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Two-color spin-noise spectroscopy of interacting electron spins in singly charged semiconductor quantum dots

provides information on the interquantum dot interactions. We investigate the spin cross-correlation function in
a quantum dot ensemble employing a modified semiclassical approach. Spin-correlation functions are calculated
using a Hamilton quaternion approach that maintains local quantum mechanical properties of the spins. This
method takes into account the effects of the nuclear-electric quadrupolar interactions, the randomness of the
coupling constants, and the variation of the electron g factor on the spin-noise power spectra. We demonstrate
that the quantum dot ensemble can be mapped on an effective two-quantum dot problem and discuss how the
characteristic length scale of the interdot interaction modifies the low-frequency cross-correlation spectrum. We
argue that details on the interaction strength distribution can be extracted from the cross-correlation spectrum
when applying a longitudinal or a transversal external magnetic field.
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I. INTRODUCTION

Trapped charge carriers in semiconductor quantum dots
(QDs) [1] are of interest for quantum functionality and the
implementation of spintronic devices [2]. Major progress has
been made in the initialization, manipulation, and read out
of the localized spin by using fast optical methods [3-6].
The confinement of electrons or holes in QDs removes the
motion-related spin relaxation, such that the hyperfine interac-
tion with surrounding nuclear spins becomes the main source
of decoherence. With periodical optical excitation exploiting
nuclear-induced frequency focusing, the single spin coherence
time can be increased to the order of microseconds [7,8].

Spin-noise spectroscopy [9] has served as a powerful tool
to identify the relevant energy and time scales in QD en-
sembles due to their strong optical response. Particularly
insightful have been spin-noise experiments that explored spin
correlations of QDs in the thermal equilibrium [10-15]. The
spectrum also reveals the importance of the nuclear-electric
quadrupolar interaction for qubit decoherence [13,16,17].
Recently, higher-order spin correlators attracted attention, be-
cause they contain additional information that is absent in the
standard spin-noise power spectra [18-23].

The investigation of the dynamics of the electron spin
subject to a hyperfine coupling [24] with the surrounding
nuclear spins has a long history. Although the central spin
model, the Gaudin model, is exactly solvable by a Bethe
ansatz [25], the complexity of the solutions does only allow
us to access the exact dynamics for a small number of nuclear
spins [26] or requires the combination with a Monte Carlo
approach [27,28] for their evaluation. Merkulov et al. [29]
addressed the electron spin relaxation by nuclei in a semi-
conductor QD using a frozen Overhauser field approximation.
A linked-cluster expansion [30] and a cluster-correlation
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expansion [31] in a finite size bath have been used to inves-
tigate single-electron spin decoherence by the nuclear spin
bath. An exact quantum mechanical treatment of the problem
using Chebyshev polynomials [32] was applied to calculate
the spin-noise spectroscopy [33,34] including nuclear-electric
quadrupolar interactions [13]. An adaptation of the density
matrix renormalization group approach [35] was able to treat
large numbers of nuclear bath spins [36] but was limited to
the short time dynamics. Coish and Loss took into account the
temporal fluctuation of the nuclear spins within a generalized
master equation [37]. A rate equation approach was used to
incorporate nuclear quadrupolar interactions in a double QD
with spin and charge dynamics [38]. Barnes et al. [39] applied
a Nakajima-Zwanzig type master equation to the problem.
Recently a master equation was employed to address the
nuclear polaron formation at low temperatures [40]. Electric
current noise in mesoscopic organic semiconductors induced
by nuclear spin fluctuations was studied by Smirnov et al.
[41].

Here, we study the spin cross correlators in an ensemble
of QDs or in a QD molecule. We propose that the cross-
correlation spectrum can be used for extracting details on
the inter-QD coupling distribution and identifying the micro-
scopic origin of the inter-QD spin coupling in experiments.
However cross correlations have been much less studied the-
oretically [42] and have not been investigated by spin-noise
spectroscopy in QDs yet.

We extend a semiclassical approach (SCA) [9,29,36,43—
46] based on spin-coherent states to interactions and char-
acteristics that have not been investigated previously but are
relevant for the studies of cross correlators in coupled QDs,
as well as more realistic interactions in the nuclear spin
bath. This is done by mapping the quantum mechanical time
evolution onto a quaternionic representation [47] originally
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introduced by Hamilton more than 150 years ago. It allows us
to simulate the system by an effective classical dynamics and
still maintains the noncommutativity of quantum mechanical
Heisenberg operators at different times as required in spin
correlation functions.

The basic idea of the quaternionic representation is the
mapping of the unitary time-evolution operator that rotates
an electron spin-coherent state on the Bloch sphere onto the
equation of motion of a time-dependent classical 3D rota-
tion matrix: The quantum mechanical expectation values in
the correlation functions can be evaluated analytically in a
fixed representation and the time dependency is shifted into
the time-dependent rotation matrix. This scheme is also gen-
eralizable to higher-order spin correlation functions. In the
context of spin noise the importance of different third and
fourth order spin correlation functions [18,19,21] has been
discussed. It was pointed out [19] that certain types of fourth
order spin-correlation functions are useful for understanding
the magnetic field dependency of the decoherence time in
spin-echo experiments [5,48]. Our approach might be useful
to apply to higher order Carr-Purcell-Meiboom-Gill (CPMG)
pulse sequences as well as optical pumping of the QD ensem-
bles with periodic laser pulses [7,8,49].

SCAs to the coupled electron-nuclear spin dynamics in
QDs in their various incarnations [9,29,46,50] have been ex-
plored over the last 20 years. The large number of nuclear
spins is used as a justification for replacing the hyperfine in-
teraction operator by a classical random variable, the so-called
Overhauser field that acts as an additional magnetic field onto
the electron spin [29]. Using the strong separation of time
scales, the fast electron spin precession and the several orders
of magnitude slower nuclear spin dynamics lead to the frozen
Overhauser field approximation where the nuclear spin dy-
namics is replaced by a static field characterized by a Gaussian
distribution [29] which includes the proper thermodynamic
limit [50] of infinitely many nuclear spins.

Such a static approximation already yields an excellent pre-
diction of the high-energy parts of the spin-noise spectrum but
fails to predict the low-frequency parts of the spectrum that are
connected to the nuclear spin dynamics. Furthermore, large
spectral weight is accumulated in a zero-frequency peak since
conservation laws protect the spin correlations from decay
[29,51]. Violation of the conservation laws by relevant inter-
actions such as nuclear-electric quadrupolar interactions [17]
leads to a broadening of this zero-frequency peak [16] that can
be experimentally resolved [13]. Therefore, we employ a SCA
that accounts for the long-time nuclear spin dynamics as well
as includes these additional symmetry breaking terms in the
Hamiltonian.

Our numerical data suggests that a genuine interacting
QD ensemble can be mapped onto a coupled two-QD model
augmented by a distribution function of the effective coupling
constants when targeting two-color spin-noise spectroscopy.
This is backed by the analytic structure of the equations of
motion where the total effect of all other electron spins of the
ensemble onto the dynamics of the electron spin in an indi-
vidual QD is included into a single additional effective noise
field in addition to the Overhauser field [52]. The mapping is
constructed such that the first two momenta of this fluctuating
field are reproduced.

Our paper is structured as follows. We introduce the model
for the coupled QD ensemble in Sec. II, provide an overview
of the modified SCA in Sec. III, and present the general
properties of cross-correlation functions in Sec. IV. Section V
is devoted to the numerical results of our simulations. We start
with a justification of the mapping of a genuine QD ensemble
onto an effective two-QD model in Sec. V A by demonstrating
that the cross-correlation spectra perfectly agree independent
on the number of QDs in the ensemble. In Sec. VB, we
remove the randomness of coupling constants by investigating
the correlation spectra for a fixed hyperfine coupling, a fixed
QD-QD interaction, and fixed electron g factors to discuss the
elementary properties in the single-color spin noise as well as
in the cross-correlation function. The frozen Overhauser field
solution in Sec. V C provides a better understanding of the
additional features observed in the spectra. In Sec. VD, the
effect of randomness of the coupling parameters, the nuclear-
electric quadrupolar interactions, and the electron g factor
variations in the QD ensemble are discussed. We examine the
cross-correlation spectrum at zero magnetic field, Sec. VE,
transversal magnetic field, Sec. VF, and longitudinal mag-
netic field, Sec. V G, where we demonstrate the relevance and
influence of the various interactions on the cross-correlation
spectra in the different regimes. We make a connection to
experiment in Sec. VH and summarize the results in the
conclusion.

II. EXTENDED CENTRAL SPIN MODEL

We focus on the spin dynamics in an ensemble of singly
charged QDs. A two-color spectroscopic investigation has
demonstrated that the experimental data [53] is consistent
with an interaction between the electron spins of a Heisenberg
type. Its microscopic origin is still unclear, but an optical
RKKY interaction [53] can be ruled out due to its time de-
pendency. Potential candidates that are currently discussed
are either a direct exchange interaction for spatially adjacent
QDs [54] or a long-range RKKY-like interaction mediated by
a weak carrier doping of the conduction bands as a side effect
of charging the QD with a single electron that was found for
self-assembled semiconductor QD ensembles [52,53].

