that the application of the terahertz field can
be helpful for distinguishing the SHG mechanism. For the sample under study, the contribution to the SH
energy from the built-in field-induced source was found to be >4 times greater than the contribution from
the surface and quadrupole nonlinear sources. The dominance of the EFISHG allowed us to find the ratio
between the components of a silicon third-order nonlinear tensor χ (3)(2ω; ω,ω, 0): χ1122 = χ1212 ≈ 0.51χ1111

and χ1212 ≈ χ1221 for the fundamental optical wavelength 790 nm.
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I. INTRODUCTION

Silicon is one of the most important materials in the semi-
conductor industry, primarily in microelectronics. In many
silicon applications, electrophysical processes occurring on
the surface of silicon and its interface with other materials play
an important role. One of the effective methods for surface
diagnostics is the second-harmonic (SH) generation (SHG) of
optical radiation [1–5]. Indeed, silicon belongs to the media
with an inversion center, where SHG is forbidden in the bulk
(in the electric-dipole approximation), but the surface breaks
the symmetry, which permits nonlinear frequency doubling.
In this regard, SHG is extremely sensitive to the condition of
the surface.

Due to the rather weak nonlinear conversion efficiency
from the surface, high intensities of fundamental optical ra-
diation are required for sensing the generated SH. To prevent
thermal damage, laser pulses of femtosecond (or picosecond)
duration are commonly used. Two main SH measuring tech-
niques for sample characterization are generally employed.
The first is a rotational anisotropy SHG technique, in which
the SH energy (signal) is measured as a function of the
azimuthal angle of rotation relative to the normal of the
surface [3,4,6,7]. This technique permits one to characterize
the symmetry of the sample surface, as well as the surface
reconstruction [8,9], interfacial preparation (thermal or ambi-
ent oxidation, etching, etc.) [10–14], microroughness [12,15],
step-edge structure [16–20], strain [21,22], etc. The second is
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a SH spectroscopy technique, in which the SH signal is mea-
sured as a function of the fundamental harmonic frequency
[16,23–26]. Such a technique helps one study the resonant
properties of the SH excitation and provides information about
the silicon band structure and its modification near the surface
[3,13,26–29]. Phase-sensitive measurements can additionally
be used in both techniques for more complete information
about the sample [27,30,31].

Three main SHG mechanisms were established in previ-
ous studies [1,3]. The first is associated with the formation
of the dipole nonlinear polarization (NP) in the symmetry-
breaking region with a thickness of several atomic layers due
to the presence of broken bonds of silicon atoms. The second
mechanism is of quadrupole nature and is due to the spatial
field gradient of the fundamental harmonic in the bulk of
silicon. The third mechanism is determined by the electric-
field-induced (EFI) SHG (EFISHG) effect [32] due to the
existence of a built-in electric field in a space charge region
near the silicon surface [33,34]. The first SHG mechanism can
be considered as purely surface, whereas the last two mecha-
nisms have a bulk localization. The ratio of the mechanisms
to the total SH signal significantly depends on the Si doping
level, the preliminary preparation of the sample surface, its
quality, etc. [13,18,20,26,35–37]. Finding the dominant con-
tribution is not a trivial task [1,3,31,38].

Characterization of the built-in field and the space charge
region is essential for the operation of many Si-based micro-
electronic devices [e.g., metal-oxide-semiconductor (MOS)
transistors and capacitors]. Most commonly, capacitance-
voltage measurements [39] are used for this purpose.
However, such measurements require the fabrication of an
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electrode structure which can affect the interface properties,
lead to additional transport and trapping of mobile carri-
ers across the silicon interface [40], and cause a breakdown
of thin dielectric films (<10 nm) used in modern MOS
structures [41]. In contrast, the SHG offers additional advan-
tages for nondestructive, contactless diagnostics [4,42]. For
this purpose, a time-dependent SHG (TD-SHG) measurement
[42–47], where the SH signal is traced as a function of the op-
tical exposure time, can be used. The TD-SHG effect is related
to multiphoton ionization, injection, transport, and trapping of
the optically induced charge carriers in the interface and in the
silicon oxide (or in another silicon-covering dielectric). The
time behavior of the SH signal can reveal the silicon dopant
type [45], applied bias [46], as well as the oxide thickness
[44], roughness, thermal processing steps, and the presence
of metal contamination [42]. However, TD-SHG gives only a
relative measurement, which requires calibration.

A more relevant approach for the built-in field character-
ization is based on using an external electric field applied to
the sample [31,48,49]. An experimental demonstration of this
so-called EFISHG technique in silicon using an electrolyte
was reported by Lee et al. [50]. For MOS structures, intense
research started in the early 1990s. In a pioneering work of
the group led by Aktsipetrov [51], a significant effect of an
external DC electric field on the SH signal at the Si-SiO2 inter-
face was shown for the n-type Si(111)/SiO2 structure with an
InGa top electrode. In the subsequent examination of various
silicon samples, more detailed theoretical and experimental
studies have been carried out, and a deeper understanding
of the physical processes accompanying the EFISHG effect
has been achieved. An electrophysical model has been de-
veloped considering the self-consistent spatial distribution of
the built-in electric field and space charge in the near-surface
region [49,52,53]. In Ref. [54], carrier-induced screening of
the electric field at the Si(001)-SiO2 interface was observed
and discussed. Contributions to the resulting SH signal from
surface (interphase) and EFI bulk SH sources were debated
[30,48,49,53,55–57]. It should be noted that the EFISHG
technique encounters some difficulties in explaining the ex-
perimental results due to the influence of metal contacts on
SHG [37] and the effect of the applied voltage on the space
charge [49,52,58] with an accompanying possible distortion
of the electric field near the metal contacts. Also, the metal-
lization (or immersion of the sample in an electrolyte) can lead
to a modification of the surface under study [48].

Instead of the DC electric field, a freely propagating low-
frequency electromagnetic field can be applied to the sample.
For example, the field of short terahertz pulses coherently
generated by optical-to-terahertz conversion of femtosecond
laser radiation can be employed. In this so-called terahertz-
field-induced (TFI) SHG (TFISHG) technique, the duration
of a femtosecond optical pulse of the fundamental harmonic is
typically several times shorter than the period of the terahertz
oscillation, which permits one to consider the terahertz field
as quasistatic. In contrast to a DC field, the use of terahertz
pulses does not require the manufacture of conductive con-
tacts, allows free control of the field polarization, and gives an
opportunity to study the low-frequency dispersion of the SH
response by measuring the time delay between terahertz and
optical pulses [59,60]. Also, the picosecond duration of the

terahertz pulse makes it possible to apply a field higher than
the DC breakdown field. For example, in Ref. [60], p-doped
silicon was explored by TFISHG using superstrong (up to
20 MV/cm) terahertz fields. The effect of the ponderomotive
force of such extreme terahertz pulses and the modulation of
the TFI impact ionization rate at the optical frequency on the
SH signal was demonstrated.

