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We consider a magnetic skyrmion crystal formed at the surface of a topological insulator. Incorporating the
exchange interaction between the helical Dirac surface states and the periodic Néel or Bloch skyrmion texture, we
obtain the resulting electronic band structure and discuss the constraints that symmetries impose on the energies
and Berry curvature. We find substantive qualitative differences between the Néel and Bloch cases, with the
latter generically permitting a multiband low energy tight-binding representation whose parameters are tightly
constrained by symmetries. We explicitly compute the associated Wannier orbitals, which resemble the ringlike
chiral bound states of helical Dirac fermions coupled to a single skyrmion in a ferromagnetic background.
We construct a two-band tight-binding model with real nearest-neighbor hoppings which captures the salient
topological features of the low-energy bands. Our results are relevant to magnetic topological insulators (TIs),
as well as to TI-magnetic thin film heterostructures, in which skyrmion crystals may be stabilized.
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I. INTRODUCTION

Massless Dirac fermions emerge in condensed matter as
low energy excitations of systems whose Fermi levels sit close
to a band crossing. Notable examples of this phenomenon in
dimensions d > 1 include graphene, Weyl/Dirac semimetals,
and the surface states of strong topological insulators (TIs)
[1–7]. In certain cases, such band touchings may be protected
by lattice or time-reversal symmetries, so that breaking these
symmetries induces a Dirac mass gap, leading to physically
observable consequences [8–12]. For instance, inducing a
mass gap in graphene by breaking inversion symmetry leads
to a valley Hall effect [13], while breaking time-reversal
symmetry for a TI surface Dirac cone via a perpendicular
Zeeman field leads to a gapped half-integer quantum Hall
state [14] with σxy = e2/2h. Such symmetry breaking may
be induced by proximity coupling with a symmetry-broken
substrate or by spontaneous ordering of magnetic moments.
Domain walls of such broken symmetries, where the Dirac
mass changes sign, act as channels which support chiral edge
modes [15–17].

Going beyond the impact of uniform symmetry breaking
orders and isolated domain walls, it is interesting to consider
the effect of periodically modulated potentials on massless
Dirac fermions. Such modulations have been extensively stud-
ied in the context of superlattices in graphene [18–23] and
bilayer graphene [24,25], where they have been shown to
produce emergent Dirac fermion excitations. The superlattice
reconstruction of low-energy bands has also recently come to
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the fore in studies of twisted bilayer graphene [26–40] and
multilayer transition metal dichalcogenides [41–48], where
the moiré pattern leads to an enlarged unit cell, as well as
in recent work examining moiré potential modulations on TI
surface states [49,50].

In this paper, inspired by these previous developments, we
study magnetic skyrmion lattices on a TI surface and explore
the resulting electronic states. Our work is also motivated by
the desire to understand the interplay of the momentum space
topology of TIs, as reflected in their helical Dirac surface
states, with the topological real space texture of magnetic
skyrmions. For instance, materials such as topological Kondo
insulators (TKIs) can have Dirac surface states together with
soft magnetic modes in the bulk due to strong correlation
effects [51]. Such materials might thus be prone to sponta-
neous magnetic ordering and time-reversal breaking at the
surface [52–55]. The inversion breaking at the TKI surface
can also enhance the role of chiral Dzyaloshinskii-Moriya
magnetic exchange interactions [56,57], which could favor
the formation of skyrmions at the surface. Magnetic topolog-
ical materials such as MnBi2Te4 [58] are another proposed
candidate for realizing skyrmions [59]. Further possibilities
of realizing magnetic skyrmions at TI surfaces include the
ordering of impurity magnetic moments of dopants induced
by RKKY interactions [60], proximity coupling to a magnetic
substrate hosting these textures [61–65], or spontaneous mag-
netic ordering due to hexagonal warping of the surface Dirac
cone [66].

Previous theoretical work demonstrated the electrical
charging of nonuniform magnetic textures, such as vortices
and domain walls of Néel and Bloch type, by coupling to
Dirac TI surface states [67]. Focusing on an isolated Bloch
skyrmion texture, it was subsequently shown that chiral bound
states, confined to the skyrmion perimeter and analogous to
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the Jackiw-Rebbi zero mode, offer a complementary mech-
anism for inducing electric charge [15,68]. Later studies
investigated the scattering of Dirac electrons off of single
skyrmions [69,70] and showed that the in-gap bound states
modify the skyrmion-skyrmion interaction potential [71].