Here we assume an ensemble description of Nop QDs by
the Hamiltonian

Nop
H = ZH(I') + Z]US"(I')S‘(]'), (1)
i=1

i<j

where H is the Hamiltonian of the ith QD and S© denotes
its electron spin operator; i runs over all QDs of the ensemble.
Note, in this general form, H also applies for QD molecules
[55], QD chains [56], or QD superlattices [57], whereas the
specific geometry of the QDs is encoded in the interaction
matrix J;;. Such a Hamiltonian has been proposed by Smirnov
et al. [58] who focused on the calculation of spin autocorrela-
tion functions.

For the description of each individual QD, we include
the hyperfine interaction between the resident electron spin
and the surrounding nuclear spins, an external magnetic field,
and the static nuclear-electric quadrupolar interactions. We
neglect weaker and, therefore, less prominent effects such as
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the nuclear dipole-dipole interactions. As a first part of our
model, we introduce the Hamiltonian of the central spin model
(CSM) [25] with i =1

N;
Hesy = Y AUSVL + 1pg"Bex SO
k=1

N;
+ Z Mlgg)gexli/;(l), (2
k=1

that accounts for the hyperfine interaction of the electron spin
S with the nuclear spins I;" and the external magnetic field

Eext. The index i € [1, Ngp] labels the QD in the ensemble and
the index k € [1, V] labels the nuclear spin in the respective
QD. The coupling constants A,(:) of the hyperfine interaction
produce a characteristic time scale of the system

= (Z <A,f>>2<<1:“)2>)5. 3

k

In real QD ensembles, the dot size variation generates a vari-
ation of T;*. In this work, however, we assume 7;* to be equal
for all QDs and use it as a reference scale for measuring time
dependencies. Furthermore, 1/7* defines the intrinsic energy
scale of a QD. In real semiconductor QDs, T* is in the order
of a few nanoseconds [8].

Due to the strong coupling of the electron spin to the exter-
nal magnetic field via the Bohr magneton pp and the g factor
g, that is approximately 0.5 in electron-doped InGaAs QDs
[8], the precession of the electron spin provides the fastest
dynamics in the spin system for a magnetic field strength
above 20 mT [59]. In comparison the precession frequency of
the nuclear spins is typically three orders of magnitude smaller
as aresult of the weaker nuclear magnetic moment with a ratio
118 /(upg™) < 1[60,61].

The CSM governs the short-time dynamics of a single QD.
However, the nuclear-electric quadrupolar interactions induce
disorder in the nuclear spin bath and lead to an additional
electron spin dephasing on a time scale of 100 ns [16,17,62—
64]. The additional contribution to the Hamiltonian reads

HY =Y d| -7
k

N7 =x.())2 D oy )2
P TP - 0] @

where q,(f) is the quadrupolar coupling of the kth nuclear
spin, 1 the anisotropy factor [65], which is set equal for all
spins, and fi(QZ . the quadrupolar easy axis of an individual

¥, (i)

-x, (i) -)
. and fig, are

nuclear spin [13,17]. The support vectors 7i,

chosen in such a way that ﬁg)k, ﬁg(,?, and ﬁy’(,? form an

orthonormal basis. Details of the theoretical description of
static nuclear-electric quadrupolar interactions can be found
in Ref. [13]. Combining the CSM and the nuclear quadrupolar
effects yields the complete Hamiltonian of the individual QD

HY = H{Qy +HY . Q)

III. SEMICLASSICAL APPROACH

For realistic system sizes of N; = 10*...10° nuclei in a
QD [66], the Hamiltonian, Eq. (1), is not solvable, analytically
or numerically, in an exact manner due to the Hilbert space di-
mension that grows exponentially with N; as the Hilbert space
incorporates 2Ver (2] 4 1)MeoN: gtates for nuclear spins with
length /. A pure quantum mechanical description is limited
to a small number of spins [27,28,60,61,67].

In this paper, we use a SCA [9] that retains quantum
mechanical features on a single spin level. This approach
is very similar to the spin-coherent-state representation by
Al-Hassanieh et al. [43] but it is based on a path integral
formulation introduced by Chen ef al. [44]. While these two
papers focused on the propagation of a well defined central
spin state in time, our approach extends the SCA to general
correlation functions. Variations of this approach have already
already been used in previous publications [21,46,52].

A. Spin-coherent states and path integral

To obtain the equations of motion (EOM) for spin-coherent
states in the SCA, we first decompose the mixed quantum
mechanical density operator p of the system into a set of
pure product states of spin-coherent states. Second, we solve
the time evolution of the pure product states using the semi-
classical limit of a quantum mechanical path integral. This
procedure preserves many quantum effects, like vanishing
quadrupolar interactions for spin 1/2 or complex-valued cor-
relation functions, due to the invertible map from classical
vectors to spin-coherent states.

Let |s, m) be the spin basis with quantum numbers resulting
from the eigenvalues of the quantum mechanical operators for
the square of total spin S? and the spin z component S,

S%|s,m) = s(s+ 1) |s, m) (6a)
S, |s,m) =m|s, m). (6b)

We define the spin-coherent state parametrized by a classi-
cal vector 5 € R? and length |5| = s as [68,69]

5) = e @S |5, s) . )

The spin-coherent state describes a spin fully aligned along
the quantization axis 7y, here é,, that is rotated around the
axis §/9 =5 X np/|s x np| and the angle cos(0) =5 - 7iy.

The set of spin-coherent states builds an over-complete
basis of the Hilbert space for a spin S. Their completeness
relation is given by

1= /d,u(E)lﬁ) 3 ®)
with the identity matrix 1 and the integration measure
2s+1
du(s) = <i>5(§2 — ) ds. ©)
4r

In the following, we combine information on all electron
and nuclear spins in the coupled QD system into the state
|{§;}) where the index j labels the individuals spins. This
state |{5;}) is a product state of the states of individual spins
|5;). For the transition from quantum mechanical spin states to
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the limit of classical spin vectors, we employ a path integral
formulation. The starting point is the propagator,

K{S; /), 5 ) = (5 3 e ™ 1{5;4)) (10)

which provides the transition amplitude from the initial state

[{s;:}) at time O to the final state |{5; ¢}) at time z. Making

use of e~ " = Nhnc1>o [TV e /N where the unity (8) is in-
—

serted between all infinitesimal time evolution propagators,

we rewrite the propagator in the standard path integral form

(see Appendix A for details,)

K(7). G 0) = [ DUs 1 SO0, i)
with the action
st o3 = [ (i (1531 5 1655)) — () |{§j}>)dr
(12)

and the appropriate integral measure D[{5;}]. The action func-
tional is comprised of two contributions: (i) the topological
or kinetic action, which only depends on the topology of the
Hilbert space and (ii) the action from the Hamiltonian.

B. Semiclassical equations of motion

Every possible spin path contributes to the kernel in
Eq. (10) with equal probability but destructive interference
favors the so-called classical path where the variation §S
is zero and neighboring paths interfere constructively. This
approximation is justified by the large number of (nuclear)
spins involved in the system [44].

Under the conditions of a stationary action §S§ = 0 and a
fixed spin length () = s , we obtain the general EOM for a
classical spin 5,

A L
a5, <5 (13)

055 =
with the classical Hamilton function H (s;h =
({s;} H |{5;}). The EOM is form invariant for different
types of spins though their distinction is encoded in the
Hamilton function H ({5;}).

For the full Hamiltonian (1) of the extended CSM, the
EOMs are derived from Eq. (13) and read

359 = bl x 39 (14a)

i =By <1 (14b)

for the classical electron spin vectors 5 as well as nuclear
spin vectors i,({’) with the respective effective magnetic fields,
jaU) jaQ) AQ) "(i)
beff - bext b b

p@  _ p@) 7@ (t)
beff,k - bext k + b + b

(15a)
(15b)

The external magnetic fields béx)t

/'LBg(i)Bext and Bi:ix)l,k =
,u,gg)éext comprise g factor and magneton of the spins. The
hyperfine interaction manifests itself as the Overhauser field
b)) = ZkA(') i) acting on the central spin and the much

weaker Knight-field 5, = A’5® acting on the nuclear spins.

The inter-QD interactions result in an effective magnetic field
b(’) Z Ji s(/) given as a weighted sum over the electron
spins ) w1th the weights J;;. Less trivial are the quadrupolar

fields
){(‘(l) ~(1) )—»(l)

by =24, <1

L@ L - @) o

which are derived in Appendix B. Here, the prefactor (1 —
1/2I) ensures that quadrupolar interactions vanish for a spin
1/2 as required by quantum mechanics. In contrast to l;ext k
the field b(’) depends on the nuclear spin itself and is time
dependent hke the other fields stemming from spin-spin inter-
actions.

