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SU(2) formulation of spin-resolved orbital magnetization
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We propose an approach concerning the derivation of the spin-resolved orbital magnetization in ferromagnets
with spin-orbit interaction. An approach is presented in full detail based on non-Abelian Keldysh formalism. The
self-consistency and reliability of results are examined through verifications of the equilibrium thermodynamic
relation and nonequilibrium thermal transport. The study of equilibrium thermodynamic features reveals the non-
transport spin-resolved properties. Meanwhile, the nonequilibrium spin thermal transport with the incorporation
of SU(2) structures offers a route to explore the nature of correlations in the charge-spin response.
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I. INTRODUCTION

Appealing properties originating from spin-orbit interac-
tion (SOI) have drawn huge attention for their intriguing
physics and applications in spintronics. Through coupling the
spin orientation of an electron with its orbital motion, vari-
ous transport phenomena, such as the spin Hall effect [1–4],
spin filters [5], spin accumulation [6], spin optics [7], and
the quantum anomalous spin Hall effect [8], are led. Studies
have been extended continuously to topological insulators and
other novel quantum materials [9–11]. Due to the degree of
freedom of the carrier’s spin, there has been increasing interest
in inspecting the spin-resolved rather than the spin-integrated
contributions in the dynamics of spintronics. Since a finite
SOI gives rise to additional features for an implementation
of spin-selective effects, correlational spin-polarized motions
are expected. Within the recent few years, a lot of effort has
been given to understanding a novel spin-resolved effect in
ferromagnetically spintronic materials using the semiclassi-
cal and quantum Boltzmann equation. As has been seen in
ferromagnets with the Rashba SOI [12] or the Dresselhaus
SOI [13], SOI segregates two polarized orientations of spins
into two subbands and produces a spin imbalance. Such a spin
imbalance creates a spin transport under the externally applied
fields. Existing research has indicated that the interaction be-
tween the spin and momentum leads to emergent non-Abelian
potentials. As a consequence, the spin emerges no longer as
the internal degrees of freedom and behaves like a vector in
the SU(2) space.

Regarding the SOIs in terms of the non-Abelian SU(2)
gauge has been done for many years [14–21]. The mathe-
matical formalism of the SU(2) gauge has been linked to
phenomena in the many relevant areas of spintronics, op-
tics, cold-atom physics [22–24], superconductors [9,25,26],
and quantum computation [27]. Theoretically, the effective
gauge potentials, arising from SOI, acting on the spin degrees
of freedom of electrons have a non-Abelian structure [28].
The non-Abelian fields impose spin-dependent phases on the

traveling electron [29], and their components need not com-
mute [30]. As the typical examples, for the Rashba SOI [12]
and the Dresselhaus SOI [13] in two-dimensional semicon-
ductors, the non-Abelian gauge field gives rise to an effective
magnetic field which is responsible for the rotation of the
spins [18]. Except for studies of the spin transport and magne-
tization dynamics [20,21,31–38], non-Abelian field theories
have been also used to study the nonrelativistic behavior of
non-Abelian quantum fluids [39] to explain the electromag-
netism of magnons [40]. Despite these advances, however,
most previous theoretical investigations of spin-polarized
electrons were limited to SU(2)⊗U(1) gauge models [18,34],
in which the external electromagnetic field appears as a U(1)
field and the SU(2) gauge fields account for the effect of SOIs.
Since the external U(1) field affects the kinetic degrees of
freedom of electrons, its influence is transmitted via SOI to
the spin degrees of freedom. Such a treatment makes it hard to
resolve the orbital and spin contributions clearly. An external
SU(2) magnetic field has been proposed theoretically in ex-
plorations of spin-resolved phenomena for spintronics [16,41–
43]. The diamagnetic response to the effective non-Abelian
SO magnetic field has been studied [16].