In ordinary magnetic metals, the presence of skyrmions
is often inferred from an additional Hall contribution gener-
ated by the real-space Berry curvature induced by skyrmions.
Termed the topological Hall effect (THE) [72–77], this trans-
port phenomenon is distinct from the anomalous Hall effect
that derives from momentum-space Berry curvature [63].
Recent experiments on magnetically doped TI superlattices
have interpreted anomalies in the Kerr effect [78] as arising
from skyrmions. However, we emphasize that the experi-
mental identification and disentanglement of the skyrmion
contribution from magnetic inhomogeneities can be difficult
in practice, as showcased by recent work on SrRuO3 films
[79–81]. More importantly, as we discuss below, massless
Dirac fermions moving in a skyrmion background do not
sense the topological charge of the skyrmions as a magnetic
flux and should not exhibit the THE.

This paper is organized as follows. In Sec. II, we begin
with a band theoretic analysis of Dirac fermions coupled to the
periodic Zeeman texture of the skyrmion lattice. This ‘nearly-
free Dirac electron’ approach allows us to determine the
energy bands and their topological invariants, as well as sym-
metries. In Sec. III B, we pass to a tight-binding description
of the low-energy Bloch skyrmion bands, drawing inspiration
from the bound states of the single-skyrmion problem when
constructing Wannier orbitals. We conclude with a summary
of important results, possible limitations, and a discussion of
promising future directions.

II. CONTINUUM BAND THEORY

A. Single skyrmion and skyrmion crystal ansatze

The unit vector magnetization of an isolated 2D skyrmion
centered at the origin may be written in the following form:

n(r, φ) =
⎛
⎝

√
1 − nz(r)2 cos(φ + φ0)√
1 − nz(r)2 sin(φ + φ0)

nz(r)

⎞
⎠. (1)

We assume that nz(r) is a function which increases monoton-
ically from the value nz(0) = −1 at the skyrmion center to
nz(r � R0) = +1 beyond a cutoff radius R0. The fixed angle
φ0 determines the skyrmion handedness. We highlight two
special cases: “hedgehog”-type Néel skyrmions characterized
by φ0 = 0 and “vortex”-type Bloch skyrmions which have
φ0 = ±π/2. The skyrmion topological charge

Qtop = − 1

4π

∫
d2r n · ∂xn × ∂yn = 1 (2)

is independent of φ0 and is invariant under local deformations
of the texture. We do not discuss the energetic stability of the
various skyrmion types but instead present results for both
Bloch and Néel skyrmions.

The radial function nz(r) may in general have a sharp, i.e.,
domain-wall-like, or more gradual transition as a function of

r. We parametrize this freedom by

nz(r) =
⎧⎨
⎩

−1 r ∈ [0, αR0]
2 sin2

(
π (r−αR0 )
2(R0−αR0 )

) − 1 r ∈ (αR0, R0)
+1 r � R0

. (3)

In the limit α→1, this ansatz leads to a sharp transition,
with nz(r < R0) = −1 and nz(r > R0) = +1; in this case,
the skyrmion approaches the form of a minority domain
droplet with no in-plane magnetization component, and the
distinction between Néel versus Bloch skyrmion loses its
significance. On the other hand, the transition is smooth
for all α < 1, with the most gradual transition nz(r) =
2 sin2(πr/2R0) − 1 obtained when α = 0. Tuning α ∈ [0, 1)
allows us to interpolate between these two limits, and we find
that many of our results concerning the Chern numbers of the
skyrmion bands depend crucially on this parameter. For later
use, we also define the skyrmion core size by

R = R0(1 + α)/2, (4)

which is where nz(r) undergoes a change in sign. This radius
R will later be found to determine the radius of ringlike Wan-
nier functions obtained from the skyrmion bands and, more
broadly, is a convenient tuning parameter for studying the
skyrmion bands and their wave-function topology. We remark
that a variety of alternative forms for nz(r) in the interval
(αR0, R0) have been investigated, but these lead to only minor
quantitative differences as compared to Eq. (3). To simplify
the discussion, we therefore focus on this particular form.