While the analytic form of Eq. (13) has been widely used
in the literature [9,29,36,43,44,46,50,70] the definition of the
classical Hamilton function A ({5;}) allows to access addi-
tional types of interactions perviously not much explored with
a SCA such as the nuclear-electric quadrupolar interaction.
This part of the Hamiltonian is nonlinear in spin operators,
e.g., Hg’)k in Eq. (4), and the evaluation of H({5,}) was per-
formed rigorously and is beyond the simple replacement [50]
of each spin operator § ;j by its classical counterpart 5;.

IV. CORRELATION FUNCTIONS

In the high-temperature limit, which is valid for nuclear
spins at standard cryostatic temperatures and moderate mag-
netic fields, we can summarize the SCA as follows: First
we decompose the density operator and replace the full in-
tegration over the Bloch sphere by a Monte-Carlo integration
[43,44],

p= / () 16,1 (6,1
1
~ N S OIEN,
m

with N samples (here we use Ne A~ 10°) whose states HEj})M
are picked randomly from the Bloch sphere. In a second
step, the time evolution is calculated by solving the EOMs,
Egs. (14a) and (14b), independently for each configuration
. This step is computationally the most costly but can be
massively parallelized. As a third step, the calculated trajec-
tories |{§;}(¢)) , can be used to evaluate the time-dependent
expectation value of an observable o,

(0@)) = Tr[p(t)0]

451, (17)

1 2 -
~ ZVC%:HSJ'}(I)IMOI{SJ-}(I))M, (18)

average over N¢ classical configurations u by using Eq. (17).
For observables, that are linear in a spin operator [43,44], one
can use (5| S |5) = § and simply replace the spin operators by
their corresponding classical vectors. When an observables
O is nonlinear in spin operators, such as it is the case for
spin-spin correlators studied in the following, the expression
({s;}1 O |{5;}) has to be evaluated rigorously and reveals the
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quantum nature of the system. We explore this behavior using
the second order autocorrelation function C; in the following.

A. Autocorrelation function

While the power or noise spectrum in QDs is well estab-
lished [1,29,34,71], the inter-QD interactions enter just as an
additional small noise source into the autocorrelation func-
tion, which makes them hardly distinguishable from the other
central spin interactions [52]. However, a nonvanishing cross-
correlation function is explicitly generated by the inter-QD
interactions and can reveal the true origin of these interactions.

For time-translational invariant systems, the second order
autocorrelation function,

Ga(1) = (S:(0)S2(1)), 19)

can be written as a function of the relative time 7. As C,
is nonlinear in the spin operators, the configuration average
over the product of the classical variables s, ,, (0)s;,, (¢) fails to
evaluate C, in the SCA. This becomes particularly clear when
looking at the time ¢+ = 0, where the classical configuration
average {(s,(00)?) < 1 /4 for classical spins of a fixed length
s = 1/2, while quantum mechanics yield C>(0) = 1/4. This
fundamental problem of the SCA is usually circumvented
by exploiting the equivalence of C,(¢) with (S.(¢)) up to a
factor of 1/2 starting for S,(0) = 1/2 [43,44]. Alternatively, a
different SCA was proposed [50] where the fixed spin length
is replaced by a Gaussian distribution function that meets the
condition C;(0) = 1/4.

Purely classical approaches [9,29] suffer one fundamental
drawback: The correlation function can only be a real quantity
whereas a correlation function as defined in Eq. (19) must be
a complex-valued function at low temperatures in quantum
mechanics. Therefore, quantum mechanical correlators are
usually symmetrized to connect with measurable correlators.

In this paper, we aim for an approach to arbitrary corre-
lation functions that (i) maintains the properties related to
the quantum mechanical spin algebra and (ii) uses only the
dynamics of classical vectors given by Eq. (14). The contri-
bution of a single spin-coherent state |5y) to Eq. (19) can be
transformed into the form

1 .
(S0l S:(0)S:(2) [So) = 71:(0) - 71-(£) + %(ﬁz(o) X 7iz(t)) - So,
(20)

using the basic spin 1/2 algebra, which clearly differs from the
product of the classical variables s, ,,(0)s; ,(¢). Here, 7i,(t) =

R(1)é, is the z axis rotated by the effective field Z;eff(t). The
derivation of Eq. (20) and the EOM of the SO(3) rotation
matrix R(t), using the Hamilton quaternion representation,
can be found in Appendix C.

Equation (20) can be easily evaluated within the SCA
and brings two relevant deviations from the naive prod-
uct s; ,(0)s; (). The demand C,(0) = 1/4 is fulfilled for
any 5o and an imaginary part is generally possible. In the
high-temperature limit, the averaging over all 5, leads to a
cancellation of the imaginary part. This does not hold at
temperatures well below the hyperfine energy scale. The pro-
cedure to obtain C,(¢) in the classical limit is not restricted
to the second-order autocorrelation function and can also be

applied systematically to higher-order correlation functions,
though their analysis is beyond the scope of this paper.

B. Cross-correlation function

The cross-correlation function of two spins in different
QDs vanishes if they are uncorrelated. Therefore, it is an
unambiguous tool for the identification of inter-QD interac-
tions. However, we will see that not only interactions between
QDs appear, but also interactions within the individual QDs
provide a contribution to the cross-correlation spectrum and
reveal the rich dynamics of the system.

For cross-correlation spin-noise spectroscopy, typical ex-
perimental spin-noise setups have to be complemented by an
additional probe laser with a photon energy distinct from the
probe laser of the original setup [42,72]. Using only one of the
probe lasers, the individual autocorrelation functions

V() = (SP0)sM (@)
CP(t) = (SP(0)sP (1))

(21a)
21b)

of the electron spins are accessible. A combined measurement
of both probe lasers provides

C2(1+2)(t) — ((Sz(l)(o) + SEZ)(O))(SEI)(I) + Séz)(l‘)»
= CP(0) + CP (1) + ¢S ), 22)

comprised of the sum of the single autocorrelation functions
and the cross-correlation function

Cy1) = (SPOSP () + (SPOsP@)).  (23)

The cross-correlation function contains the actual informa-
tion on the interaction between the QDs excited by the two
photon energies. Within the SCA the evaluation of the cross-
correlation function yields

- 1
05 = o D00 + SO0 0. @
0

Since spin operators of different spins commute with each
other, we can just replace the spin operators by their classical
counterpart, from Eq. (23) to Eq. (24).

C. Correlation spectra

The spin dynamics in coupled QDs covers a wide range
of time scales as a result of the energy hierarchy of the rele-
vant interactions which leads to distinct features in frequency
space. We define the correlation spectra as the Fourier-
transformed time-dependent correlation functions

Oy () = L / N Y (t)e ™" dt. (25)
27 J_wo
Accordingly, the inverse transformation is given by
o0 - .
C¥ (1) = / C(w)e dw. (26)
—00

Note, numerically we are restricted to a finite measurement
time 7,, which limits the frequency resolution of the Fourier
transformation. However, we use a measurement time of 7,, =
10*T*, where the relevant dynamics is resolved.
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Since the relations C{"(0) = C{”(0) = 1/4 and C{)(0) =
0 hold in the high-temperature limit, we deduce the sum rules
[42]

/ T e _ 1

2 (@dow = o (27a)
/ CP(w)dw = % (27b)
/ O (w)dw = 0. (27¢)

While the autocorrelation spectra are always positive due
to their relation to the power spectrum and have a total spec-
tral weight of 1/4, the cross-correlation spectrum will only
have nonzero contributions when the QDs interact with each
other. Correspondingly the sum rule (27c) ensures that every
positive component in the cross-correlation spectrum is com-
plemented by a negative contribution at some other frequency,
which will be useful for the interpretation of the spectra in the
upcoming section.

V. CROSS-CORRELATION SPIN-NOISE RESULTS

We present results for the cross-correlation spectrum of an
interacting QD system obtained by means of the SCA. For
a better interpretation we discuss the autocorrelation spec-
trum alongside the cross-correlation spectrum and highlight
the differences of both. First we focus on simplified models
and introduce a two-QD reduction (Sec. V A), use the box
model (Sec. V B), or assume frozen nuclear spins (Sec. V C) to
explore the generic behavior and extract analytic expressions.

In Sec. VD we introduce randomness of parameters capa-
ble to describe a typical semiconductor QD ensemble or QD
molecule. We study the effects of the distribution of hyper-
fine coupling constants, the nuclear quadrupolar interactions,
and the electron g factors on the cross-correlation spectrum
at zero magnetic field (Sec. V E), transversal magnetic field
(Sec. VF), and longitudinal magnetic field (Sec. V G), where
we observe a rich interplay of the different interactions on a
broad range of time scales. Finally, in Sec. V H we relate our
results to previous experiments.