In this paper, we demonstrate the possibility of effective
use of TFISHG to characterize crystalline silicon. By using
Ti:sapphire femtosecond laser pulses in combination with co-
herent terahertz pulses having a peak electric field of up to
250 kV/cm, we studied the optical SHG from high-resistivity
Si(111) with native oxide. Anisotropy of SHG was calcu-
lated and measured for different mutual orientations of the
terahertz, fundamental, and SH optical electric fields. The
SH field phase between surface/bulk-quadruple and EFI bulk
contributions was extracted by applying a terahertz field.
Comparison of experimental data with the theory made it
possible to reveal the relative role of various mechanisms
of SHG, to measure the ratio between the components of a
third-order nonlinear tensor, and to estimate the magnitude of
the built-in field.

This paper is organized as follows. In Sec. II, we extend
the theory of the EFISHG rotation anisotropy for Si(111),
considering the arbitrary polarization of an external (terahertz)
electric field, and discuss the electrodynamics of SHG within
the framework of the superposition of surface-dipole, bulk-
quadruple, and EFI SH sources. In Sec. III, we present the
experimental results and, comparing them with the theory,
characterize the sample properties, such as the dominant SHG
mechanism, the third-order nonlinear tensor, and the built-in
electric field.

II. THEORY

The theory of the surface SHG, including the EFISHG
effect, has been developed in several publications (see re-
view articles [1,3]). However, in previous studies, the rotation
anisotropy of SHG was considered for a single orientation of
the electric field (internal or external) perpendicular to the
surface. Below, we derive general expressions of EFISHG
anisotropy for an arbitrary direction of the external electric
field (terahertz field in this case) for a (111)-oriented Si sur-
face and discuss the phase relation of SH fields from surface
and bulk nonlinear sources contributing to the total generated
SH energy.

Figure 1 shows the geometry of the problem. Si(111) is
illuminated by optical and terahertz pulses with arbitrary po-
larization. Incidence angles of the optical and terahertz pulses
in Fig. 1 are shown equal (this corresponds to our exper-
imental condition where the angles were ∼45 °); however,
these angles may be arbitrary (as well as differ from each
other) in the further theoretical consideration. We assume that
the duration of the optical pulse is much shorter than the
period of the terahertz wave. In this case, the terahertz electric
field ET

0 can be considered as quasistatic with respect to the
optical pulse. Inside silicon, near the surface, we consider
the existence of a built-in electric field EB = �

zEB(z), where
the z axis is normal to the surface. The strength of the field
is determined by trapped electrons at the silicon interface
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FIG. 1. Geometry of the problem for calculation of the terahertz-
field-induced second-harmonic (SH) nonlinear polarization.

and/or in an insulator (silicon oxide) film typically covering
the silicon surface. The field localization length LB in silicon
is governed by both the silicon doping level and the surface
potential [33,34,61]. It is assumed that the sample can rotate
around an axis perpendicular to the surface at an azimuthal
angle θ (the positive direction of rotation is chosen clockwise
when the sample is viewed from above). The crystallographic
axes of the crystal are directed so that, at θ = 0, the x, y,
and z axes of the laboratory coordinate system coincide with
the crystallographic directions [21̄1̄], [011̄], and [111], respec-
tively.

SH NP PSH induced near the surface can be expressed as
the superposition of four terms:

PSH = PS + PQ + PB + PT . (1)

Here, PS is the dipole NP arising near the surface due to
the broken symmetry of the crystal lattice on the scale of
several atomic layers. The NP can be expressed by a χ̂ (2)

surface tensor. Here, PQ is the quadrupole bulk NP, which
appears due to the spatial dispersion and is expressed by a
quadrupole tensor χ̂ (3)Q. Also, PB and PT are the EFI NPs
related to the bulk cubic nonlinearity χ̂ (3) in the presence of
built-in EB and external ET

0 electric fields, respectively. Note
that, in atmospheric air, silicon is covered with a native oxide
layer 1–2 nm thick [13,14,62]. Therefore, the same NPs can
be induced in this layer. Nevertheless, due to the small layer
thickness, these additional NPs can be included in PS , which
can then be considered as an interfacial Si-SiO2 NP.

Expressions for PS
j , PQ

j , and PB
j ( j = x, y, z) as functions of

the azimuthal angle θ in the laboratory coordinate system can
be found in Refs. [1,7]. To calculate the angular anisotropy
of PT

j (θ ) (induced by arbitrarily oriented ET
0 ), we use the

approach described in Ref. [1]. First, we transform the optical
and terahertz electric fields from the laboratory to the crys-
tallographic coordinate system using successively the rotation
matrix:

Ai j =
⎡
⎣ cos(θ ) sin(θ ) 0

− sin(θ ) cos(θ ) 0
0 0 1

⎤
⎦, (2)

and the transformation matrix:

Bi j =

⎡
⎢⎢⎣

2√
6

0 1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2

1√
3

⎤
⎥⎥⎦, (3)

defined by the orientation of the crystallographic axes relative
to the surface. Then in the crystallographic coordinate system,
we calculate the EFI NP by using a nonlinear tensor χ̂ (3) [1]:

χ
(3)
1111 = χ

(3)
2222 = χ

(3)
3333 = χ1,

χ
(3)
1122 = χ

(3)
2211 = χ

(3)
1133 = χ

(3)
3311 = χ

(3)
3322 = χ

(3)
2233 = χ2,

χ
(3)
1212 = χ

(3)
2121 = χ

(3)
1313 = χ

(3)
3131 = χ

(3)
3232 = χ

(3)
2323 = χ2,

χ
(3)
1221 = χ

(3)
2112 = χ

(3)
1331 = χ

(3)
3113 = χ

(3)
3223 = χ

(3)
2332 = χ3. (4)

After that, the obtained expression for the NP was transformed
back to the laboratory coordinate system, using matrixes in-
verse of Eqs. (2) and (3). The result of the calculation of PT

j (θ )
is given in Table I. Also, Table I contains the surface and
the built-in field-induced NPs [PS

j (θ ) and PB
j (θ ), respectively]

reproduced from Ref. [1] (PQ
j (θ ) is not shown in Table I

but can be found in Ref. [1]). In expressions for the NPs,
the fields Ej and ET

j are the j components ( j = x, y, z) of
the optical and terahertz fields inside silicon (ET

j is related
to the incident terahertz field ET

0 j by Fresnel formulas). The

constant χ0 = √
2(χ1 − 2χ2 − χ3)/6 is some combination of

χ̂ (3) tensor components, which characterize the bulk nonlinear
anisotropy (note that, for an isotropic medium, χ0 = 0) [1].
The notation of field polarizations is written as RR or RRR
(R = S, P), where the first and last letters denote the polar-
izations of the fundamental and SHs, respectively, and the
intermediate letter (if any) denotes the terahertz field polar-
ization.