We construct the skyrmion crystal ansatz as a triangular
lattice of skyrmions centered at Bravais vectors

R = m1a1 + m2a2, m1,2 ∈ Z, (5)

where a1 = a(1, 0) and a2 = a( 1
2 ,

√
3

2 ). We assume for sim-
plicity that a > 2R0, so that individual skyrmions in the
crystal do not directly overlap, therefore allowing the mag-
netization nz(r) = +1 of adjacent skyrmions to join smoothly
at their Wigner-Seitz cell boundaries. Note that the spacing
between skyrmions is controlled solely by the parameter a,

not by the quantities R, R0 or α. We will denote the skyrmion
reciprocal lattice by G and its primitive vectors by

Q1 = Q(
√

3/2,−1/2), Q2 = (0, Q) (6)

with Q = 4π/
√

3a. The skyrmion lattice texture can be writ-
ten as a Fourier series in these reciprocal lattice vectors,
n(r) = ∑

G∈G nGeir·G.

B. Coupling helical Dirac fermions to the
magnetic skyrmion crystal

The continuum Hamiltonian for the TI Dirac surface states
coupled to the skyrmion spin texture via a Hund’s term is
given by H = H0 + H1, where

H0 = vF

∫
R2

d2r c†(r)

[(
−ih̄

∂

∂r
× σ

)
· ẑ

]
c(r)

H1 = Jeff

∫
R2

d2r c†(r)n(r) · σc(r). (7)
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Here, the fermion operators are implicitly spinors. The quan-
tities vF and Jeff denote the Dirac velocity and spin-fermion
coupling strength, respectively.

Here we argue that contributions from external magnetic
fields may be neglected in various cases. First, we note
that a nonvanishing Zeeman shift may be absorbed into the
skyrmion texture without modifying any Hamiltonian sym-
metries. Thus, we only need to discuss the impact of an
orbital magnetic field. In cases where the Zeeman field is
necessary to stabilize skyrmions, the corresponding orbital
magnetic flux per skyrmion lattice unit cell is expected to
be small compared to the flux quantum in the case of small
skyrmions. For example, in MnBi2Te4, the required magnetic
field is of the order of B ∼ 0.02 meV/gμB ∼ 0.2 T. This gives
a magnetic length of �B ∼ 60 nm, so that the magnetic flux is
small, Ba2 ∼ �0a2/2π�2

B � �0 with a ∼ 4 nm [59]. Finally,
we note that it may be possible to interface TI surface states
with materials hosting skyrmions at zero field, such as those
recently reported to be stabilized by frustration [82] or soft
x-ray illumination [83].

Henceforth, we will measure energies in units of h̄vF /a.
Let us denote the dimensionless spin-fermion exchange cou-
pling by J = (a/h̄vF )Jeff . To estimate this in the magnetic
topological insulator MnBi2Te4, we set h̄vF ∼1 eV Å as
measured from angle resolved photoemission spectroscopy
(ARPES) [58]. The spin-fermion coupling Jeff may be crudely
estimated via TN ∼J2

eff/W within an RKKY picture, where
the bandwidth is W ∼1 eV based on ARPES and the ex-
perimental Néel temperature is TN ∼25 K [58]. This leads
to Jeff ∼

√
TNW ∼50 meV. To estimate the skyrmion lattice

constant, we note that skyrmions in MnSi have a ∼20 nm,
but MnBi2Te4 has been argued to support skyrmions with
a smaller lattice constant ∼4 nm [59]. Taking a ∼4–20 nm
translates to a range of a dimensionless spin-fermion cou-
plings J ∼1–10.

Moving to momentum space and folding into the first Bril-
louin zone (BZ) of the skyrmion lattice,

csG(k) ≡ cs(k + G) =
∫
R2

d2re−i(k+G)·rcs(r) (8)

the Hamiltonian is block diagonal in the crystal momentum k
due to discrete translational symmetry:

H =
∫

BZ

d2k
(2π )2

∑
G,G′∈G

c†
G(k)(Hk)G,G′cG′ (k). (9)

In this basis, the Hamiltonian has matrix elements

(Hk)G,G′ = δG,G′ ((k + G) × σ )z − JnG−G′ · σ (10)

where the Pauli matrices correspond to spin. This defines for
us the electronic band structure problem for the skyrmion
crystal. Since the set of skyrmion reciprocal lattice vectors G
is infinite, each matrix Hk possesses infinitely many compo-
nents. Computation of the band structure therefore requires
truncating G to some finite number of reciprocal vectors
nearest zero. This truncation is justified by the absence of
any singularity in the skyrmion spin texture, corresponding
to rapid decay of its Fourier components. For the range of
parameters 0 � J � 10 we find that truncation to 300 mo-
menta, and therefore 600 bands due to spin, is sufficient to

attain convergence in the energies, Berry curvature, and tight-
binding parameters considered later.