The current-induced orbital magnetization (OM) has been
studied by means of semiclassical wave-packet dynam-
ics [44–46]. Expressions of the OM have been derived for
Bloch electrons in crystalline solids [47–49]. Analogous to
the orbital motion of electrons contributing to the OM [47,50–
55], the spin-dependent motion is characterized by two types
of variables: the spin, which relates to the spin orientation of
the state, and the orbital variables, which concern the spa-
tial evolution. The orbital-driven magnetization is associated
with spin orientation due to spin-orbit coupling and pro-
duces a finite spin-resolved orbital magnetization (SROM).
The current-induced nonequilibrium spin polarization of con-
duction electrons was recently studied with U(1) external
fields [56]. Mott-like relations have been presented for elec-
trically and thermally induced electric polarization [57,58].
The indispensable role of SROM has been demonstrated in the
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spin Nernst conductivity of the Rashba ferromagnet [59,60].
In particular, the OM is an orbital analog of a dipole moment
of the current from the point of view of the orbital magnetic
moment of the Bloch states [58]. It has been shown [58] in the
strategy of the semiclassical theory [44–46] that the dipole
density contains not only the statistical sum of the dipole mo-
ment but also a Berry phase correction. However, the ex-
tension of the semiclassical theory to the spin orientation
phenomena is difficult [58]. Investigation of the consequences
of quantum input (the spin Berry phase [61]) by altering
subtly the classical canonical structure for the spin-resolved
effects in spintronic systems is an interesting issue. Because
the spin emerges as a degree of freedom in phase space
and behaves like a vector in the SU(2) space, spin conser-
vation breaking by the SOI makes an identification of the
spin-resolved phase-space volume form with the non-Abelian
gauge anomaly a challenge. This motivates us fundamentally
to look for a theoretical approach which is capable of ad-
dressing the spin-resolved phenomena by treating the charge
and spin degrees of freedom on an equal footing. The exter-
nal SU(2) magnetic field might offer a route to explore the
nature of spin-resolved properties. Therefore this paper aims
to discuss how to adapt the external SU(2) magnetic field
to dissect the emergence of spin-resolved effects in a SU(2)
theoretical framework. We propose an approach concern-
ing the derivation of spin-resolved magnetization. An ap-
proach to the spin-resolved orbital magnetization is presented
in full detail based on non-Abelian Keldysh formalism. The
role of correlations in the charge-spin response will be exam-
ined explicitly for the case of arbitrary spin polarization.

In the following, we first introduce the theoretical frame-
work of a SU(2) representation of the SOI ferromagnetic
systems and subsequently apply our formalism to derive an
explicit analytical formula for the SROM arising from the
ensemble average energy in the presence of a magnetic field.
We demonstrate that the appropriate incorporation of SU(2)
structure leads to a formula for the SROM by means of the
states near the spin-resolved Fermi surfaces and the spin
imbalance. The contributions from the spin imbalance are
presented intrinsically in terms of the spin Berry phase rep-
resentation. The calculation for a practical example of SROM
is carried out in the Rashba ferromagnet. On the basis of the
rationality, self-consistency, and reliability of the obtained re-
sults, we also verify the thermodynamical relation between the
derivatives of SROM and electron density with respect to the
chemical potential and magnetic field, respectively. To obey
fundamental thermodynamics laws and require the Onsager
relations [62,63], it is expected that the SROM should play an
important role in the spin Nernst effect [64–66]. The physical
origin of the spin Nernst effect [67–69] is very similar to
that of the spin Hall effect, both of which are associated
with different influences of the temperature gradient on the
spin imbalance in the momentum space. Because the thermal
spin current is a transport property while SROM is not, we
obviously demonstrate that SROM can possibly explain the
cancellation of those contributions arising from the diamag-
netic currents in the thermal spin current [70,71].

This paper is structured as follows. We start by introducing
the SROM from a SU(2) gauge representation of a ferromag-
net with SOI in Sec. II A and provide a complete description

of the SU(2) representation of the SOI ferromagnetic systems.
The SU(2) formulation for the conduction electrons in an
external magnetic field is developed in Sec. II B. The compu-
tational details are specified, relating the SU(2) formulation to
the configurations that a physical system can attain. In Sec. III
the formalism is applied to obtain a general formula of SROM.
Application of the formalism to the Rashba ferromagnet is
investigated. In Sec. IV, on analyticity with respect to the
rationality and reliability, we examine the Maxwell’s relation.
By extending to the thermal transport property, we show in
general how the orbital contribution is retracted in the charge
Nernst effect. The results are discussed in Sec. V.

II. SU(2) GAUGE REPRESENTATION FOR THE
CONDUCTION ELECTRONS IN AN EXTERNAL

MAGNETIC FIELD

A. SU(2) gauge representation of a ferromagnet with SOI

Let us start our discussion with a Rashba ferromagnet
Hamiltonian,

H0 = p2

2me
12 + α(pyσx − pxσy) − gM · σ, (1)

where me is the effective electron mass, p = (px, py ) are the
electron momenta, α parametrizes the strength of the Rashba
interaction, 12 is the unit matrix in spin space, σ = (σx, σy, σz )
are Pauli spin matrices, M is the intrinsic magnetization, and g
describes the strength of the s-d exchange interaction between
the itinerant electron and intrinsic magnetization. We neglect
electron-electron interactions and the disorder effect arising
from the impurity scattering. Furthermore, we set c = h̄ =
kB = 1 throughout this paper.