A. Reduction of the QD ensemble to an effective two-QD system

To reduce the numerical effort for the investigation of
two-color spin-noise spectroscopy, we introduce an effective
mapping of a QD ensemble to a system of two representa-
tive QDs. First we address the original problem of a large
QD ensemble to define the appropriate reference. We assume
that Nop QDs in the ensemble are distributed randomly on a
2D square of length L = ,/Ngp x 100 nm corresponding to
a QD density of n = (100 nm)~2 [53] and implement peri-
odic boundary conditions. Due to the QD size, we assume
a minimum distance of 20 nm between the centers of the
QDs. The randomly drawn positions R; of the QD centers
are used to calculate the coupling constants J;; = J(r;;) with

rij = |R; — R;|, where we assume an exponentially decreasing

coupling strength [53],
J(rs)) = aexp <—ﬁ>, (28)
Lo

with the characteristic length scale pg of the interaction and
the prefactor o, which parameterizes the interaction strength.
Note that since an electron spin does not interact with itself,
we set J; = 0.

In order to enable the simulation of a large number of QDs
in the array, we resort to the so-called box model approxima-
tion [73], i.e., A,(;) = Ay, restrict ourselves to N; = 100 nuclear
spins of length I = 1/2 and, hence, neglect quadrupolar inter-
actions. This way the complexity of the SCA reduces by the
order O(N;) since all nuclear spins of QD i experience the
same field l_)'gf)fk [see Eq. (15b)] and can be summarized to

Gt = Y0y -
By inspecting the EOM, the effect of all other electron
spins onto the electron spin of the ith QD,

BY =159, (29)
J

is identified as an additional noise source. Its expectation
value vanishes in the high-temperature limit but its variance

(BP)) = 32 (G99 = ()2 (s) (30)
J

is finite for coupling constants J;; that decay fast enough with
the distance r;; between the QDs. In the last step, we defined
the quadratically averaged coupling constant for each QD i:

Ji= D205 (31)
J

which is possible, since all spins have the same length
(31)? = $2. In our simulations, we choose « in Eq. (28) such
that the averaged fluctuation strength

1 o 1
J=—%N7 =— (32)
Ny 271 = 7

is fulfilled. This is a reasonable value since experimental
data on samples with interacting QDs [52] suggests that the
dephasing via the QD interaction is of the same order of
magnitude as the dephasing by the local Overhauser field.

In the ensemble, J; differs for the individual QDs i. There-
fore, we not only calculate the average J but also compile the
histogram of all values J; and average over many different
realizations of the randomly generated QD ensembles to ob-
tain a probability distribution p(J) for finding the coupling
strength J = J; in the ith QD.

Assuming that we have a microscopic model that provides
the coupling constant J;; = J (R;, R j» po) for each QD pair
of the original ensemble, we calculate the effective coupling
constant J; according to Eq. (31) for each QD of a random con-
figuration {R;} to obtain the distribution p(J;) of the effective
coupling constants for a given characteristic length scale py.
This distribution p(J;) is presented for two different values of
po in Fig. 1(a) using the exponential form of Eq. (28). While
p(J;) can be well approximated by an exponential distribution
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FIG. 1. (a) Distribution p(ji) for an exponential distance depen-
dency J(r;;) o< exp(—r;;/po) for two different values of py measured
in nm. (b) Power law J(r;;) o ri;" with d =2 or d = 3. The curves
can be approximated by an exponential function (dotted lines) or a
Gaussian function (dashed lines). (c) The cross-correlation spectra
for ensembles of different sizes are compared to a reduced two-QD
model. For the QD ensembles the distance-dependent coupling con-
stant, Eq. (28) with py = 20 nm, and for the reduced two-QD model
the exponential distribution p(J) is used.

for a short-range interaction py = 20 nm, p(J;) approaches a
Gaussian for a long-range interaction, pp = 100 nm, due to
the central-limit theorem which is displayed as a dashed line.

We added the distribution p(J) for a power law dependency

J(rij) = ar;’, (33)
with the prefactor o and exponent d as Fig. 1(b). We observe
the same generic behavior with a short-range interaction for
d =3 and a long-range interaction for d = 2. Such a power
law distance dependency could occur for an RKKY mediated
effective coupling when some of the donator charges populate
the conduction band of the wetting layer.

To measure the cross-correlation function in the ensemble,
we divide the QDs into two classes and replace S{” in Eq. (23)
by the averaged spin of the respective class. We compare the
cross-correlation spectra for ensembles of different sizes in
the absence of an external magnetic field. In Fig. 1(c) the
cross-correlation spectra for different numbers of QDs from
Ngp = 10 to Ngp = 500 are presented as colored lines. We
postpone the physical interpretation of the curves to latter
and only notice that the spectra for different ensemble sizes
coincide, which is attributed to the short-range nature of the
interaction between the QDs. In the high-temperature limit
long-range correlations between the QDs are absent and the
consideration of a small cluster is sufficient [58].

For a further reduction of the system size we note that the
influence of the other QDs onto the electron spin dynamics is
encoded in a single effective magnetic field, I;y) introduced
in Eq. (29). Since the electron spin dephasing in a QD is
governed by the overall fluctuations of E(J’) we can efficiently
simulate the effect of a large number of QDs onto the spin

dynamics by replacing the sum over all other QDs by a single
additional QD employing an effective coupling constant J =
J;. The system reduces to an effective two-QD problem where
the two QDs represent their respective class, however, we ig-
nore higher-order inter-QD interactions. In order to mimic the
randomness of the coupling constants p(J;) in the ensemble
of QDs, we simulate many such coupled QD pairs by drawing
the effective coupling constant J from a distribution p(J) for
each classical configuration, such that the distribution of l;y)
remains unchanged.

We added the cross-correlation spectrum for the reduced
two-QD model as a dotted black line to Fig. 1(c), where we
use the exponential distribution p(J). The agreement between
the full simulation of a random array of QDs and the aver-
aging over a distribution of many effective two-QD systems
is remarkable. The reduced two-QD model reproduces the
ensemble behavior with only very small deviations even for
an average interaction strength J = 1/T* that is comparable
to the Overhauser field fluctuation scale. In the absence of an
external magnetic field, we find increasing deviations in the
low-frequency part of the spectra once J; significantly exceeds
the Overhauser field strength (not shown here): When a single
effective inter-QD interaction starts to dominate the electron
spin correlations, a larger amount of QDs must be considered
in order to capture the correct physics.

B. Auto- and cross-correlation spectrum in box-model limit

To explore the generic behavior of the system we study the
auto- and cross-correlation spectrum of two interacting QDs,
which either represent a reduced ensemble, see Sec. V A, or
a QD molecule. We stick to the box-model approximation,
ie., A,((’) = Ay, restrict ourselves to N; = 100 nuclear spins
of length I = 1/2 which enables the comparison to an exact
quantum mechanical approach (QMA). [} = 3", 1"’ can be

replaced in Eq. (2) and the commutator relation [(Il(oit) Vv, H] =
0 holds. The Hamiltonian becomes block diagonal in the
subspaces of fixed quantum numbers {It((fl) }, which reduces
the complexity of the problem considerably [74] and larger
values of N; become accessible. In order to relate the SCA
and QMA the rescaled coupling constant J' = /3/(4 (S2))J
is used where (S?) = 1/4 in the SCA and (S?) = 3/4 in the
QMA.

In a first step, we focus on the comparison of the autocor-
relation spectra obtained by the SCA and the QMA which are
presented in the upper panels of Figs. 2 and 3, respectively.
In Fig. 2(a) the autocorrelation spectrum resulting from the
SCA is depicted for various values of the inter-QD interaction
strength J'. Without interactions between the QDs (J' = 0),
the total angular momentum F® = 3, I’ + §@ is conserved
for each QD and the autocorrelation spectrum coincides with
the frozen-Overhauser field solution of a single QD [29]. In
this case, the correlation spectrum consists of a delta peak at
w = 0, which corresponds to the nondecaying part of C,(t —
00) and a broader contribution from the Gaussian Overhauser
field fluctuations with location and width governed by 1/7T*.
While the Overhauser field contributions are continuous in
the SCA, they have a Dirac-comb substructure in the QMA,
see Fig. 2(b), that reflects the transitions between the equidis-
tant energy levels for a finite number of quantum mechanical
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FIG. 2. Comparison of the SCA (left panels) and QMA (right
panels) for fixed J' measured in units of 1/7*. The upper panels,
(a) and (b), show the autocorrelation spectrum, the lower panels,
(c) and (d), depict the related cross-correlation spectrum. For a better
presentation, the amplitude of the blue curve in panel (b) is reduced
by the factor 107!,

states. In the box-model approximation, the quantum mechan-
ical energy levels have a separation of Ay o< 1/4/N;, which
recovers the continuous spectrum for N; — oo.