The Bloch vectors usG,n(k) are defined as the eigenvectors
of Hk and allow us to define the Bloch operators

ψ
†
kn =

∑
sG

c†
sG(k)usG,n(k). (11)

By construction, the second-quantized Hamiltonian is diago-
nal in the band basis,

H =
∫

BZ

d2k
(2π )2

∑
n

εn(k)ψ†
knψkn. (12)

Before we separately present results for the band structure
for Bloch and Néel skyrmions, we note that the skyrmion crys-
tal reduces the continuous rotational symmetry of the isolated
skyrmion problem to a sixfold symmetry. We fix the rotation
axis to be parallel to ẑ, passing through a skyrmion center. We
represent the sixfold operator on the continuum states by

C6c(r)C†
6 = ei π

3
σz
2 c(C6r), (13)

where C6 acts as a sixfold counterclockwise rotation on vec-
tors. By appeal to the identity C6n(C−1

6 r) = n(r), one finds
that C6 is a symmetry (see Supplemental Material [84]), inde-
pendent of the value of φ0 which sets the skyrmion type.

III. BLOCH SKYRMION LATTICE

A. Continuum model

When the magnetization texture n(r) describes a lattice
of Bloch skyrmions, given by setting φ0 = π/2 or −π/2,

we are granted several additional symmetries which constrain
the energy bands and Berry curvature. Setting φ0 accord-
ingly in Eq. (1), one observes that the magnetization of an
isolated Bloch skyrmion satisfies the property r · n(r) = 0.

Consequently, the in-plane divergence must vanish identically,
∇2D · n(r) = 0 due to the divergence theorem [68]. In this
case, it has been shown [69] that the in-plane component of
n(r) may be entirely removed from the Hamiltonian by the
gauge transformation U (r) = exp(iJ

∫ ρ

0 dρ ′√1 − n2
z (ρ ′)). All

of these statements remain true when we promote the texture
to a triangular lattice of skyrmions rather than an isolated
skyrmion. One must simply interpret r = (ρ, φ) in Eq. (1) as
a quantity measured relative to the nearest skyrmion center.

The fact that the symmetry U (r) is periodic in the skyrmion
lattice ensures that the band structure is invariant under its
action. This is because it performs a unitary convolution on
each subspace of definite crystal momentum. Therefore, we
may drastically simplify the arguments that follow by setting
the in-plane magnetization to zero outright. We denote the
resulting texture by a separate symbol to distinguish it from
the original periodic texture:

n(r) ≡ (0, 0, nz(r)). (14)

Note that n(r) is neither normalized nor does it possess a
winding number. Moreover, the texture crucially possesses the
symmetries

n(r) = n(−r) = n(Myr) (15)
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with My defined as the matrix which flips the second com-
ponent of a vector. We now proceed with a description the
symmetries manifesting in the continuum description of the
Bloch skyrmion lattice problem.

1. Particle-hole symmetry

Consider the unitary transformation which flips spins and
exchanges electrons with holes at fixed momentum,

Uc(k)U † = c†(k)σy, UiU † = i. (16)

Leveraging the identity n(r) = n(−r), we demonstrate (see
Supplemental Material [84]) that U is a symmetry of the
Hamiltonian, satisfying [U, H] = 0. Such a symmetry is
commonly referred to as a ‘particle-hole’ symmetry [85].
Analyzing this symmetry in reciprocal space reveals that the
band structure is symmetric about zero energy at each value
of the crystal momentum. Indeed, in the notation of Eq. (10)
we find that the particle-hole symmetry is expressed by the
matrix relation

σy(Hk)∗σy = −Hk. (17)

Since Hk is Hermitian then its spectrum is invariant under
both complex conjugation and change of basis. The above
equation thus implies that its spectrum is symmetric, i.e.,
that its eigenvalues come in pairs ε−n(k) = −εn(k). We have
adopted a convention where the valence (conduction) bands
are labeled by negative (positive) integers in order of their
energy.