Concerned with the SOI term in Eq. (1), we introduce the
SU(2) vector potentials Aμ = ∑

a A(a)
μ τ a [18,31,72], A(x)

y =
2meα/e, A(y)

x = −2meα/e, and A(x)
x = A(y)

y = 0. Similarly, we
introduce the scalar potential for the exchange interaction,
A(a)

0 = −2gMa. In these SU(2) vector potentials, the upper in-
dices a, b, c ∈ {x, y, z} label spin projections, while the lower
indices μ ∈ {0, x, y} label time and spatial directions. τ a =
σ a/2 are the generators of SU(2) (spin-1/2 operators) with
the noncommutativity of the SU(2) spin algebra [τ a, τ b] =
i
∑

c εabcτ c, Tr{τ a, τ b} = δab, where εabc stands for the three-
dimensional (3D) Levi-Civita tensor. According to Fμν =
∂μAν − ∂νAμ − ie[Aν,Aμ], the nonzero components of the
field tensor are found as

F (a)
0i = 2g∂iMa − 4meαg

∑
j,b

εi jε
jabMb, (2)

F (x)
xy = F (y)

xy = 0, (3)

and

F (z)
xy = 4m2

eα
2/e, (4)

where εi j stands for the 2D Levi-Civita tensor running over
two values εxy = −εyx = 1. A nonzero component F (z)

xy in-
dicates that SOI can be interpreted as an effective magnetic
field, normal to the xy plane, while the electric field F (a)

0i is
generated by an interplay between the SOI and inhomoge-
neous magnetization of the ferromagnet. In terms of SU(2)
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gauge potentials, the Hamiltonian can be expressed gener-
ally (not confined to the Rashba SOI) as [21,36,73] H0 =
π2/(2me) − A0, where π = p − |e|A are kinetic momenta.
The Hamiltonian is covariant with respect to the local non-
Abelian gauge transformations [16,18] Aμ → UAμU −1 +
i(∂μU )U −1/e, where U = eiθa (r,t )τ a

is an arbitrary SU(2) ma-
trix.

B. SU(2) formulation for the conduction electrons
in an external magnetic field

To resolve the spin features of electron motion with
the microscopic linear response calculations, we introduce
the non-Abelian potential Aext

μ , Aext
x = A(a)

y τ a = −B(a)yτ a,
Aext

y = 0, and Aext
0 = 0, for the external magnetic field [42],

where B(a) is the external magnetic field in company with
τa and perpendicular to the two-dimensional plane. The field
strengths of the external field are F ext

i0 = 0 and F ext
xy = B(a)τa.

The planar motion of a spin-1/2 particle under the action of a
non-Abelian magnetic field is described by the Hamiltonian

H = (π − |e|Aext )2
/2me − A0. (5)

To the first order in Aext, the perturbed Hamiltonian is approx-
imated as H = H0 + Hext, where Hext = −(|e|/2){vx,Aext

x }.
The anticommutator is defined as {vx,Aext

x } = vxAext
x +

Aext
x vx, and vi is the velocity matrix given by vi = ∂pi H0 =

πi/me. Hext has a form Hext = −B(a)M(a), which is the SU(2)
magnetic field coupling to a SROM,

M(a) = −(|e|/2){vx, yτ a}. (6)

Due to the two-dimensional geometry, the current density
lies in the xy plane, so the OM, which is spin orientation
(a) dependent, is restricted to the z direction. Accordingly,
the Hamiltonian of the ferromagnet with SOI in the exter-
nal magnetic field is rewritten as H = H0 − B(a)Ma. Since
[[τ a, vx], y] = 0, we can get an alternative form, M(a) =
−(|e|/2){ ja

x , y}, where ja
x = {vx, τ

a}/2 is the spin current op-
erator. This indicates that the SROM is actually a magnetic
dipole moment [58] induced by the spin current.

The kinetic theory for the conduction electrons in spin-
tronic systems can be formulated in terms of the matrix
Green’s function Ĝ(1, 2), which satisfies a SU(2) covariant
Boltzmann equation [74,75]. In the Wigner representation the

Green’s function has a structure Ĝ(1, 2) = (
GR GK

0 GA ) in

the Keldysh space, where GR, GA, and GK are the retarded,
advanced, and Keldysh components, respectively, and 1,2 are
generalized coordinates containing space and time coordi-
nates as well as spin and other possible additional indices.