The azimuthal dependences of all NPs Pk (θ ), k = S,
B, T , Q, include both isotropic (independent of the an-
gle θ ) and threefold anisotropic [proportional to sin(3θ ) or
cos(3θ )] terms. Note that, without terahertz radiation, the
NPs Pk (θ ), k = S, B, Q, and their superposition P0

SH(θ ) =
PS (θ ) + PQ(θ ) + PB(θ ) have an identical angular anisotropy.
The application of a terahertz field leads to a change in the NP
azimuthal dependence for some polarization configuration.
For example, in the SS case characterized by fully anisotropic
P0

SH(θ ) ∼ sin(3θ ), the application of an s-polarized terahertz
field (the SSS case) adds an isotropic term, while the p-
polarized terahertz field (the SPS case) adds an anisotropic
term and does not modify the dependence. Analyzing all cases
of polarization configuration, two general conclusions can be
drawn from Table I. First, the isotropic term in PT (θ ) rises
only when the polarizations of the terahertz and SH fields are
the same, i.e., in the SSS, PSS, SPP, and PPP cases. Second,
the anisotropic terms in PT (θ ) are always proportional to the
anisotropy constant χ0.

We now focus on the electrodynamics of SHG, or rather
on the result of the interference of the SH fields induced by
P0

SH and PT . The SH electric field generated by the total NP
defined by Eq. (1) can be represented as the superposition of
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TABLE I. Expressions for the Cartesian components of the SH NP for various sources in the laboratory coordinate system.

Terahertz contribution

SH NP Surface contributiona,b Built-in field contributiona s polarization p polarization

SS SSS SPS

PSH
y −E 2

y χ
(2)
111 sin(3θ ) −E 2

y EBχ0 sin(3θ ) E 2
y ET

y (χ1 − 3χ0/
√

2) −E 2
y ET

z χ0 sin 3θ

PS PSS PPS

PSH
y E 2

x χ
(2)
111 sin(3θ ) E 2

x EBχ0 sin(3θ ) ET
y

[E 2
x (χ0/

√
2 + χ3)

+E 2
z (

√
2χ0 + χ3)

−2ExEzχ0 cos(3θ )

]
(2ExEzET

x + E 2
x ET

z )χ0 sin 3θ

SP SSP SPP

PSH
x −χ

(2)
111E 2

y cos(3θ ) −E 2
y EBχ0 cos(3θ ) 0 E 2

y

[
ET

x (χ0/
√

2 + χ3)
−ET

z χ0 cos(3θ )

]

PSH
z χ

(2)
311E 2

y E 2
y EB(

√
2χ0 + χ3) −E 2

y ET
y χ0 sin 3θ E 2

y

[
ET

z (
√

2χ0 + χ3)
−ET

x χ0 cos(3θ )

]
PP PSP PPP

PSH
x 2χ

(2)
113ExEz + χ

(2)
111E 2

x cos(3θ )
2ExEzE

B(
√

2χ0 + χ2)
+E 2

x EBχ0 cos(3θ )
2ET

y ExEzχ0 sin(3θ ) c

PSH
z χ

(2)
311E 2

x + χ
(2)
333E 2

z
E 2

z EB(χ1 − 2
√

2χ0)
+E 2

x EB(
√

2χ0 + χ3)
ET

y E 2
x χ0 sin(3θ ) d

aReference [1].
bThe axes of the coordinate system (100), (010), and (001), in which the surface tensor is written, coincide with the x, y, and z axes at θ = 0,
respectively.
cE 2

x ET
x (χ1 − 3√

2
χ0) + E 2

z ET
x (

√
2χ0 + χ3) + 2ExEzET

z (
√

2χ0 + χ2) + (E 2
x ET

z + 2ExEzE
T
x )χ0 cos(3θ ).

dE 2
z ET

z (χ1 − 2
√

2χ0) + E 2
x ET

z (
√

2χ0 + χ3) + 2ExEzET
x (

√
2χ0 + χ2) + E 2

x Exχ0 cos 3θ .

SH fields Ek
SH from each Pk (k = S, Q, B, T ):

ESH = ES
SH + EQ

SH + EB
SH + ET

SH. (5)

Here, Ek
SH can be calculated by the Green’s function method

with allowance for boundary conditions [1,7,30,63,64]:

Ek
SH =

∫ ∞

0
G(z − z′)Pk (z′)dz′, (6)

where G is the Green’s function [64]. The integration result
of Eq. (6) significantly depends on the space localization of
Pk (z). The surface NP can be written in terms of the delta
function PS

j (z) ∼ δ(z). For bulk SH sources, NPs can be writ-
ten via the spatial factor [1] Pk

j (z) ∼ exp(−i2κωz−z/Lk ) (k =
Q, B, T ), where κω is the wave number of the fundamental
field in silicon, LQ → ∞, and LT is the space (localization)
length of the terahertz field.

The exact expressions for ES
SH, EQ

SH, and EB
SH calculated

by Eq. (6) are given in Refs. [1,61,64]. The expression for
ET

SH can be obtained from EB
SH by replacing the length LB

with LT . We will not present these exact expressions here
but restrict ourselves to analyzing the phases ϕk (k = S, Q,
B, T) of the generated SH fields Ek

SH ∼ exp(i2ωt + iϕk ) (ω is
the cyclic frequency of the fundamental harmonic) since these
phases affect the field interference and, as a consequence, the
resulting SH rotation anisotropy. The phases ϕk are affected
both by the resonance properties of the nonlinear response
of silicon (mathematically, resonances are the cause of the
complex value of the corresponding nonlinear tensor) and by
the electrodynamics of the SH field formation [mathemati-
cally, it is expressed by the convolution in Eq. (6)]. Next,

we focus on the case where the frequencies of the first and
SHs are far from silicon resonances, which corresponds to
our experimental conditions, where the fundamental field at
the central wavelength λω = 790 nm was used (see also the
discussion in Sec. III). This assumption allows us to consider
the surface and EFI NPs as real and the quadrupole NP as
imaginary [PQ

j = χ
(3)Q
jmql Em∇qEl ≈ iχ (3)Q

jmql Em(κω )qEl ]. In this

case, the phases ϕk will be determined by the ratio between
Lk and the SH space length LSH ≈ 1/|k2ω|, where k2ω is the
SH wave number in silicon. When LSH 	 Lk , Eq. (6) gives
ϕk ∼ 0 (or π ) for real NP and ϕk ∼ ±π/2 for imaginary NP,
and when LSH 
 Lk , vice versa, ϕk ∼ 0 (or π ) for imaginary
NP and ϕk ∼ ±π/2 for real NP.