2. Chiral symmetry

Continuing with our analysis of the Bloch skyrmion lat-
tice, we now show that the Hamiltonian Eq. (7) satisfies a
‘chiral’ symmetry [85] which constrains the band structure
and Berry curvature. Consider the anti-unitary operator which
flips spin and exchanges electrons with holes at mirror-related
momenta,

AcG(k)A† = c†
MyG(Myk)σx, AiA† = −i. (18)

At the level of the Hamiltonian kernel, the symmetry [A, H] =
0 derives from the identity

(Hk)G,G′ = −(σx HMyk σx )MyG,MyG′ . (19)

For each eigenvector un(k) of Hk, we therefore have a related
eigenstate u−n(Myk) of HMyk with opposite energy. As shown
explicitly in the Supplemental Material [84], this provides
a relation between the Berry curvature of the opposing ±n
bands at these mirror-related momenta,

F (n)(k) = −F (−n)(Myk). (20)

Upon integrating over the Brillouin zone, we immediately see
that these bands must carry opposite Chern number, C−n =
−Cn. As we later discuss, this property is absent from the Néel
band structure.

3. Topological bands and DOS

In Fig. 2 we illustrate the band structure for the continuum
Hamiltonian Eq. (7) in the Bloch skyrmion case. In accor-
dance with the particle-hole symmetry presented in Eq. (17),

FIG. 1. (a) Bravais vectors a1, a2 and overheard view of the trian-
gular lattice of Bloch skyrmions at α = 0.5 and cutoff radius R0/a =
0.49. The color corresponds to the out-of-plane magnetization nz

whereas the vector field indicates the in-plane magnetization. (b) The
single-skyrmion magnetization profile nz plotted for various values
of α which interpolates smoothly between the sinusoidal and domain
wall limits. For each α we mark in orange the corresponding radius
R at which the out-of-plane magnetization changes sign.

the energy spectrum is symmetric everywhere in the skyrmion
Brillouin zone. We exhibit the bands for fixed parameter val-
ues J = 3 and R0/a = 0.49, with the latter chosen so as to
encourage hybridization between the single-skyrmion bound
states. We recall that R0 sets the cutoff radius at which the
skyrmion magnetization is purely polarized in the ẑ direction
whereas the core size R, as illustrated in Fig. 1, sets the radius
at which the Dirac mass nz changes sign.

At R/a = 0.28 the four bands nearest half filling each
carry zero Chern number and are continuously connected to
an atomic insulator phase in the limit of large J. When the
skyrmion core size R/a is increased up to 0.37 we observe a
gap closure between the n = ±1 bands at the  point upon
which the system enters a new topological sector with Chern
numbers C = (0,−1:1, 0) for the four bands nearest half fill-
ing. As R is increased toward its maximal value R0/a = 0.49,

we reach the value R/a = 0.44 at which a final topological
transition takes us into the C = (1,−1:1,−1) sector, this time
due to a gap closure at the  point between the |n| = 2, 3
bands. Unlike in a related moiré study [50], these remote
Dirac cones are not protected by time reversal, nor can their
velocity be easily tuned to zero within the present model.

It is important to distinguish this “intrinsic” anomalous
Hall effect, permitted by broken time-reversal symmetry, from
the well-studied THE which arises when nonrelativistic elec-
trons are coupled to a skyrmion lattice [72,73]. The THE
is absent for Dirac electrons since the effective magnetic
flux density Beff ∼ ∇2D · n seen by the Dirac electron in a
skyrmion texture does not depend on the topological charge
Eq. (2) of the magnetic texture [86]. Indeed, this effective flux
density, when integrated over the skyrmion unit cell, vanishes
for any generic skyrmion texture due to the divergence theo-
rem (for any type of skyrmion). For Bloch skyrmions, an even
stronger condition holds, that Beff itself vanishes everywhere
in space.