The Dyson equation in the presence of SU(2) external field
Aext is expressed as

0 = Ĝ−1
0 (ε, p, X )Ĝ[ε, p,Aext (X )]

− Ĝ[ε, p,Aext (X )]Ĝ−1
0 (ε, p, X ). (7)

The solutions of Eq. (4) can be obtained using the gradient
expansion approximation for Aext (X ). Working to the first
order in gradient expansion, the solution is found as

G[ε, p,Aext (X )] = G0(ε, p, X ) + �G[ε, p,Aext (X )], (8)

where �G[ε, p,Aext (X )] is found in the form

�G[ε, p,Aext (X )] = |e|B(a)G(a)
1 (ε, p, X ) (9)

with a representation

G(a)
1 (ε, p, X )

= − i

2
G0(ε, p, X )[ ja

x G0(ε, p, X ), vyG0(ε, p, X )]. (10)

The technical details of the derivation are given in Appendix.

III. SROM

A. Derivation of SROM based on non-Abelian
Keldysh formalism

As shown in Eq. (9), the nonzero G(a)<
1 is expected to

induce an orbital response to the SU(2) external magnetic
field. The expectation value of the energy in the presence
of the external magnetic field is given by K[B(a)] =
−i

∫
dε/(2π )

∫
[dp] Tr{(H0 − μ)G<[ε, p,Aext (X )]}, where

[dp] ≡ d2p/(2π )2. Correspondingly, the SROM should be
obtained by the derivative of the energy K[B(a)] = 〈H〉 with
respect to B(a), M(a)= −β−1

∫
dβ(∂K/∂B(a) ) [48].

Using the fluctuation-dissipation theorem G<
i (ε, p) =

[GA
i (ε, p) − GR

i (ε, p)] f (ε) (i = 0, 1), G(a)<
1 is found as

G(a)<
1 = i f (ε)

2

(
GR

0

[
ja
x GR

0 , vyGR
0

] − GA
0

[
ja
x GA

0 , vyGA
0

])
, (11)

where f (ε) = [eβ(ε−μ) + 1]−1 is the Fermi-Dirac dis-
tribution function. To the first order of B(a), K[B(a)]
can be written as K[B(a)] = K0 − eB(a)K (a)

1 , where
Ki = −i

∫
dε/(2π )

∫
[dp] Tr[(H0 − μ)G<

i (ε, p)]. The trace
is taken over the spin states of a conduction electron, or
equivalently, the spectrum of H0(p). We introduce the
complete set {|n, p〉} of eigenstates of the secular equation,
H0(p)|n, p〉 = εn(p)|n, p〉 [48,49,51], corresponding to
the eigenvalues εn(p) (n is a generalized band index
containing the energy and spin information). Onm is defined
as 〈n, p|O|m, p〉 for the operator Ô. K0 and K (a)

1 are found as
K0 = ∑

n

∫
[dp](εn − μ) f (εn) and

K (a)
1 = −

∑
n

∫
[dp]

[
f (εn)L(α)

n,xy − 1

β
ln[1 − f (εn)](n)

n,xy

]
,

(12)

where the Kubo expression L(a)
n,xy = i

∑
m �=n

[( ja
x )nm(vy)mn −

(vy)nm( ja
x )mn]/ [2(εn − εm)] corresponds to the orbital mo-

ment of state |n, p〉 and (a)
n,xy = i

∑
m �=n[( ja

x )nm(vy)mn −
(vy)nm( ja

x )mn]/(εn − εm)2 is the quantum correction from a
spin-resolved curvature [61]. Taking the derivative of the
function K[B(a)] with respect to B(a), taking B(a) → 0 at the
last step of the calculation, and integrating over β leads to
the SROM

M(a)
xy = −|e|K (a)

1 .

K (a)
1 indicates that the magnetic response for the magnetic

modulated orbital motion in a magnetic field leads to a cor-
rection term for the energy, which is manifested by δM (a) =
(1/β )

∑
n ln(1 + e−β(εn−μ) )(a)

n,xy. At first glance, the form in
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Eq. (12) closely resembles the expression of OM for the case
of spin degree of freedom quenched [47,47–55]. However, it
is worth emphasizing that the spin-resolved effect is retained
in Eq. (12). Equation (12) shows that the SROM is not simply
the sum of the orbital moments of all occupied spin correlative
states: There is a spin-resolved curvature correction due to
(a)

n,xy [49]. Because of the exchange spin with the non-Abelian

field, it is explicit that the influence of the SU(2) external field
on the spin-resolved motion would not be dissolved in the
derivation of K[B(a)] with respect to B(a) even for B(a) → 0
at the last step of the calculation. In order to illustrate how the
spin-resolved transitions between eigenstates induced by the
operator ja

x modify the thermal average of orbital motion, we
express L(a)

n,xy and (a)
n,xy in the Berry phase representation

L(a)
n,xy = −1

2
Im

∑
m �=n

[(
(∂px 〈n, p|)�(a)

n + 〈n, p|�(a)
x,nm

)
(εn − H0)|m, p〉〈m, p|(∂py |n, p〉)]