Following the above analysis, for the surface and
quadrupole SH source in the nonresonance case, we have
ϕS ≈ ϕQ ≈ 90◦. More accurate calculation with allowance for
complex Si refractive indexes gives a slight phase change;
for example, for λω = 790 nm, we have ϕS = 95◦. The phase
ϕB can vary significantly for different silicon samples due to
the abovementioned strong dependence of the built-in field
localization length LB on both the Si doping and the surface
potential. Indeed, LB can range from several nanometers (for
Si with a carrier concentration nc > 1018 cm–3) to several mi-
crometers (for intrinsic Si with nc ∼ 1010 cm–3 and a small,
<0.1 V, surface potential) [61,65]. Figure 2 shows ϕB as a
function of LB calculated for λω = 790 nm (the calculation
is based on the equation for EB

SH given in Refs. [1,61] with
allowance for the complex value of the silicon optical re-
fractive indices). It can be seen that increasing LB from 0
to LSH ∼ 50 nm rapidly changes ϕB from 95 ° to 165 °; for
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FIG. 2. Phase ϕB as a function of the nonlinear polarization (NP)
localization length LB calculated for a fundamental wavelength of
790 nm.

LB > 50 nm, ϕB tends to a constant level of ∼170 °. The
phase ϕT can be taken close to 180 ° in a wide range of the
Si doping level. Indeed, even for high nc ∼ 1018–1019 cm–3,
the penetration length of the terahertz field at a frequency of
∼1 THz is ∼1 μm, which is at least several times more than
LSH for fundamental frequency above the silicon bandgap.
In high-resistivity (>1 k�/cm) Si, the terahertz field does
not significantly attenuate and can be considered as uniform
on the LSH scale, which gives ϕT ≈ 170◦ for λω = 790 nm
(Fig. 2).

Based on the above discussion, it can be concluded that,
for most of the Si samples explored far from the optical res-
onances, the TFI SH field ET

SH does not interfere with the SH
fields generated by surface and quadrupole sources, ES

SH and
EQ

SH, respectively. At the same time, ET
SH can partially interfere

with the SH field EB
SH induced by the built-in field. Then

neglecting the imaginary part of the silicon refractive indices,
the rotation anisotropy of the generated SH energy (signal)
for an arbitrary polarization configuration can be written in
the following form:

WRRR(θ )=
∣∣∣∣
{[

F S
RR(θ )+F Q

RR(θ )
]

exp

(
iπ

2

)
+F B

RR(θ ) exp(iϕB)

}

+ F T
RRR(θ ) exp(iϕT )

∣∣∣∣
2

, (7)

where the real functions F k
RR(θ ) (k = S, Q, B) and F T

RRR(θ ) =
AT

RRR(θ )ET
0 [functions AT

RRR(θ ) are also assumed real] con-
sider both the electrodynamics of the SH field emission
[governed by Eq. (6)] and the azimuthal dependences of the
NPs for the corresponding polarization configuration (RR or
RRR, R = S, P). Note that the functions F k

RR(θ ) have the
same angular dependence. For a further theoretical and ex-
perimental comparison, it is convenient to discriminate the
anisotropic and anisotropic terms in Eq. (7). Considering
the complexity of the refractive indices and components of
the nonlinear tensors [χ̂ (2), χ̂ (3), and χ̂ (3)Q], Eq. (7) can also
be written in a general form:

WRRR(θ ) = ∣∣[Ai
RR exp

(
iϕi

RR

) + Aa
RR(θ ) exp

(
iϕa

RR

)]
+ AT

RRR(θ )ET
0

∣∣2
, (8)
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FIG. 3. Experimental setup.

where Ai,a
RR and ϕi,a

RR are the amplitudes and relative phe-
nomenological phases of the isotropic (i) and anisotropic (a)
components of the SH field generated without the external
terahertz field.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental setup used to study SHG from the sample
surface in the presence of strong terahertz fields is shown
in Fig. 3. Radiation of a Ti:sapphire laser system (0.6 mJ,
795 nm, 70 fs, and 600 Hz) was split into two beams. The main
part of the optical energy was used to generate terahertz pulses
by the tilted-pulse-front technique in a LiNbO3 crystal (the
tilted intensity front was created by a 1800 mm–1 grating and
imaged in the crystal by lenses L1 and L2 with focal lengths
of 25 and 15 cm, respectively) [66,67]. The terahertz radia-
tion generated from the crystal had a vertical (s) polarization
(normal to the drawing plate). Terahertz pulses were sharply
focused on the sample using a system of off-axis parabolic
mirrors PM1–PM3. Two terahertz thin film polarizers (TPs)
were used to attenuate the terahertz field as well as to change
its polarization. Note that the s- to p-polarization conversion
reduces the amplitude of the terahertz field by about two times
but permits one to control the direction of the p-polarized
field (the terahertz electric fields with positive and negative
projection on the x axis are denoted P+ and P–, respectively).

The magnitude of the terahertz field was measured using
a classical electro-optic sampling technique (not shown in the
figure) by detection of the field-induced depolarization of the
probe laser radiation in a 200-μm-thick GaP crystal. The max-
imum value of the terahertz field (with s polarization) at the
focus of the parabolic mirror (PM3) reached ∼250 kV/cm (see
the inset in Fig. 3). To determine the direction of the terahertz
field, the 200 μm GaP crystal was replaced by a 3-mm-thick
(110) ZnTe crystal sandwiched between DC-voltage-biased
metal plates. Comparison of the optical depolarization in-
duced by terahertz and DC fields allowed us to specify the
direction of the terahertz field at its maximum as coinciding
with the y axis (see Fig. 3).

Another part of the optical radiation (probe beam) was used
to generate the second optical harmonic from the sample. The
probe laser pulses were focused by lens L3 on the sample at an
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angle of 45 ° collinear with the terahertz pulses to a spot size
of ∼150 μm, which is less than the size of the terahertz beam,
being ∼500 μm (the pulse alignment occurred through a hole
in the off-axis parabolic mirror PM3). The maximum intensity
of optical radiation on the sample was ∼ 10 GW/cm2. The
delay line was set to make the optical pulse coincide with the
maximum value of the terahertz field. The polarization of the
probe pulse was rotated by a λ/2 plate and filtered using a P1
polarizing plate (Thorlabs WP25L-UB).