At finite inter-QD interaction strength (J # 0), the conser-
vation of the total spin ) in each individual QD is lifted and
only Foy = 3, F remains conserved. As a consequence the

SCA
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FIG. 3. Comparison of the SCA and QMA. The upper panels,
(a) and (b), show the autocorrelation spectrum, and the lower panels,
(c) and (d), depict the cross-correlation spectrum as a function of the
frequency w and interaction strength J'. The left panels, (a) and (c),
correspond to the SCA and the right panels, (b) and (d), belong to
the QMA. The magnitude of the correlation function is color coded
according to the legends on the right-hand side.

sharp lines in the quantum mechanical autocorrelation spec-
trum fan out and, except for some noise, the discrete quantum
mechanical spectrum resembles the continuous semiclassical
spectrum for N; = 100 spins already.

In order to illustrate the evolution with increasing inter-QD
coupling strength J’, we present the autocorrelation spectra
as a function of w and J’ in two-dimensional color plots in
Figs. 3(a) and 3(b). A strong red color encodes a large positive
value of correlation while a dark blue color corresponds to
negative values of the correlation function, i.e., a strong an-
ticorrelation. In the quantum mechanical results in Fig. 3(b),
a broadening of the equidistant § peaks for increasing J' is
clearly visible which progresses towards the classical contin-
uum. As common features of SCA and QMA we observe three
relevant aspects: First, the zero-frequency § peak is broadened
in both approaches [Figs. 3(a) and 3(b)] since F” and hence
the Overhauser field is not conserved anymore and a long-
term decay of C,(¢) sets in. Secondly, the zero-frequency peak
partially splits into an additional peak at @ = J’ due to the
Heisenberg interaction between the QDs: There is a splitoff
line starting at the origin and increasing linearly with J' in
the (w, J') plane. Thirdly, as soon as J’ becomes comparable
to 1/T*, the peak related to the Overhauser-field fluctua-
tions broadens, which implies that the inter-QD interaction
enter as an additional dephasing source and supplement the
Overhauser field fluctuations. In this simplified picture, the
electron spins of adjacent QDs provide an additional source
for the spin noise and act like additional spins in the nuclear
spin bath. However, in contrast to the nuclear spins, which
provide a nearly static contribution, the adjacent electron
spin is fluctuating which results in a non-Gaussian shape for
J =1/T*

In a next step we examine the cross-correlation spectra
obtained by SCA and QMA that have been plotted below the
autocorrelation spectra in Figs. 2 and 3. Without interaction,
J' = 0, the cross-correlation spectrum is zero, since the indi-
vidual QDs are decoupled. For J' > 0, a frequency dependent
spectrum emerges whose positive and negative components
have the same weights due to the sum rule, Eq. (27c). For
J'T* « 1, a sharp zero-frequency peak is found, indicating a
synchronization between the electron spins of different QDs
at very long time scales. With growing J' this zero-frequency
peak splits into three contributions: a §-peak with positive
spectral weight at exactly w =0, a second peak close to
o = 0 with negative spectral weight, and another peak with
negative spectral weight at @ = J'. This behavior is observed
in the SCA data in Fig. 3(c), as well as the corresponding
QMA results in Fig. 3(d). As an additional feature in the
cross-correlation spectrum the Overhauser field fluctuations,
which are responsible for the broad peak around 1/7* of
the autocorrelation spectrum, are reflected by a positive cross
correlation for the smaller frequencies and a negative cross
correlation for larger frequencies. Note, when J' becomes
comparable to 1/7*, some of the mentioned features might
interfere destructively and are not solely visible anymore. The
cross-correlation spectrum for the QMA maintains its discrete
nature for J/ > 0, as shown in Fig. 2(d) and Fig. 3(d). The
envelope function, however, is similar to the semiclassical
spectrum supporting the application of the SCA for large spin
systems.
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C. Frozen Overhauser field solution

To understand the origin of the different positive and neg-
ative components in the cross-correlation spectrum, shown in
Fig. 3, we study a simplified and analytically solvable system.
We exploit the separation of the time scales between the
electron and nuclear spin dynamics and study the problem on
a short time scale (up to 100 ns) where the nuclear spins can
be considered as frozen. Thus, approximation errors for small
frequencies, where the assumption is not valid, are expected.
To that end we start with a Hamiltonian in the electronic
subspace for two-QDs

H, = §OFD 4 5OF® 4 751 . 5@) (34)

that are subject to individual time-constant fields 5% = 5% 4
bg\',). Without loss of generality we choose the z axis along

the averaged field Z‘;: (l;(l) +I;(2))/2 and define the field

deviating from the average Ab = bV — b?)/2. Then the
Hamiltonian of the electronic subspace reads

H, = b(S{" + 8?) + Ab(SV — §@) + J§O . §@
~ b(S + 5P) + Ab (S — 5P) + ISV 5@ (35)

where in the last step we neglect the transversal components
of the deviating field. This approximation is justified for large
magnetic fields. Details as well as a solution of the Hamilto-
nian (35) can be found in Appendix D. This model is exactly
solvable and can be used to extract the autocorrelation spectra
and cross-correlation spectra. For the longitudinal functions
we obtain the result

1 o*(1 —a?)

(SV@SD) = ~ + (cos(wt) — 1) (36a)

4 2
2 1— 2
(S (1)s?) = LACl cos(w)1)) (36b)
with the abbreviations
1 X
x 37

o= — = .
ﬁ\/]+x2_ /]_|_x2 2Abz

The Egs. (36a) and (36b) comprise an oscillating term of

frequency
w| = ,/]2 + 4Ab§ (38)

as well as a constant part. Correspondingly, the Fourier trans-
formation contains a § peak at @ = o) from the oscillatory
part and a §(w) term from the constant part. In accordance to
the sum rules (27a)—(27c), both peaks carry positive spectral
weights in the autocorrelation function whereas the cross-
correlation spectrum contains a positive and a negative peak

of equal weight. Note the limit « g 1, which guarantees
vanishing cross correlations for J = 0.
The transversal correlation functions in the x direction
yield
o2
(SM()SP) = §(Cos(wir+t) + cos(w] 1))

—a?

1
+

(cos(w| 1) + cos(w] 1)) (39a)

a?(1 —a?)
8

+ cos(wl 1) + cos(w] 1)),

(SD(1)s@) = (—cos(@} 1) — cos(@ 1)

(39b)

and, due to the spin rotational symmetry around the z axis,
they are the same as those in the y direction. In the transversal
case the four frequencies

+_p4(” J2 2
ot =bk 5+ +(Ab) (40a)
Y A ,
of =k (5 - +@ab?), (40b)

centered around b, occur.
The terms “longitudinal” and “transversal” are usually

defined with respect to I;ext and not with respect to b. For
large bexy > by this distinction becomes obsolete, however
for small by an averaging over an isotropic distribution of
random field I;X,) is required leading to a mixing of correlation
functions in the x and z direction. In the case bey = 0, the

field b is isotropically distributed and the correlation functions
of all spatial directions x, y, and z mix with equal proportion.
Therefore, longitudinal and transversal components are com-
prised in the spectra in Fig. 3.

The frequencies a)fi build up the positive and negative
cross correlations around 1/7*. The longitudinal spectrum
produces the negative cross correlation at w = J’ and positive
cross correlations at w = 0. The positive correlations at w = 0
follow from the fact that the frozen Overhauser field approx-
imation does not allow the full relaxation of the electronic
spins, even in the presence of their interactions with each
other. Only the strong anticorrelation at very small frequen-
cies, visible in Fig 3, are absent within this simplification: The
frozen Overhauser field approximation disregards the slow
dynamics of the nuclear spins on long time scales and small
frequencies. Indeed, the sharp § peaks in the correlation spec-
tra of the simplified model are broadened by the randomness
of the hyperfine couplings leading the a continuous spectrum
after the averaging as in Figs. 2 and 3.

D. Randomness of the coupling parameters

In Secs. VA and VB we established that the simula-
tion of full QD ensemble with a larger number of Ngp is
equivalent to a coupled two-QD problem in the SCA sup-
plemented with appropriate distribution function p(J) with
respect to the calculation of two-color cross-correlation func-
tions. The SCA allows studies of a large spin system beyond
the simplified box model and facilitates the introduction of
additional interactions without significantly increasing the
computational effort. In the following we study a system of
Ngp =2 QDs with N; = 100 nuclear spins each. It either
represents a large QD ensemble or a QD molecule. For the
nuclear spins we use a spin length I = 3/2, which matches
the spin length of Ga or As isotopes. The hyperfine couplings
are proportional to the probability density of the electron at the
location of the nucleus A; o | (7)|>. Under the assumption
of a flat two-dimensional QD and a Gaussian wave function
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FIG. 4. Comparison of the correlation spectra C{" (red), €'+
(gray), CV 4+ C? (black), and C{ (violet) at Bey = 0. Panel
(a) uses the box-model approximation while in panels (b) and (c) the
distribution in Eq. (41) is included. The quadrupolar interactions are
omitted in panels (a) and (b), and are included in panel (c). The
cross-correlation spectra at low frequencies are enlarged in the insets.