− 1

2
Im

∑
m �=n

[〈n, p|(∂py |m, p〉)(∂px 〈m, p|)�(a)
m (εm − H0)|n, p〉] (13)

and

(a)
n,xy = −Im

∑
m �=n

[(
(∂px 〈n, p|)�(a)

n + 〈n, p|�(a)
x,nm

)|m, p〉〈m, p|(∂py |n, p〉)]

+ Im
∑
m �=n

[〈n, p|(∂py |m, p〉)(∂px 〈m, p|)�(a)
m |n, p〉], (14)

where we have defined �(a)
n = (εn − H0)τ a(εn − H0)−1 and

�(a)
x,nm = ∂px (εn + εm)τ a(εn − H0)−1. These alternative ex-

pressions of curvature correction (a)
n,xy and orbital moment of

states L(a)
n,xy embody the spin-resolved effect definitely. Con-

ceptually, the direct evaluation of SROM from the Berry phase
representation is very appealing and appears to be advanta-
geous over the use of the corresponding Kubo expressions. It
is instructive to note that when τ = 12 and this is substituted
into Eqs. (10) and (11), we get the usual expressions for the
conventional OM [48].

B. SROM in the Rashba ferromagnet

We turn now to apply this formalism to the Rashba
ferromagnet described by the Hamiltonian in Eq. (1). For
simplicity, we ignore in-plane s-d exchange interaction
−gMi · σi, i ∈ (x, y) and confine our discussion to
M = Mêz. The eigenstates and eigenenergies of the
Hamiltonian (1) are ε± = p2/(2me) ±

√
g2M2 + α2 p2,

|ψ+〉 = (e−iφ cos(θ/2), sin(θ/2))T and |ψ−〉 = ( −
sin(θ/2), eiφ cos(θ/2))T , respectively, where sin θ =
αp/

√
g2M2 + α2 p2, cos θ = −gM/

√
g2M2 + α2 p2, and

tan φ = −px/py. The components of the orbital moment of
states and quantum correction are found as

L(z)
+,xy = L(z)

−,xy = α2 p2 sin2 φ

4me(g2M2 + α2 p2)
(15)

and


(z)
+,xy = −

(z)
−,xy = α2 p2 sin2 φ

4me(g2M2 + α2 p2)3/2 , (16)

respectively. Substituting these into Eqs. (12) and (13) and
integrating over the momentum, we can obtain M(z). The
results with various possible parameters are shown in Fig. 1.

Because

1

β
ln(1 + e−β(ε±−μ) ) = −�(μ − ε±)(ε± − μ) (17)

at β → ∞, the SROM at zero temperature can be written as
M(z)

xy = ∑
n=± M(z)

xy,n, where

M(z),0
xy,n =

∫
[dp]�(μ − εn)

[
L(z)

n,xy(p) + (μ − εn)(z)
n,xy(p)

]
.

(18)
Substituting L(z)

±,xy and 
(z)
±,xy into Eq. (18) and integrating over

the momentum, we have

M(z),0
xy,± = ±

∫ s±

0
ds

mα2s(μ − s)

8π (M2 + 2mα2s)3/2 , (19)

where s± = mα2 + μ ∓
√

M2 + m2α4 + 2mα2μ. We found
M(z),0 = −emeα

2/(12π ) for the case in which both bands
are occupied (μ > gM). The result is independent of the
chemical potential μ and the strength of intrinsic magnetiza-
tion M. This is in agreement with previous results [58,59].
Figure 1(a) shows that M (z) decreases as the temperature
increases. M (z) approaches to M (z),0 at low temperature [as
shown in Figs. 1(a) and 1(b)] if μ � gM. With the increase in
temperature, M (z) tends to drop rapidly. Figure 1(b) shows that
for a given kBT , the interband transitions might happen only
if it exceeds the energy gap. In addition, the SOI is expected
to enhance the SROM. We also plot the classical components
and quantum components at zero temperature independently
in Fig. 1(d). We found that the spin-resolved effect is remark-
able, i.e., the spin Berry curvatures of two spin subbands are
opposite in sign: L(z)

−,xy > L(z)
+,xy, and |(z)

−,xy| > |(z)
+,xy|.