In the experiment, n-type Si(111) (doped with phospho-
rus) with a resistivity of 1–5 k� cm (carrier concentration
∼1013 cm−3) was used as a sample. The sample was placed
on the motorized stage rotated relative to normal of the sample
surface. The second optical harmonic generated in the specu-
lar direction with respect to the incident probe radiation was
detected using a Hamamatsu R4220P photomultiplier tube
(PMT) operated in the photon counting mode. The polariza-
tion of the generated SH was filtered by a Glan prism P2
placed in front of the PMT. A BG39 filter was placed in front
of the Glan prism to cut off the fundamental harmonic. In
addition, to cut off external radiation, another BG39 filter and
a narrow-band bandpass filter (BF) for the SH were located
directly in front of the PMT. Parasitic SH radiation generated
in optical elements before the sample was cut off by a color
filter (CF). During the experiment, special attention was paid
to adjust the rotation stage with minimum SH beam wandering
as well as to orientate the P1, P2, and TP to accurately align
the corresponding field polarizations.

During the experiment, it was found that, in the presence
of a terahertz field, the SHG occurs not only in the sample
but also in air during the joint propagation of the optical and
terahertz pulses (between the off-axis parabolic mirror PM3
and the sample). The magnitude of this unwanted “air” SH
signal for some polarization configurations was comparable
with the SH signal from the sample (for example, in the SSS
case). Physically, this can be explained by the fact that, despite
the significantly lower air nonlinearity compared to silicon,
the interaction length of the fundamental and SHs in air, which
also determines the amplitude of the SH signal [68], is several
orders of magnitude longer (2 cm of coherent length in air vs
LSH ∼ 50 nm in Si). To minimize the air signal, some part of
the experimental setup containing the sample was placed in a
container filled with helium, which has an order of magnitude
less nonlinear than air [69,70]. This reduced the air signal by
∼2 orders of magnitude. Note that some measurements were
performed in ambient air due to certain experimental restric-
tions. In this case, the results were appropriately recalculated.

Figures 4–6 show the SH signal (a number of detected
SH photos from 15 000 laser pulses) as a function of the
azimuthal rotation angle (Figs. 4 and 6) and the terahertz field
magnitude (Fig. 5) for different polarization configurations.
The measurements demonstrate that the intense terahertz field
(>100 kV/cm) significantly affects the SH signal value and its
azimuthal dependences when the polarizations of the terahertz
field and SH radiation coincide (the SSS, PSS, SP±P, and
PP±P cases). For other cases (PP±S, SP±S, SSP, and PSP),
the impact of the terahertz field is insignificant.

Let us analyze the obtained experimental data using
Eqs. (7) and (8) and Table I in more detail. For the SS case
[see Figs. 4(a) and 4(b)], the SH signal azimuthal dependence

FIG. 4. Azimuthal dependences of the second-harmonic (SH)
signal for (a) the SS (crosses and solid curve) and SSS (trian-
gles and dotted curve), (b) SS, SP+S (diamonds and dashed curve)
and SP–S (circles and dash-dotted curve), and (c) PP (crosses and
solid curve), PSP (triangles and dotted curve), PP+P (diamonds
and dashed curve), and PP–P (circles and dash-dotted curve) cases.
The dots correspond to the experimental data and the curves to the
theoretical calculation (see the text). Note that the SS dependence is
multiplied by 10 and the PP and PSP dependences by 5. The terahertz
field is ET

0 = 250 kV/cm.

is well fitted by the sixfold anisotropic function WSS(θ ) =
[Aa

SS sin(3θ )]2, in full agreement with the theory (see Table I)
and the earlier studies [6,7,15,21,57]. Note that we did not
observe a pedestal of the SH signal arising in the presence
of microroughness of the silicon surface [12,15], which indi-
cates a sufficiently smooth surface of our sample. When an
s-polarized terahertz field (with ET

0 = 250 kV/cm) is imposed
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FIG. 5. Second-harmonic (SH) signal as a function of the tera-
hertz field ET

0 for (a) the SSS and (b) PPP cases. Solid curves show
the approximation of experimental data by a quadratic dependence.

on a sample, the azimuthal dependence changes significantly
[Fig. 4(a)]: the sixfold anisotropy transforms to threefold
anisotropy with isotropic addition, while the value of the SH
signal increases drastically (by ∼50 times). This agrees well
with the theory. According to Table I, the s-polarized terahertz
field should add an isotropic term to the generated SH field.
Then with allowance for Eq. (8), the SH signal anisotropy can
be written in the form:

WSSS(θ ) = sin2(3θ )
[
Aa

SS sin
(
ϕa

SS

)]2

+ [
sin(3θ )Aa

SS cos
(
ϕa

SS

) + ASSSET
0

]2
. (9)

Fitting experimental data by Eq. (9) showed that |Aa
SS| 	

|ASSSET
0 | and the phase ϕa

SS should not exceed 30 °. For a more
accurate phase determination, we measured the SH signal
as a function of the terahertz field strength at θ = 30◦ [see
Fig. 5(a)]. At this azimuthal angle, the dependence WSSS(ET

0 ),
according to Eq. (9), has a minimum W min

SSS = [Aa
SS sin(ϕa

SS]2

for a certain field ET
0 min. This minimum (W min

SSS ≈ 36 counts)
is clearly observed in Fig. 5(a) at ET

0min = 40 kV/cm. Then
the phase ϕa

SS can be found from the expression sin(ϕa
SS) =

±
√

W min
SSS /W 0

SSS, where W 0
SSS is the SH signal at ET

0 = 0
[WSSS(ET

0 = 0) = (Aa
SS)2]. From Fig. 5(a), we have W 0

SSS ≈
220 counts, which gives ϕa

SS ≈ ±24◦.

FIG. 6. Azimuthal dependences of the second-harmonic (SH)
signal for (a) the PS (crosses and solid curve) and PSS (triangles
and dotted curve), (b) PS and PP+S (diamonds and dashed curve),
and PP–S (circles and dash-dotted curve), and (c) SP (crosses and
solid curve), SP+P (diamonds, dashed curve), and SP–P (circles and
dash-dotted curve) cases. The dots correspond to the experimental
data and the curves to the theoretical calculation (see the text). The
terahertz field ET

0 = 250 kV/cm.