V() oc exp(—r?/(2L%)) with the characteristic QD length
scale L, we obtain the probability distribution

L? 1

PAy) = A (41)

where R > L is the cutoff radius defining the smallest hyper-
fine constant Ap,;,. Here, we choose the cutoff radius R = 2L
and the maximum hyperfine constant A,x in such a way that
Eq. (3) is fulfilled [34].

We use the exponential distribution for the inter-QD in-
teraction, see Sec. VA, with a mean value of J = 1 /T* in
accordance to Refs. [52,53]. Therefore, we perform configu-
ration averaging over individual realizations of A,(C’) as well as
the effective coupling constant J between two QDs [52].

In addition we include the effect of nuclear-quadrupolar
interactions on the auto- and cross-correlation spectrum at
low frequencies. We use uniformly distributed coupling con-
stants ¢ € [0, 2g] with the mean value g = 0.015(7*)~! and
the easy axis 7ip uniformly distributed in a cone around é,
with apex angle 6,,x = 1.19 and a biaxiality n = 0.5 as a set
of nuclear-quadrupolar interaction parameters introduced in
Ref. [13].

E. Effect of quadrupolar interactions

In Fig. 4 we show various correlation spectra in the absence
of an external magnetic field: the individual autocorrelation
spectrum C\" (red), the total autocorrelation spectrum CéH'z)

(gray), and the cross-correlation spectrum C’éx) (violet). Fig-
ure 4(a) depicts the results for the box-model approximation
with homogeneous hyperfine coupling constants A,((l) =Ap as
a reference; in Fig. 4(b) we plot the data with an average
over hyperfine coupling constants following the distribution,
Eq. (41), and in Fig. 4(c) we add the nuclear-quadrupolar
interaction term as well.

As both QDs are modeled with the same T;*, the individual
autocorrelation functions of the electron spins are the same,
i.e., Ci" = C{?. The autocorrelation function of an individual
electron spin displays two peaks at w =0 and w = 1/T*.
Note, the inter-QD interaction only manifests in an additional
broadening of both peaks, while the clear indications for inter-
QD interactions, such as the peak at w = J, are smoothed out
due to the randomness of J.

Figure 4(b) illustrates the effect of the distribution of hy-
perfine coupling constants. The Overhauser field is no longer
proportional to the total angular momentum of the nuclear
spins as in the box model and as a consequence a long term
decay of the Overhauser field as well as the autocorrelation
function Cé')(t) is possible. In the autocorrelation spectrum
this reflects as a broadening of the zero-frequency peak, while
higher frequency components are unchanged. The effect is
intensified, when quadrupolar interactions are taken into ac-
count as well, see Fig. 4(c).

The summed C’él) + C‘éz) and combined C’Z(HZ) autocorrela-
tion spectra are depicted in black and gray, respectively. While
their general shape is rather similar to the autocorrelation
spectrum of a single QD, the difference between the two
defining the cross correlations contains additional information
on the interaction between the QDs since it vanishes for QDs
without inter-QD interaction.

In the box-model approximation, see Fig. 4(a), the cross-
correlation spectrum contains a zero-frequency & peak, just
like the analytical solution for the FOA presented above. How-
ever, the anticorrelations at w o J are not visible due to the J
averaging. The strong anticorrelations visible in the inset of
Fig. 4(a) can be attributed to the slow dynamics of the nuclear
spins.

In a system with an A; distribution, the broadening of
the zero-frequency peak modifies the cross-correlation spec-
trum. The § peak at w = 0 is broadened and partially cancels
out the adjacent anticorrelations at low frequencies, which
as a result are strongly reduced as shown in the inset of
Fig. 4(b).

This effect is even more pronounced when quadrupolar in-
teractions are taken into account. Nuclear-electric quadrupolar
interactions originate from the strain induced by the self-
assembled growth process. In the SCA they are reflected
by time dependent fields acting on each nuclear spin in-
dependently. This introduces an additional disorder on the
Overhauser field and, therefore, a broadening of the zero fre-
quency peak. In Fig. 4(c) the effect of quadrupolar interactions
for a realistic set of parameters [13,17] is depicted. The zero-
frequency peak is even more broadened. As a consequence the
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strong anti-cross-correlations at low frequency vanish com-
pletely.

F. Effect of electron g-factor variation

In this section we introduce a transverse external magnetic
field acting on electron spins as well as nuclear spins. The
electron spins precess in the external field with a Larmor
frequency w; = upgoBext, Where go = 0.5 is the typical ef-
fective g factor of the electron in a InGaAs QD. For the
nuclear spins we use the value gg) wr/gomp ~ 1/800 averaged
over the different isotopes [61]. At large external magnetic
fields, the spectral weight of the Gaussian shaped peak at
w =~ 1/T* in the autocorrelation spectrum is shifted by this
Larmor frequency. In the FOA this can be directly seen in
the frequencies stated in Eq. (40a) and in Eq. (40b): They
are shifted by b. Consequently, effects relevant on long time
scales such as the distribution of hyperfine coupling constant
or the nuclear quadrupolar interactions are suppressed. Only
in spin-echo experiments [48,75] described by fourth-order
spin-spin correlation functions [19] a second dephasing time
associated with these interactions occurs. Their effect is not
observable in the second order correlations.

In a transversal field, however, the distribution of electron g
factors becomes relevant. Since the g factor of an electron spin
in a semiconductor is correlated with the excitation energy of
the QD due to the Roth-Lax-Zwerdling relation, we assume
that both QD subensembles have a different average g factor
[52,76]. The optical selection of QDs used for the measure-
ment of cross-correlation functions [42] is facilitated by the
usage of probe lasers with different photon energies.

An additional variation of the g factor for a fixed excita-
tion energy is caused by local differences in a self-assembled
QD ensemble. In order to study (i) the effect of different
g factors in each subensemble as well as (ii) the g-factor
variation within each subensemble we define the g-factor
distribution I

gV =g
g? =1.015g, (42)
and g-factor distribution IT
gV ~ N(go, 0.005)
g% ~ N(1.015g0, 0.005) (43)

where we use parameters extracted from literature [52,59].
While for the distribution I the electrons 1 and 2 have dif-
ferent but fixed g factors, the g factor is drawn from a
Gaussian distribution with a very small width [52] for the
distribution II.

The impact of both distributions on the spectral functions is
presented in Fig. 5 for different transverse external magnetic
fields. The left panels belong to distribution I whereas the right
panels use distribution II. Various correlation spectra at small
magnetic fields of wp, = 5/T* (Bext & 100 mT) applied in the
x direction are depicted in Figs. 5(a) and 5(b) using the color
coding of Fig. 4 with an additional blue line for the individual
autocorrelation function C3>’ (that now differs from C{"). For
this small field the g-factors distribution is rather irrelevant,
since the energy scale Aw = Bexup(g!) — g?) is small in
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FIG. 5. Comparison of the transversal correlation spectra C‘;l)
(red), C (blue), C{"*? (gray), Ci" 4 C (black), and C{*) (violet)
for various external magnetic fields as well as g-factor distributions.
The left panels correspond to distribution I, Eq. (42), the right panels
relate to distribution II, Eq. (43). The external magnetic fields are
wp =5/T* (Bexy & 100 mT) in panel (a) and (b), w, = 100/T*
(Bext =2 T) in panel (c) and (d) and w;, = 200/T* (Bexy =4 T) in
panel (e) and (f).

comparison to the other energy scales of the system. Due to
the transversal magnetic field the autocorrelation spectrum
(red and blue line) has a Gaussian shape [29] and is centered
around the Larmor frequency of the respective QD. Without
inter-QD interaction, the width of the Gaussian is given by
the Overhauser field fluctuations as well as the variation of g
factors. However, the latter effect is not relevant here which
leaves 1/T* as the only influence.

As the autocorrelation spectrum, the cross-correlation
spectrum (purple line) is centered around the Larmor fre-
quency wp. It is positive in the center and is flanked by
negative contributions at the wings. This behavior can be
understood within the FOA. Relevant for the cross-correlation
spectrum are the four frequencies in Eqs. (40a) and (40b).
While the two outer frequencies a)fr have negative prefactors,
the two inner frequencies wf’ have a positive contribution to
the cross-correlation spectrum. The sharp lines of the single
configuration FOA analysis presented above are broadened
due to the Overhauser-field fluctuations.

In a larger magnetic field, wp, = 50/T* (Bexy = 1 T), the
splitting of the peak location due to the different g factors is
clearly visible in the autocorrelation functions of both QDs in
Fig. 5(c). The cross-correlation function, however, retains its
shape. Its amplitude is significantly reduced by the g factor
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distribution II as can be seen in Fig. 5(d). The four lines
obtained from the FOA smear out due to the g-factor spreading
and cancel each other.