The symmetry C−n = −Cn of these Chern numbers is con-
sistent with the chiral symmetry constraint, Eq. (20). In each
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FIG. 2. Bloch skyrmion bands and density of states (DOS) at
J = 3 and cutoff radius R0/a = 0.49. (a) At small R/R0, the four
lowest-energy bands carry zero Chern number and we observe win-
dows of vanishing DOS. (b) As the core size R is increased there is
a gap closure (circled) between the n = ±1 bands at the  point,
resulting in Chern numbers C = (0, −1:1, 0). The dispersion and
DOS at this transition are linear. (c) As R is increased towards
its maximum value R0, the bands undergo a final transition into
the C = (1,−1:1, −1) sector upon direct gap closure between the
|n| = 2, 3 bands at the  point. Increasing J leads to narrower Chern
bands and more pronounced peaks in the DOS.

case, the Chern numbers were computed from the band eigen-
states following the methodology and sign conventions of
Ref. [87]. In Fig. 3 we display a phase diagram indicating the
Chern numbers carried by the four lowest-energy bands over
the range of parameters J ∈ [1, 8] and R ∈ [R0/2, R0] at fixed
R0/a = 0.49. We omit the range J ∈ [0, 1] where the bands
too closely resemble those of the free Dirac Hamiltonian.
We observe that all horizontal cuts along the phase diagram
realize the same topological phases. To aid in visualizing
the appearance of the corresponding bands, we mark in this
figure those values of R whose bands are displayed in Fig. 2.

As the cutoff radius R0 is decreased, the C = (1,−1:
1,−1) region recedes completely, followed by the C =
(0,−1:1, 0) phase. Once the cutoff radius has reached R0 =
0.35a, all four bands carry zero Chern number over the entire

FIG. 3. Chern number phase diagram for the four lowest-energy
bands in the Bloch skyrmion case. The chosen value R0/a = 0.49
corresponds to a near-maximally dense packing of skyrmions. The
Chern numbers in each tuplet C are listed in order of increasing
energy with a colon marking half filling. In agreement with the Berry
curvature constraint Eq. (20), in each sector we observe that the
Chern numbers of bands of opposite energy are opposite, C−n = −Cn.

For ease of comparison, we mark points corresponding to the band
structures presented in Fig. 2.

range of parameters (R, J ). This phase can be understood as
being continuously connected to the limit of well-separated
Wannier orbitals which resemble the electronic bound states
of isolated skyrmions. On the other hand, fixing R0/a ∼ 0.49
as in Fig. 3 and increasing the skyrmion core size R toward R0,

the domain wall limit, we find that increasing J leads to the
|n| = 1, 2 bands bunching together and flattening, reminiscent
of the single-particle physics of magic angle bilayer graphene
[26]. In the trivial Chern sector, increasing J more simply
increases the number of in-gap bands, which flatten and are
completely isolated.

B. Tight-binding model for the Bloch skyrmion lattice problem

We can approach the problem of Dirac electrons coupled
to a Bloch skyrmion texture from a complementary angle,
namely a tight-binding approach. In the previous sections we
argued that the continuum problem Eq. (7) features both
a particle-hole symmetry, responsible for a symmetric en-
ergy spectrum, and a chiral symmetry, which dictates that
the particle-hole-related bands must carry opposite Chern
number. Well-known theoretical results about the interplay
between Wannier functions and band topology guarantee the
existence [88] of a Wannier representation for any even num-
ber of nondegenerate bands nearest half filling. In the limit
of large interskyrmion distance a � R0, we expect the Wan-
nier orbitals to approach single-skyrmion electronic bound
states, whose features we review in the following section.
Application of the Wannier projection method [89,90] for
the two gapped bands nearest half filling, which we discuss
in Sec. III C 1, reveals well-localized Wannier states whose
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qualitative features match those of the single-skyrmion bound
states.

1. Single-skyrmion bound states

The problem of Dirac fermions coupled to a single
skyrmion was addressed by Hurst et al. in Ref. [68]. In
that work, the authors considered a two-dimensional Dirac
model with a position-dependent Dirac mass representing the
skyrmion. The corresponding wave functions were found to
be strongly peaked at the skyrmion perimeter where the Dirac
mass changes sign. Further studies [71] found similar states
for a more realistic description of the skyrmions. Most impor-
tantly, the skyrmion bound states are a discrete set of states
with energies inside the bulk electronic gap and a well-defined
out-of-plane angular momentum j = ±1/2,±3/2, . . . arising
from the rotational symmetry of the single skyrmion texture.
The bound state wave functions take the form

� j (r) =
(

ei( j− 1
2 )φχ j,↑(r)

ei( j+ 1
2 )φχ j,↓(r)

)
. (21)

The asymptotic behavior of the radial wave functions χ j,s(r)
has been extensively studied [68,69,71]. While their exact
form is not important for our purposes, they are known to
decay exponentially at long distances.