When in the SS case a p-polarized terahertz field is
applied, the form of the rotational anisotropy of the SH sig-
nal does not change [see Fig. 4(b)]. Indeed, according to
Table I, the terahertz-induced SH field has the same az-
imuthal dependence ASPS sin(3θ )pT ET

0 (where pT = 1 and
pT = −1 for the SP+S and SP–S cases, respectively) as
the SH field in the SS case Aa

SS exp(iϕa
SS) sin(3θ ), which
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gives WSPS(θ ) = sin2(3θ )|Aa
SS exp(iϕa

SS) + ASPS pT ET
0 |2. How-

ever, the magnitude of the SH signal maxima increases
(slightly) with the positive projection of the terahertz field on
the x axis (the SP+S case) and decreases for the opposite di-
rection (the SP–S case). This behavior indicates the smallness
of the phase ϕa

SS, in accordance with the above estimated value
[in the opposite case of ϕa

SS close to 90 °, a different terahertz
field sign would give only an increase of the maxima in the
WSPS(θ ) dependence].

Let us examine the terahertz field effect on the SHG
in the PP case [Fig. 4(c)]. The SH signal rotational
anisotropy in this case has six maxima of different am-
plitudes and is well described by the function WPP(θ ) =
[Ai

PP exp(iϕi
PP) + Aa

PP exp(iϕa
PP) cos(3θ )]2 [see Table I and

Eq. (8)], in agreement with the previous experimental mea-
surements [21,38,57]. When the terahertz field is turned on,
the SH signal azimuthal dependence is changed similarly to
the SSS case: sixfold anisotropy is converted to threefold
with an isotropic addition. Switching the sign of the terahertz
field (the PP+P and PP–P cases) changes the isotropic level
and inverts the minima to maxima. According to the theory,
the application of the p-polarized terahertz field should add
both isotropic and anisotropic terms to the SH field. From the
form of the experimental dependences, it is obvious that the
magnitude of the isotropic component should be much larger
than the anisotropic one (otherwise, the SH signal would have
a sixfold anisotropy). Note that a significant dependence of the
isotropic component on the external field normal to the surface
(which is related to our PPP configuration) was also observed
for DC-biased Si in the MOS structures [53,55,57] and for
Si/electrolyte (Si/SiO2/electrolyte) interfaces [71]. The ap-
plication of an s-polarized terahertz field in our experiment
gives only a slight variation in the SH signal anisotropy: the
maximum magnitudes increase by several percent, and the az-
imuthal dependence shifts by several degrees along the θ axis.

To estimate the phases of the isotropic and anisotropic
terms in WPP(θ ) of Eq. (8) (ϕi

PP and ϕa
PP, respectively), the

SH signal as a function of the terahertz field strength was
measured for the PPP case at the azimuthal angles θ = 0◦
and 60◦ [Fig. 5(b)], which correspond to the major and minor
maxima in Fig. 4(c), respectively. The analysis of the obtained
terahertz field dependences in Fig. 5(b), like that carried out
for the SSS case, made it possible to estimate the values of
ϕi

PP and ϕa
PP in the range 15 °–20 °.

The effect of the terahertz field on the SHG with orthogonal
polarizations of the fundamental and second optical harmon-
ics (the PSS, PP±S, and SP±P cases) is shown in Fig. 6. In
the SP±P and PSS cases, where the polarizations of terahertz
field and SH radiation are parallel, strong changes in the SH
signal rotation anisotropy are observed relative to the SP and
PS cases, respectively. These changes, like the SSS and PPP
cases, indicate adding a relatively large isotropic component
to the corresponding SH fields under the action of the terahertz
field. Azimuthal dependences in the PP±S and PS cases differ
only in amplitude, which exhibits the addition of a small
anisotropic component when the terahertz field is turned on.
All experimental dependences in Fig. 6 are consistent with
Eq. (8) and the theoretical formulas from Table I for respective
polarizations. The analysis shows that the phases ϕi,a

SP and ϕa
PS

in Eq. (8) lie in the range 15 °–25 °.

Summarizing the above-discussed experimental results, we
can say that, first, the phase of the SH field E0

SH (without the
external terahertz field) and the phase of TFI SH field ET

SH are
close for any polarization configuration. Second, the main im-
pact of the terahertz field on the rotation anisotropy of the SH
signal is the addition of a significant (for ET

0 > 100 kV/cm)
isotropic component.

We now discuss the obtained results from the point of view
of the relationship between different mechanisms of SHG.
First, we should note that, in our experimental conditions,
the frequencies of the fundamental and SHs are far from
the silicon resonances. Indeed, for the used laser radiation
at the central wavelength 790 nm and the full width at half
maximum bandwidth 20 nm, the energy of the SH photons lies
in the range 3.14 ± 0.06 eV. This range is fairly far from the
resonances related to interband transitions in silicon (critical
points near E ′

0, E1 ≈ 3.4 eV and E2 ≈ 4.3−4.5 eV), even with
allowance for strained Si-Si bonds in the silicon interface
(leading to a shift of the E ′

0, E1 critical points to 3.3 eV)
[25,28,35]. This fact allows us to consider the components of
the nonlinear susceptibility tensors as real quantities [30,72]
and use Eq. (7) in the further consideration.

The analysis of the measured azimuthal dependences of the
SH signal using Eqs. (7) and (8) with allowance for the ob-
tained phenomenological phases ϕi,a

RR ∼ 15◦−25◦ (R = S, P)
has led to two important conclusions. First, the amplitude of
the SH field generated by the surface and the quadrupole NPs
should be >2 times less than the amplitude of the EFI SH
field. In Eq. (7), this corresponds to the following relation:

F S
RR + F Q

RR ≈ (0.4 ± 0.05)F B
RR. (9)

Second, the phases of the SH fields induced by the built-in
and terahertz fields should be close (ϕB ≈ ϕT ) and shifted by
π /2 relative to the phase of the SH fields from the surface and
quadrupole sources (as a result, the SH fields ES

SH + EQ
SH do

not interfere with EB
SH + ET

SH). Note that, in accordance with
Fig. 2, the obtained equality of the ϕB and ϕT phases requires
a long localization length of the build-in field LB 
 LSH. In-
deed, for a carrier concentration of ∼1013 cm–3 in our sample,
the estimation gives LB ∼ 500 nm, which is much greater than
LSH ≈ 50 nm.