For an even larger field, w; = 200/T* (Bexy & 4 T), the
autocorrelation spectra of the different QDs shown in Fig. 5(e)
separate since the difference in the Larmor frequencies Aw
becomes significant. The cross correlation strongly reduces
for distribution I, since the prefactor « vanishes for J/Ab —
0. By taking into account distribution II, the cross-correlation
spectrum is almost completely washed out as depicted in
Fig. 5(f).

In a transversal magnetic field, dephasing effects on long
time scales such as caused by the quadrupolar interactions
are suppressed since the cross-correlation spectrum is shifted
to higher frequencies. The spectral features in the vicinity
of the Larmor frequency, however, are suppressed in strong
magnetic fields by a g-factor disorder leading to an attenuation
of the cross-correlation spectrum. However, at small magnetic
fields neither long time dephasing nor the g-factor dispersion
attenuates the cross-correlation spectrum.

G. Longitudinal magnetic field

In this section, we present the results for the cross-
correlation spectrum in a longitudinal external magnetic field,
where both long- and short-time effects are apparently rele-
vant. In Fig. 6(a) the correlation spectra in a weak longitudinal
field of w, =5/T* are depicted using the same color code
as in the previous figures. We included the distribution of
hyperfine coupling constants, the quadrupolar interactions,
and the g-factor distribution II in the dynamics.

For the autocorrelation spectra (red and blue), we observe
a zero-frequency peak that is associated with the conserved
spin projection along the external magnetic field axis in FOA,
broadened due to the dephasing induced by quadrupolar inter-
actions. In addition, some intermixing of the transversal spin
components is visible in the peak centered around the Larmor
frequency.

To understand the cross-correlation spectrum (violet) we
again refer to the FOA results in Eq. (36b). It predicts a
positive cross correlation at @ = 0 and an anticorrelation at
@ = w). For large J we can approximate w ~ J, accordingly
the cross correlations are sensitive to the distribution of cou-
pling constants p(J). Therefore, cross-correlation spin-noise
spectroscopy in a longitudinal field provides the possibility to
study the distribution of inter-QD couplings in an ensemble,
an information that is not otherwise accessible.

We present the cross-correlation spectra for longitudinal
fields w;, = 50/T* in Fig. 6(b) and w; = 200/T* in Fig. 6(c)
for the four combinations of (i) quadrupolar interactions in-
cluded or not and (ii) identical electron g factors or distribution
II. The low frequency behavior is enlarged in the insets. The
positive cross correlations predicted by the FOA can be found
as the 6 peak at w = 0. In addition, we find strong anticor-
relations at small frequencies (orange) that we assign to the
nuclear-quadrupolar interactions that are absent in the FOA
results, since the nuclear spins are considered frozen. The
quadrupolar interactions, however, only play a role at very low
frequencies.

SN Spectrum
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(x)

— QL g1 =92
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1 1 ,
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wT™

FIG. 6. In panel (a) the correlation spectra C;l) (blue), Céz) (red),
C;Hz) (gray), Cél) + Cf) (black), and C;x) (violet) are depicted for
a longitudinal magnetic field of w;, = 5/T*. In the lower panels the
cross-correlation spectrum Céx) is depicted for the four combinations
of: (i) quadrupolar interactions switched on and off and (ii) identical
electron g factors or distribution II, Eq. (43). Panel (b) presents w;, =
50/T* and panel (c) w, = 200/T*.

In contrast the distribution of g factors does not change
the shape of the cross-correlation spectrum but lowers the
amplitude. This attenuation effect is not as strong as in the
transversal magnetic field, since no destructive interference
between positive and negative lines occur and only enters via
the prefactor o Eq. (37). At larger field of w;, = 200/T* the
effects of quadrupolar interactions and g-factor distribution
are modified. The nuclear Zeeman term suppresses the effect
of the quadrupolar interactions [15] which is indicated by a
weakening of the peak caused by the quadrupolar interactions.
In addition the attenuation effect of the g-factor distribution is
enhanced strongly reducing the signal.

H. Connection to experiment

The autocorrelation spectrum C;i) corresponds to the noise
power spectrum that is experimentally [15] extensively stud-
ied and already well understood in terms of a single QD
picture, where inter-QD interactions are neglected [13,29].
In our framework we demonstrated that the autocorrelation
spectrum qualitatively remains unchanged by the inter-QD
interaction only the broadening of the peaks is modified.
These modifications can be absorbed in a renormalization of
T* translating into the parameters in a single-QD picture, so
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FIG. 7. Effect of the distribution p(J’) on the cross-correlation
spectrum in a longitudinal magnetic field of w;, =S5/T*. Panel
(a) depicts the cross-correlation spectrum while panel (b) shows
the associated distribution function p(J’). The red curves belong
to a Gaussian distribution with mean value J = 1/T* and standard
deviation ¢ = 0.3/T*. The blue curves belong to an exponential
distribution with J = 1/T*.

that all previous results can be embedded into the extension to
interacting QDs.

Recently, the autocorrelation spectra Cél), Céz), and
are measured for a QD ensemble at zero magnetic field to
determine the homogeneous line widths [72]. Since the cross-
correlation function CZ(X)(I) is determined by the difference
between the total two-color signal and the sum of the indi-
vidual contributions according to Eq. (22), Céx)(t) could be
extracted.

The experimental data in Ref. [72] qualitatively agrees
with our results, as the cross-correlation spectrum is strongly
attenuated at low frequencies by quadrupolar interactions and
the hyperfine distribution, see Fig. 4(c). One has to bear in
mind, however, that only 10% of the QDs were charged in the
sample studied in Ref. [72], which strongly reduces spin-spin
interactions between the QDs.

As a consequence of our investigation we propose to mea-
sure the cross-correlation spectrum at a finite but low external
magnetic field, where additional dephasing by the g-factor
distribution is negligible. The strongest cross-correlation sig-
nal is expected for a transversal magnetic field, for which the
quadrupolar interaction is suppressed.

From the longitudinal cross-correlation spectrum, addi-
tional information about the distribution of the interaction
strength J can be obtained, even though the signal strength
is expected to be lower than in the transverse case. We present
the cross-correlation spectrum for two different distribution
function p(J) in Fig. 7. The cross-correlation function ob-
tained from a Gaussian distribution p(J) and depicted in red
significantly deviated from the one calculated with a expo-
nential distribution plotted in blue. This way, one can extract
additional details about the microscopical origin and the char-
acteristic length scale of the inter-QD interactions.

(1+2)
Cz

VI. CONCLUSION

We studied the spin-noise spectrum for an ensemble of
singly charged QDs whose resident electron spins interact via
a Heisenberg type interaction. To this end, we employed a
SCA that allows for the description of coupled spin systems
comprising a larger number of spins than, e.g., would be man-
ageable in straightforward quantum mechanical calculations.
The approach is based on the introduction of the classical

Hamilton function derived from an arbitrary quantum me-
chanical Hamiltonian via spin-coherent states. This procedure
accounts for a correct description of terms in the Hamiltonian
that are quadratic in the spin operators as it occurs in the case
of nuclear quadrupolar interactions.

For two-color spectroscopy we were able to map the en-
semble problem onto a pair of coupled QDs augmented with a
coupling constant distribution. Studying the mapped system,
we find features in the spin-noise spectrum related to the
inter-QD interaction. In the absence of an external magnetic
field, the hyperfine interaction and the nuclear quadrupolar in-
teractions conceal a potential effect of an inter-QD interaction
on the correlation spectra.

The application of an external magnetic field either trans-
verse or longitudinal to the measurement axis allows for the
separation of the inter-QD interaction from other contribu-
tions in the cross-correlation spectra. In case of a transversal
external magnetic field, the field strength has to be adjusted
in an intermediate region in order to achieve a significant
shift of the Larmor frequencies for the two electron spins
due to their slightly differing g factors but not to suppress
the effect of inter-QD interaction completely. However, the
longitudinal field may provide easier access. Here, the con-
tribution of the inter-QD interaction in the cross-correlation
spectrum is strongly pronounced over a broad range of the
magnetic field strengths. The shape of the cross-correlation
spectrum can even provide information on the distribution of
the coupling strength and thereby hint on the unclear physical
origin of the interaction. Experimental cross correlation data
could be an interesting step towards further understanding to
the interaction between electron spins in QD ensembles.
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APPENDIX A: DERIVATION OF THE SCA FROM A PATH
INTEGRAL FORMULATION

We start with the propagator
K50}, 550 8) = ({550 e ™ {5,
which provides the transition amplitude from the initial state
[{s}) at time O to the final state |{5; /}) at time ¢. {§; ;} de-
notes the set of all electron and nuclear spins of the ensemble.

We decompose the time evolution operator into small time
intervals At =t/N

(AD)

N—-1
K((Sip) 5jah ) = lim (S0 [T 16550 . (A2)
n=0
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Now we can insert the completeness relation (8) between all infinitesimal time evolution operators to get infinitesimal transition

amplitudes

N—1 N—1
RS0, 8500, = fim [ [T du0530 [T Gl e 1650
n=0

n=1

with [{S;,0}) = I{5;:}) and [{§;n}) = [{5; £}).