2. From Bloch states to Wannier states

Combining Bloch skyrmions together in a hexagonal lat-
tice, we expect the skyrmion bound states to hybridize to
form orthogonal Wannier states. Supposing we have identified
some set of isolated bands

n ∈ {±1,±2, . . . ,±n0} ≡ B (22)

nearest half filling, the Wannier states are merely the Fourier
transform of a smoothening of the Bloch states

d†
R j = 1√

N

∑
k

d†
k je

−ik·R (23)

for a choice of unitaries Un j (k) such that the rotated states

d†
k j =

∑
n∈B

ψ
†
knUn j (k) (24)

are smooth in the variable k. Less abstractly, these orbitals
correspond to smooth functions dsk j (r) = 〈�|cs(r)d†

k j |�〉. In
Sec. III C 1 we implement a technique, known as the pro-
jection method [89,90], for constructing the unitaries Un j (k)
directly from an initial guess for the Wannier orbitals. In
particular, the constructed Wannier orbitals will carry an
eigenvalue j under C6, justifying the choice of j as a label.

In a tight-binding representation of a manifold of bands B,
the Hamiltonian data is encoded in a set of amplitudes

tδ j j′ = 〈δ+R j|H |R j′〉 (25)

where δ, R are skyrmion Bravais vectors. The independence of
the hoppings on R is due to discrete translational symmetry.
Since the Hamiltonian does not mix states with different angu-
lar momentum then the on-site overlap matrix t0 j j′ ≡ ε jδ j j′ is

diagonal. The orthogonal projection of the continuum Hamil-
tonian Eq. (12) into the bands B then reads

HB =
∑
k∈BZ

∑
j j′

d†
k jHk j j′ dk j′ (26)

with momentum space kernel given by

Hk j j′ ≡ δ j j′ε j +
∑

δ

e−ik·δtδ j j′ . (27)

In the following, we discuss how the rotational, particle-
hole, and chiral symmetries act on the Wannier states as well
as the constraints they impose on the hopping parameters. We
focus here on nearest-neighbor hoppings, leaving a detailed
analysis of next and next-next-nearest neighbor hoppings to
the Supplemental Material [84]. In the nearest-neighbor case,
the displacement vector δ runs over the six nearest neighbors

δ = ±a1,±a2,±a3 (28)

where a1,2 are defined in Eq. (5) and a3 = a2 − a1. At this
stage we do not limit our analysis to any particular number of
bands |B|.

3. Representing the sixfold symmetry

While the lattice of skyrmions breaks the continuous ro-
tation symmetry of the single skyrmion texture, the C6 of
Eq. (13) still remains. We choose to implement it on the
Wannier orbitals by

C6dR jC
†
6 = ei π

3 j dC6R j (29)

which conveniently leads to Wannier functions which trans-
form under C6 like the single-skyrmion bound states, Eq. (21).
Moreover, the hoppings are constrained (see Supplemental
Material [84]) to satisfy

tC6δ j j′ = e−i π
3 ( j−j′ )tδ j j′ . (30)

This property allows us to express all the nearest neighbor
hopping parameters in terms of t j j′ ≡ ta1 j j′ alone. Correspond-
ingly, Eq. (27) takes the compact form

Hk j j′ = δ j j′ε j + sk j j′t j j′ (31)

where sk j j′ , a function of the nearest-neighbor lattice geome-
try whose precise form is inessential to the present discussion,
may be found in the Supplemental Material along with the
generalization to further neighbors [84].

For later reference, we remark that Hermiticity and C2,
whose action is obtained by three applications of the C6 con-
straint Eq. (30), together guarantee

t j′ j = e−iπ ( j−j′ )(t j j′ )
∗. (32)

Finally, while our tight-binding construction is nominally per-
formed for the Bloch case for topological reasons, we remark
that these C6 results apply equally well to the Néel case pro-
vided that one is modeling a gapped subset of bands with net
zero Chern number.
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4. Representing the particle-hole symmetry

The particle-hole and chiral symmetries hold only in the
Bloch case. We represent the former on the Wannier states by

Udk jU
† = (dk −j )

†eiπ j . (33)

By equating the band-projected Hamiltonian HB to the
particle-hole conjugated expression

UHBU † = −
∑
k j j′

d†
k j[Hk−j′−j eiπ ( j′− j)]dk j′ +

∑
k j

Hk j j,

we immediately deduce that

Hk−j′−j eiπ ( j′− j) = −Hk j j′ . (34)