Thus, we can say that the SHG from our sample is mainly
determined by the EFISHG effect, where the electric field
is either the built-in field alone or the superposition of the
built-in and terahertz fields (in the absence of the terahertz
field, the built-in field contribution to the SH signal is >80%).
This allows us to determine the ratio between the χ̂ (3) tensor
components and the magnitude of the built-in field EB. To
determine the ratio between χ1, χ2, and χ3, it is sufficient to
use the azimuthal dependences of the measured SH signal for
the SS (or PS), SP, and PP cases (without the terahertz field).
We fitted these dependences by Eq. (7), where the functions
F B

RR (R = S, P) were obtained from the corresponding compo-
nents of the SH electric field EB calculated by Eq. (6) (see
also Ref. [1]) with allowance for anisotropy of the built-in
field-induced NP PB (Table I). Minor functions F S,Q

RR were
also considered in Eq. (7) with magnitudes corresponding to
Eq. (9). As a result, we found χ0 ≈ −0.13χ1 and χ2 ≈ χ3

(with accuracy up to a few percent), which gives the following
relation: χ3 ≈ χ2 ≈ (0.51 ± 0.02)χ1.
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The experimentally obtained equality of the nondiagonal
tensor χ̂ (3)(2ω; ω,ω, 0) components χ3 ≡ χ1221 and χ2 ≡
χ1212 formally corresponds to the Kleinman symmetry, al-
though the applicability of this symmetry is not obvious due to
the presence of absorption bands between the interacting (op-
tical and terahertz) frequencies [72,73]. Note that this equality
follows from the simplified bond-hyperpolarizability model
[74].

It is interesting to compare the silicone anisotropy param-
eters σEFISHG = [2χ

(3)
2 + χ

(3)
3 ]/χ (3)

1 − 1 = 6χ0/(
√

2χ1) and
σTHG = 3χ

(3)
1212(3ω)/χ (3)

1111(3ω) − 1, where the latter is in-
troduced for third-harmonic generation (THG) governed
by the tensor χ̂ (3)(3ω; ω,ω,ω) [7]. From previous ex-
perimental works, the measured anisotropy parameter for
χ̂ (3)(3ω; ω,ω,ω) was about σTHG ≈ 0.6−0.7 at λω ∼ 770 nm
[19,75] and σTHG ≈ 0.7−0.85 at λω ∼ 820 nm [75,76]. From
our data for χ̂ (3)(2ω; ω,ω, 0), we have σEFISHG ≈ 0.54 ± 0.05
at λω = 790 nm. As is seen, σEFISHG and σTHG are close, es-
pecially if a theoretically calculated nonmonotonic dispersion
of σTHG in the optical range 750–850 nm is considered [75].

Let us estimate the absolute value of the silicon third-order
susceptibility, which can be found from the measured SH
signal, terahertz field magnitude, and parameters of the optical
pulse (intensity, duration, and beam size). For this purpose,
we accurately calculated generated SH energy (considering
PMT quantum efficiency and transmission coefficient of op-
tical filters placed between the sample and PMT) and then
substituted this energy in the corresponding analytical expres-
sion derived from Eq. (6) for SH electric field ET

SH (see also
Refs. [1,61]) with allowance for Fresnel coefficients for fun-
damental and terahertz fields (for calculation, we used the SSS
case). As a result, we obtained χ1 ≈ (1.4 ± 0.5) × 10−10 esu
[(1.9 ± 0.7) × 10−18 m2/V2]. Note that in recent experiments
for EFISHG in silicon waveguides pumped at λω ∼ 2.3 μm,
the silicon third-order susceptibility χ (3)

xxxx was estimated in
the range of 10−19−10−18 m2/V2 [77]. Since we follow the
notation of Ref. [1], χ1 = 3χ (3)

xxxx (cf. Refs. [72,73]), and, as
can be seen, χ1 is in a good agreement with the published
data. To verify the correctness of our evaluation method,
we also measured third-order susceptibility for fused quartz
χ

(3)
SiO2(2ω; ω,ω, 0) under a similar experimental condition but

in transmission geometry when a plate of fused quartz (with
a thickness of 3 mm) was illuminated normally by optical
and terahertz pulses, and generated SH energy was measured
behind the sample (see Ref. [68]). Based on equations for
the SH field given in Ref. [68], we obtained χ

(3)
SiO2 ≈ (2 ±

0.6)×10−14 esu [(2.8 ± 1)×10−22 m2/V2], which agrees
well with early measured values (2.3−3.5)×10−14 esu for
glasses by EFISHG [78,79] and χ (3)

xxxx(3ω) ∼ 1.5×10−14

esu for fused silica by THG [80] (see also review of
the nonlinear refractive-index coefficient of fused silica in
Ref. [81]).

We also studied the SH signal from the silicon surface for
different time delay between optical and terahertz pulses in
the SSS case at θ = 0. The obtained time-delay dependence
approximately traced the squared waveform of the terahertz
field. This is consistent with Eq. (9) and reflects negligible
dispersion of third-order susceptibility in the terahertz fre-
quency range that is expected due to small terahertz dispersion
of linear susceptibility [82].

FIG. 7. Second-harmonic (SH) signal as a function of the in-
tensity of the fundamental optical pulse for the cases PP at θ = 0◦

(blue diamonds), SS at θ = 90◦ (red circles), and SSS at θ = 90◦

(black crosses). Solid straight lines correspond to the approximation
of experimental data by a quadratic dependence.

To determine the built-in field, we used the measured de-
pendence of the SH signal on the terahertz field strength for
the SSS case WSSS(ET

0 ) at θ = 30◦ [Fig. 5(a)]. At the mini-
mum of WSSS(ET

0 ) for ET
0 = ET

0 min = 40 kV/cm, the SH fields
induced by the built-in and terahertz fields compensate for
each other (the residual SH signal is generated by the surface
and quadrupole sources). In this case, following Table I, we
get

EB =
χ1 − (

3√
2

)
χ0

χ0
ET

min = −9.8ET
min, (10)

where ET
min = TSiET

0 min is the terahertz field in silicon, and
TSi is the Fresnel transmission coefficient. For the s-polarized
terahertz radiation incident at an angle of 45 °, we have TSi =
0.33, which in view of Eq. (10) yields EB = −130 kV/cm.
The negative sign of EB indicates that the built-in field is
directed against the z axis, namely, from the Si bulk to
the surface. This is consistent with the negative sign of the
charged Si-SiO2 interface governed by the n-type doping of
the sample. Estimation of the surface charge density gives
∼ 1012 cm–2, which is consistent with the possible density
of the electron-trapped surface states in the Si-SiO2 interface
[34,43].