(A3)

Next, we estimate the transition amplitude for very small time steps, ({5} 41} e~ HA (5 i.n}). Using the Taylor expansion of
the exponential up to linear order, and including the difference between ({5; 11} {5} ,}) and 1 = ({5, ,} [{§;}), we obtain

(B e A NS = (Sjns1} 1Bja)) — iAL ({51} H |{5;.0)) + O(AL?)

— IS S HIEDA L (A2,

(A4)

Making use of the fact that Ar is arbitrary small and inserting the exponential into the Eq. (A3) yields

N—1
2 2 _ 1 2 =i o0y (S WS D+ HE 5 1) ) At
K({Sj’f}, {Sj,i},t) _Nh_I};o/ l_[IdM({Sj’"})e iy S} 1S DS HH (S 0)) ) )
n=

At this point the transition amplitude can be identified as a
path integral that can be comprehensively written as

K(Gig). G0 = [ DU SO0 (as)

with the action

d
S[{5;}, {9,5;}] = / (i ({5} = I{s;h) — ({50 H |{§j})>dl
(A6)
and the integration measure

N-1
DIfs;}] = lim U, dp({5)n))- (A7)
This path integral formulation of the transition amplitude was
used to derive the SCA using a saddle-point approximation
leading to the Euler-Lagrange Eq. (13) for the coherent state
using the action S.

APPENDIX B: QUADRUPOLAR HAMILTONIAN

The quadrupolar interaction acting on a single nuclear spin
is quantum mechanically described by the Hamiltonian

Ho =g+ 3 -7 = d-A))]. B

In the following, our aim is to derive the semiclassical EOM
for the classical nuclear spin from this Hamiltonian.

First, we have to calculate the classical Hamilton function
H (i) with the classical nuclear vector i entering the action
S defined in Eq. (A6). Since the quadrupolar Hamiltonian
consists of three similar terms, we evaluate a term of the
general form

Q- i)y = (I, 1] O TT . y?e i@ |1y
= (LI -m)|L1). (B2)

From the first to the second line, we insert the rotation that
relates the spin-coherent state |i) to the spin state with maxi-
mum quantum spin number in the z component |/, I). These

(

two unitary operators are used to rotate the orientation vector
m to m, so that the total matrix element remains invariant.
In a next step, we insert the spin operator

T
I=u~r, = <l(l+ +17), l,(l+ —1), 11) (B3)
2 2i
leading to
@) Ty = (1 1) S0 + 2T
+ (I L) . (B4)

We insert /7~ |I, 1) = 2I'|I, 1) and (I*)* |I,1) = I*|I, 1) and
obtain

; o 1 LI YT
A ip i =5+ (1 5 o
(1= )den. @)
) 27 m:-e .

After rotating back into the original coordinate space, the final
result reads

- 5 - 1 1\ -
(i my? i) = 5 + (1 - 5)@ ). (B6)

When we apply this relation to the three terms of the
quadrupolar Hamiltonian in Eq. (B1), the classical Hamilton
function entering the action S, derived from the quantum
mechanical operator ﬂQ, is given by

Ap=q|t+(1-2)d-mp
°=1)2 2 )"

L T e S S e
+3<1 21)[(1 fiy)” — (@ ny)]}. (B7)

H, has been used to obtain the quadrupolar field in Eq. (16)
by applying the general EOM stated in Eq. (13).
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APPENDIX C: AUTOCORRELATION FUNCTION
IN SEMICLASSICAL FORM

Let us transform the autocorrelation function

Gy(1) = (S°(0)$°(1)) (CH

into a suitable form for the SCA. As a demonstration, we start
by the calculation of C; for a single isolated spin 1/2 and only
then generalize the results to more complex systems. The most
general time-dependent Hamiltonian for a single spin 1/2 has
four degrees of freedom and can be parameterized by H(t) =
E(t) S+ Ey(t), whereby Ey(t) solely creates a global phase
factor that does not have any impact in our case.
The time evolution is governed by the operator

U(t)="Texp <—i/ H(t)dt)
0

= e¥Dexp (—ia(r) - §) = €*Rsq),  (C2)
with the time-ordering operator 7 and the global phase ¢*#®).
Since U(t) is an element of the rotation group SU(2), we
have replaced the time-ordered integral in the second line of
Eq. (C2) by a rotation along a specific axis @ € R, whose
explicit calculation shall be postponed for the moment. We
use the latter representation of U (¢) to calculate the correlator
C, with respect to an initial spin-coherent state |5¢)

G = (5ol $7(0)S*(2) [S0) (C3)
= (S0l @ - HR-a()(@ - SHRay [So) . (C4)

In a next step we make use of the relation
R_5(,-S)Ry = (R_32,)-§ (C5)

that tranglates a rotation Rz of the SU(2) to a 3 x 3 rotation
matrix R_z = exp(—[&],) of the SO(3), using the cross-
product matrix [¢],. This yields

Cy = (S0l (7:(0) - $)(7.(1) - $) [50) , (Co)

with the rotated z axis 7, (t) = R_z(é,.

Finally, the autocorrelation function, Eq. (C6), is converted
to a fully classical form. To this end, standard spin 1/2 al-
gebra, i.e., the relation S*S? = (1/4)8,5 + (i/2) ZV €apySY

and the relation (S| S |So) = 5o are exploited, such that the
autocorrelation function for the single spin 1/2 becomes
1. . i . -
G = an(O) (1) + E(”z(o) X 1i,(1)) - So (o))
for a fixed initial coherent state |sy) and the fixed time ¢.

This leaves us with the calculation of the rotation matrix
as a function of time. By identifying B(¢) in the Hamiltonian

of the single spin 1/2 with the effective field berr(t) = 245,
we can interpret Eq. (C7) as a recipe for evaluation of C, in
a more complex system described by the Hamilton function
H (3) in the semiclassical limit.

In a last step, we present an efficient way to compute the
rotation matrix Ry within the SCA. Instead of calculating the
rotation matrix directly, we use its quaternionic representation
[47], which is more compact and numerically stable. Unit
quaterions are isomorphic with the group SU(2), which be-
comes particular clear, considering that the basic quaternions

{1,i, k, 1} and the Pauli matrices {1, ioy, ios, io3} share the
same algebra. However, unit quaternions can also be used
to represent the SO(3) rotation group due to the two-to-one
homomorphism of the SU(2) onto the SO(3). A SO(3) rotation

R can be represented by the unit quaternion

Q(a) = cos(a/2) + g - sin(e/2), (C8)
with the basic quaternions ] = (i, k, T. As the SO(3) is cov-
ered twice in the SU(2), the quaterions Q and —Q represent
the same SO(3) rotation. It can be shown that the desired
rotation can be applied to a vector with the quaternion mul-
tiplication and its inverse

Jit) = Q(ji(0)Q "
Consequently two consecutive rotations are combined by the
quaternion multiplication Q = Q; Q5.
We can derive a simple EOM for Q by applying an in-
finitesimal rotation Q' ~ 1 + Beffjdt to Q with the quaternion
multiplication

% = —befr - U+ (qhetr + bett X T) - ],

(€9

(C10)

where we divide the rotation Q = g + ﬁf into scalar part g €
R and a vector part v € R3. In conclusion we get the EOM for
the quaternionic representation of the rotation matrix

d R
d_if = By - 3, (C11)
v - - .
— = gbefi + betr X U, (C12)

dt
which can be solved alongside Eqs. (14a) and (14b).

APPENDIX D: FOA: APPROXIMATION AND SOLUTION
We start with the Hamiltonian
H, = b(S" + 52) + ABES™D — §@) + 45V .52, (D1)
Using the operator U = exp(—ib(S" + ${2))), we transform
into the rotating frame on
H' = Ab(t)(S" — $@) +J§V . §@
~ Ab. (S0 — $P) + 730 . 3@,

D2)
(D3)

where b vanishes and AI;(t) obtains a dependence on
time. The time dependent deviational field Ab(t) = Ab.e, +
Ab, (t) can be split into a time-constant part along the z axis
and oscillating terms perpendicular to the z direction. For
bext > by, it is well justified to omit Ab L (¢) due to fast os-
cillating contributions. After omitting Ab, (1) we rotate back
out of the rotating frame and obtain

H, ~ b(S" + 8P) + Ab, (S — §P) +J5V .5, (D4)
This Hamiltonian commutes with S, = Sél) + ng) and has the

four eigenenergies
J J?
G4=—7 +,/ T + (Ab.)2. (D5)

J
€12 = Z ﬂ:b;
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The related eigenstates read

1) = | £ 1. £]
) = £ 1) £ VT a| 3 1. £1)

(D6a)
(D6b)

with the abbreviation
1 X

o = —
V2142 - VT+22

(limits: lim, .o =1 and lim,_, o = %) which can be

7
-1 7
Y= oap PP

used to calculate arbitrary spin-spin correlators within this
approximation.
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