IV. RATIONALITY AND RELIABILITY

For the purpose of rationality, self-consistency, and reli-
ability, the above results will be examined in the following
two aspects: (1) the role of L(a)

n,xy and (a)
n,xy in thermodynamic
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k
B
T/M=1

mα2/M=4

mα2/M=2

(a) (b)

(c) (d)

FIG. 1. SROM of a Rashba ferromagnet (a) as a function of the temperature for different chemical potentials, (b) as a function of the
chemical potential at different temperatures, and (c) for different Rashba parameters. (d) L(z)

s,xy, (z)
s,xy at zero temperature. M (z),0 is the value at

zero temperature. All parameters are nondimensionalized by M, and g = 1 is taken for simplicity.

quantities of systems and (2) the role of SROM in the spin
Nernst effect, which will be discussed in Secs. IV A and IV B.

A. Maxwell’s relation

We look at aspect (1) first. On analyticity with respect to
the thermodynamic potential of the quasiequilibrium state, we
examine the Maxwell’s relation

(∂M(a)/∂μ)B,T = (∂n/∂B(a) )T,μ. (20)

The density of electrons is defined by n =
−i

∫
(dε/2π )

∫
[dp] Tr[G<]. To the first order of B(a),

n can be written as n = n0 − eB(a)n(a)
1 using Eq. (8),

where ni = −i
∫

dε/(2π )
∫

[dp] Tr[G<
i (ε, p)] (i = 0, 1).

Following the same steps as above, we find n0 and n(a)
1 as

n0 = ∑
n

∫
[dp] f (εn) and

na
1 =

∑
n

∫
[dp]

[
(a)

n,xy f (εn) − L(a)
n,xy f ′(εn)

]
. (21)

The second term in the square brackets clearly stands for the
renormalization of the energy dispersion. We can transcribe
this correction into that of the arguments of f (εn). Generally,
the density of electrons n can be expressed as

n =
∑

n

∫
[dp]

(
1 + |e|B(a)(a)

n,xy

)
f
(
εn − |e|B(a)L(a)

n,xy

)
. (22)

This shows that the application of an external magnetic field
leads to additional responses of the system, besides the one
due to these Berry curvature terms. Because the diamagnetic
response results in the energy shift in terms of a magnetic mo-
ment, the states are occupied according to a nonequilibrium
distribution function. |e|B(a)(a)

n,xy manifests the expansion of
phase-space volume in accordance with the density of states,
while −|e|B(a)L(a)

n,xy presents as the energy level shift due to
the magnetic energy arising from the SROM. Calculating the
derivatives of M(a) with respect to the chemical potential μ

and the density of electrons n with respect to B(a), respectively,
the Maxwell’s relation (12) is then proved definitely.

B. Role of SROM in the spin Nernst effect

For aspect (2), the SROM is an intrinsic characteristic
of spintronic systems. As mentioned in the Introduction it
is not a transport property, analog to retracting the orbital
contribution in the charge Nernst effect [62,76,77]; it would
be natural to inspect this through investigation of the inter-
play between the energy flow and SROM in the spin Nernst
effect. The calculations inevitably require generalizations of
linear response methods developed by Luttinger [78,79] to
the generation of spin current from a temperature gradient.
According to the Einstein relation, the gradient in the temper-
ature has the same effects as the response to a gravitational
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field. We calculate the spin current driven by a “mechan-
ical” inhomogeneous gravitational field φQ. The effect of
the gravitational field can be replicated by introducing a
perturbation, F (r′) = [H (r′)φQ(r′) + φQ(r′)H (r′)]/2, to the
Hamiltonian, where r′ is a single electron’s coordinate. The
total Hamiltonian is HT (r′) = H (r′) + F (r′). The nonequi-
librium (induced by the gravitational field) density operator
can be treated in a linear response to the perturbation as
ρ = ρ0 + ρ1 [70]. The ensemble average of the spin cur-
rent is then expressed as ja = (1/V )

∫
dr Tr[ρ̂ja(r)] = ja(0) +

ja(1), where ja(0) = (1/V )
∫

dr Tr[ρ1ja(0)(r)] and ja(1) =
(1/V )

∫
dr Tr[ρ0ja(1)(r)]. Here, the spin current operator is

defined by ĵa(r) = −{τa, ĵ(r)}/2, where ĵ(r) is the par-
ticle current operator and can be expressed as ĵ(r) =
ĵ(0)(r) + ĵ(1)(r) [70], with the free current operator ĵ(0)(r) =
{v′, δ(r − r′)}/2 and the perturbed current operator ĵ(1)(r) =
ĵ(0)(r)φQ(r). Technically, ja(0) is obtained by the standard lin-
ear response theory, and the component of ja(1) is proportional
to ∇φQ,

ja,(1)
x = − 1

4V
Tr [ρ0{τa, {y, vx}}](−∂yφQ), (23)