The strength of the built-in field is determined by the
properties of the particular silicon sample (carrier concen-
tration, surface quality, oxide thickness, etc.), but it can
also be changed under light irradiation [42–47,54,83]. It was
mentioned in the Introduction that, when the silicon surface
is exposed to laser radiation, photoinduced carriers can be
trapped in the Si interface or in the SiO2 layer, which can
lead to a variation in the built-in field and, consequently,
change the SH signal. In our experiment, we checked the
possible presence of this effect by measuring the SH signal as
a function of the intensity (energy) of the fundamental laser
pulse for the SS and PP cases (see Fig. 7). The measurement
results did not reveal any deviation of the SH signal from the
quadratic dependence up to the maximum optical intensity
10 GW/cm2 within experimental accuracy, which indicates
that the electron trapping effect is negligible. This is consistent
with the TD-SHG measurement, where the effect was also
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TABLE II. Fitted F B
RR and calculated F T

RRR functions (see text).

Fitted function Calculated function

F B
SS = −0.43 sin(3θ ) F T

SSS = 2.9 F T
SPS = −pT 0.035 sin(3θ )

F B
PS = 0.6 sin(3θ ) F T

PSS = 1.3−0.16 cos(3θ ) F T
PPS = pT 0.14 sin(3θ )

F B
SP = 0.54 cos(3θ ) + 0.18 F T

SSP = −0.045 sin(3θ ) F T
SPP = pT (−0.7 + 0.02 cos(3θ ))

F B
PP = −0.5 cos(3θ ) − 0.76 F T

PSP = −0.14 sin(3θ ) F T
PPP = pT (−3−0.14 cos(3θ ))

weakly pronounced at the same intensity level, even for a
much higher laser repetition rate (∼100 MHz) [47].

Photogenerated carriers in silicon can also lead to screen-
ing of both the built-in [54] and terahertz fields. The
estimation of the induced electron density (localized at a pen-
etration length of ∼10 μm for the fundamental harmonic) at
the maximum optical intensity (∼10 GW/cm2) gives a value
of ∼ 2×1018 cm–3. The characteristic screening time of the
electric field in this case can be estimated as ∼ 1/ωp (ωp is
the plasma frequency of photogenerated carriers) [54] and
is several tens of femtoseconds, which is comparable with
the optical pulse duration ∼70 fs. With such estimates, one
can expect the effect of the carrier excitation on the SHG.
However, like the SS and PP cases, the measurements of the
SSS and PPP signals vs fundamental harmonic intensity (only
the SSS case is given in Fig. 7) did not show any deviation
from the quadratic dependence. It is quite possible that the
actual screening time is increased due to collisions of hot pho-
togenerated carriers, comparable with the plasma frequency
[84]. In addition, the plasma formation is an integral process
and occurs with some delay relative to the peak of the optical
pulse, when the SH is most efficiently generated.

With found relation between the χ̂ (3) tensor components
and the magnitude of the built-in field, the terahertz-induced
amplitude terms F T

RRR in Eq. (7) were calculated consider-
ing Table I (without any additional adjustment factors) and
shown in the central and right columns of Table II. The fitted
functions F B

RR are shown in the left column of Table II. The
resulting azimuthal dependences of the SH signal are depicted
in Figs. 4 and 5. Good agreement between the theoretical
calculation and the experimental data is observed, which in-
dicates the correctness of the obtained relation between χ̂ (3)

components and magnitude of built-in electric field EB.
It can be seen in Table II that, for the SSS, PSS, SPP, and

PPP cases, the presence of the terahertz field adds for the SH
field mainly an isotropic component. This is because, as was
mentioned in Sec. II, the anisotropic term of the TFI SH field
has an amplitude coefficient proportional to the anisotropy
constant χ0 (see Table I), which is several times smaller than
the tensor components χ1, χ2, and χ3. For the same reason,
the effect of the terahertz field on the SHG is insignificant for
the SPS, SSP, PPS, and PSP cases, where only the anisotropic
term is added. For the SPS case, the TFI term of the SH
field has an amplitude of only ∼8% relative to the SH field
amplitude for the SS case (see F T

SPS and F B
SS in Table II). Nev-

ertheless, such a slight change was observed in the experiment
[see Fig. 4(b)]. In the PPS case, the effect of the terahertz
field on the PS azimuthal dependence is 3–4 times stronger
(see a comparison of F B

SS with F T
SPS and of F B

PS with F T
PPS in

Table II), which should give a ∼40–50% change in the PS

signal amplitude. In the experiment, a slightly smaller change
(by ∼30%) was observed; nevertheless, the result qualita-
tively agrees with the theory [Fig. 6(b)]. In the PSP case,
the terahertz field adds a small (with a threefold less ampli-
tude) anisotropic component in quadrature with respect to the
anisotropic component of the SH field in the PP case (F B

PP and
F T

PSP in Table II). This should lead to a shift of the PSP signal
azimuthal dependence along the θ axis by several degrees and
an insignificant (by several percent) increase in the signal,
which also agrees with the experimental results [Fig. 4(c)].

IV. CONCLUSIONS

To conclude, comprehensive experimental and theoretical
studies of the second optical harmonic generation from
the surface of low-doped Si(111) with native oxide under
irradiation with femtosecond optical and picosecond terahertz
pulses (with a terahertz peak field of up to 250 kV/cm) were
performed. From the phenomenological approach, the theory
of the EFISHG azimuthal rotation anisotropy for Si(111) was
extended by considering the arbitrary polarization of the ex-
ternal (terahertz) electric field. The theory showed that, for the
some polarization configuration, a terahertz field can modify
the angular anisotropy of the SH energy (signal). It was found
from the experiment that this modification occurs when the
polarizations of the terahertz and SH fields coincide and con-
sist of adding an isotropic term in the corresponding azimuthal
dependences. Analysis of the SH signal as a function of the
azimuthal angle and the terahertz field strength for different
polarization configurations allows us to judge the dominant
mechanism of SHG. For the sample under study, it was
established that the main source of SH (without the terahertz
external influence) is the built-in field-induced NP, and the
contribution to the SH signal from the surface and quadrupole
nonlinear sources does not exceed 20%. This fact makes it
possible to find the magnitude of the built-in electric field
(∼130 kV/cm), estimate the silicon third-order
susceptibility χ1 = 3χ (3)

xxxx ≈ (1.4 ± 0.5)×10−10 esu
[(1.9 ± 0.7)×10−18 m2/V2], and determine the ratio
between the tensor χ̂ (3)(2ω; ω,ω, 0) components, the ratio
being characterized by the EFISHG anisotropy parameter
σEFISHG = [2χ

(3)
1212 + χ

(3)
1221]/χ (3)

1111 − 1 ≈ 0.54 ± 0.05 at 790
nm fundamental wavelength.
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