where V is volume. Because {τa, {y, vx}} = (2τayvx +
2vxτay + [[τa, vx], y]) and [[τa, vx], y] = 0 for H0 =
π2/(2me) − A0, we have {τa, {y, vx}} = 2{vx, τay}. Substitut-
ing this into Eq. (23), the response of an operator ĵ(1)(r) to
the temperature gradient reads ja(1)

x = (1/|e|)M(a)
xy (−∂yφQ),

where M(a)
xy = −|e|/(2V ) Tr[ρ0{vx, τay}] is an equilibrium

SROM previously given in Eqs. (6) and (13). Within the
linear response regime, the spin Nernst current under thermal
nonuniformity can be expressed in the form

ja
x = (

K (a)Q
xy + |e|−1M(a)

xy

)
(−∂yφQ). (24)

K (a)Q
xy is the thermal response coefficient, which can be ob-

tained by considering the simplest bubble diagram via the
calculation of ja(0)

x [71]. The response coefficient K (a)Q
xy is

a sum of two contributions: K (a)Q
xy = K (a)Q

xy,I + K (a)Q
xy,II , corre-

sponding to the contributions from the Fermi surface K (a)Q
xy,I =

(1/4πV )
∫

dε[− f ′(ε)]Z (a)Q
xy,I and the distributions over all pos-

sible energies K (a)Q
xy,II = (1/4πV )

∫
dε f (ε)Z (a)Q

xy,II , respectively.

The strategy for calculating K (a)Q
xy,I and K (a)Q

xy,II consists of solv-
ing the kinetic equations (3)–(8) together with the expression
for the heat current operator jQ

y = (1/2){H − μ, vy}. The
thermal response coefficient is found to relate to the electric
response coefficients at zero temperature [80]:

K (a)Q
xy (T, μ) = 1

|e|
∫ ∞

−∞
dε[− f ′(ε)](ε − μ)K (a)E

xy (0, ε)

− 1

|e|
∫ ∞

−∞
dε f (ε)K (a)E

xy,II (0, ε), (25)

where K (a)E
xy = K (a)E

xy,I + K (a)E
xy,II are electric response coeffi-

cients. K (a)E
xy,I and K (a)E

xy,II take the same form as K (a)Q
xy,I and K (a)Q

xy,II

but replacing the heat current operator ( jQ
y ) with a charge cur-

rent operator ( jE
y = −evy). Compared with the contribution of

the Fermi surface, the second term in Eq. (16) plays a special
role. Because the term of SROM is found as M(a)

xy (T, μ) =

∫ ∞
−∞ dε f (ε)K (a)E

xy,II (0, ε), we arrive at the conclusion that the
Mott-like relation for the kinetic coefficients holds in the
framework of a non-Abelian SU(2) gauge representation of
a ferromagnet with SOI,

K (a)Q
xy (T, μ) − (1/e)M(a)(T, μ)

= −(1/e)
∫ ∞

−∞
dε[− f ′(ε)](ε − μ)K (a)E

xy (0, ε), (26)

as expected [80]. This relation clearly shows that M(a)(T, μ)
is not a transport property and compensates the difference
between the electric and the thermal Kubo contributions.

V. SUMMARY

To conclude, we have formulated the SROM in the
framework of a non-Abelian SU(2) gauge representation of
ferromagnets with SOI. An explicit expression for the SROM
is derived from an extension of the Keldysh Green’s function
on which the SU(2) external field is based. Our comprehen-
sive theoretical analysis reflects unequivocally the possibility
of resolving spin correlative motion using a SU(2) external
field. We have examined the self-consistency and reliability
of results through the equilibrium thermodynamic relation
and nonequilibrium thermal transport. Although we derive our
formula analytically in the clean limit, this formalism allows
for a straightforward inclusion of other effects, e.g., impurity
scattering [81], and is easily transferable to nonequilibrium
situations. In fact, the SU(2) Keldysh formalism should
generally be suitable to compute the SROM in disordered
systems [82]. Our study offers a fresh angle to understand
the SROM in ferromagnets with SOI and provides an efficient
formalism for calculating the novel spin-resolved phenomena
which are covered up with U(1) gauge frameworks.

ACKNOWLEDGMENTS

We acknowledge support from NSFC (Grant No.
11774006) and NBRP of China (Grant No. 2012CB921300).

APPENDIX: SU(2) FORMULATION FOR THE
CONDUCTION ELECTRONS IN AN EXTERNAL

MAGNETIC FIELD

In this Appendix we discuss the procedure to derive the
Dyson equation in the presence of SU(2) external field Aext.
The kinetic theory for the conduction electrons in spintronic
systems can be formulated in terms of the matrix Green’s
function Ĝ(1, 2), which satisfies a SU(2) covariant Boltzmann
equation [74,75]. In the Wigner representation the Green’s
function has a structure Ĝ(1, 2) = ( GR GK

0 GA ) in the Keldysh

space, where GR, GA, and GK are the retarded, advanced,
Keldysh components, respectively, and 1,2 are generalized
coordinates containing space and time coordinates as well as
spin and other possible additional indices. Performing an or-
thogonal transformation �Ĝ(1, 2)�−1 with � = I + σ+ and
σ+ = (σx + iσy)/2, Ĝ(1, 2) can be rewritten in the same form
but replacing GK with 2G< [83], where G< is the lesser
Green’s function. As the purpose is to reveal the essence of the
procedure, we will limit ourselves to the clean limit [84,85].
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Ĝ satisfies the equations of motion Ĝ−1(1, 1′) ⊗ Ĝ(1′, 2) =
δ1,2 for free electrons in a perfect lattice, where the symbol
“⊗” denotes convolution or matrix multiplication (in position,
time, and spin). We introduce the center-of-mass coordinates
X = (T, R), R = (x1 + x2)/2, and T = (t1 + t2)/2 and the
relative time-space coordinates x = (t, r), r = x1 − x2, and
t = t1 − t2. As long as a system is not so far from its equi-
librium case, its dependencies on R and T are slowly varying
in comparison with the lattice spacing and inverse of band-
width, respectively. The length and time scale of relative
time-space coordinates can be extracted by Fourier transfor-
mation, F (X, p) = ∫ ∞

−∞ dr
∫ ∞
−∞ dteipxF (X + x/2, X − x/2),

where p = (ε, p) and px = −εt + p · r, where ε (energy) and
p (momentum) are the conjugate variables of t and r. The
Dyson equation in the presence of SU(2) external field Aext

is expressed as

Ĝ−1
0 (ε, p, X ) ⊗ Ĝ[ε, p,Aext (X )] = 12, (A1)

where the subscript 0 labels the system without an exter-
nal magnetic field, Ĝ−1

0 (ε, p, X ) = ε − π2/2me + A0 in the
(X, p) representation. Together with its conjugate, Eq. (3)
results in

0 = Ĝ−1
0 (ε, p, X )Ĝ[ε, p,Aext (X )]

− Ĝ[ε, p,Aext (X )]Ĝ−1
0 (ε, p, X ). (A2)

As a stable system, all the quantities are time indepen-
dent, and the derivative ∂X is exerted only on Aext (X ).
The solutions of Eq. (4) can be obtained using the gra-
dient expansion approximation for Aext (X ). Working to
the first order in gradient expansion, the convolution
of two operators is taken approximately, Â ⊗ B̂  ÂB̂ +

(i/2)
∑

μ(Â
←−
∂ Xμ

−→
∂ pμ

B̂ − Â
←−
∂ pμ

−→
∂ Xμ

B̂). Using the relation

∂X μG0(ε, p, X )

= −G0(ε, p, X )
[
∂X μG−1

0 (ε, π, X )
]
G0(ε, p, X ), (A3)

the solution is found as

G[ε, p,Aext (X )] = G0(ε, p, X ) + �G[ε, p,Aext (X )], (A4)

which indicates that G[ε, p,Aext (X )] deviates from the equi-
librium Green’s function G0(ε, p, X ) by an amount

�G[ε, p,Aext (X )]

= −(i/2)
{
G−1

0 (ε, p, X ), G[ε, p,Aext (X )]
}

PB, (A5)

where the Poisson bracket is defined as {Q1, Q2}PB =∑
μ ∂X μQ1∂pμ

Q2 − ∂pμ
Q1∂X μQ2. Because Aext

i = −B(a)Xjτ
a,

we have

∂X μG[ε, p,Aext (X )]

= G[ε, p,Aext (X )]∂X μHG[ε, p,Aext (X )]

= −G[ε, p,Aext (X )]|e|B(a) ja
x δμyG[ε, p,Aext (X )], (A6)

where ja
x is a spin current operator defined by

(1/2){τ a, vx[Aext (X )]} and vx(Aext ) = (πx − |e|Aext
x )/me

is the velocity including the effect of the external SU(2)
field. In addition, we have ∂pμ

G[ε, p,Aext (X )] = −vμ(Aext ).
�G[ε, p,Aext (X )] can then be written in the form

�G[ε, p,Aext (X )] = |e|B(a)G(a)
1 (ε, p, X ), (A7)

where

G(a)
1 (ε, p, X )

= − i

2
G0(ε, p, X )

[
ja
x G0(ε, p, X ), vyG0(ε, p, X )

]
. (A8)
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