In the Supplemental Material [84] we show that this condition
is satisfied if and only if

ε− j = −ε j

t−j′ −j = −eiπ ( j−j′ )t j j′ . (35)

5. Representing the chiral symmetry

The final constraints on the hopping parameters derive
from the chiral symmetry Eq. (18), which we represent on the
Wannier orbitals by

Adk jA
† = (dMyk −j )

†. (36)

As in our particle-hole analysis, comparison of HB to

AHBA† = −
∑
k j j′

d†
k j[HMyk −j−j′ ]dk j′ +

∑
k j

Hk j j (37)

demands immediately that

HMyk −j−j′ = −Hk j j′ . (38)

In the Supplemental Material [84] we show that this condition
is satisfied if and only if

ε− j = −ε j

t−j −j′ = −t j j′ . (39)

Together with Eqs. (32) and (35), these expressions constitute
all independent constraints on the parameters ε j and t j j′ due
to the symmetries of the Bloch skyrmion lattice system.

C. Two-band Wannier construction

We now perform an explicit construction of Wannier func-
tions for the gapped low-energy bands of the Bloch skyrmion
problem. We treat the two bands of lowest energy, n ∈ B =
{±1}. In our analysis of the continuum theory, these bands
were found to maintain a finite energy gap to the remaining
higher-energy states over the entire phase diagram Fig. 3, with
a gap closure occurring only mutually between them at zero
energy.

The resulting tight-binding model features two Wannier
states, labeled by their out-of-plane angular momentum j =
±1/2, and localized at each skyrmion site. Their wave func-
tions are found to be tightly concentrated at the radius R and
exponentially decaying at long distances, which is reminiscent
of the single-skyrmion bound states discussed in Sec. III B 1,
even for a reasonably closely packed skyrmion lattice.

Finally, we numerically observe that the nearest-neighbor
hopping amplitudes are generically dominant. This inspires
the independent study of a nearest-neighbor two band toy
model whose Chern sectors can be characterized analytically
as a function of the hopping amplitudes t−1/2,+1/2 and t−1/2,−1/2

of Eq. (31). We find that the hopping amplitudes realized by
the continuum model account for only half of the topological
phases present in the two band toy model, thereby motivating
further study into variants of Eq. (7) as a means of realizing
novel Chern insulator phases.

1. Wannier orbitals of Bloch skyrmion bands

To construct the j = ±1/2 Wannier states from the pair
n = ±1 of lowest-lying energy bands, we employ the projec-
tion method [89,90]. One begins with a set of trial orbitals
gs j (r) which serve as a best guess for the Wannier orbitals
centered in the home unit cell R = 0. These trial states are
then projected into the manifold of Bloch states at each wave
vector k,

|φk j〉 =
∑

n=±1

|ψkn〉〈ψkn|g j〉, (40)

where the latter inner product is taken over all of space.
To ensure that these states are orthonormal, one performs a
Löwdin transformation

|dk j〉 =
∑

j′
|φk j′ 〉

(
S −1/2

k

)
j′ j (41)

where the overlap matrix is given by

Sk = A †
k Ak, (Ak)n j ≡ 〈ψkn|g j〉. (42)

The Bloch-like states |dk j〉 will be smooth in k, and the
corresponding Wannier orbitals Eq. (23) will be exponentially
localized, provided that the overlap matrix is finite everywhere
in the BZ. As an immediate consequence of the above defini-
tions, we obtain the unitary transformation taking us between
the Bloch-like states dk j and the original Bloch states. In the
notation of Eq. (24), the unitary is given by

Un j (k) =
∑

j′
(Ak)n j′

(
S −1/2

k

)
j′ j . (43)

The Wannier orbitals can be shown to inherit the transfor-
mation properties of the trial orbitals under the symmetries
of the Hamiltonian. In the Supplemental Material [84] we
demonstrate that the representations Eqs. (29), (33), (36) may
be enforced by the choice of trial orbitals

gs j (r, φ) = ei( j− s
2 )φe−(r−μ)2/2ξ 2

(44)

where the integer-valued term j − s/2 = j ± 1/2 has the in-
terpretation of orbital angular momentum. In Fig. 4 we plot
the resulting Wannier function densities corresponding to trial
parameters with annular peak at μ = R and spread equal to
the width of skyrmion wall, ξ = R0 − R. This choice of the
parameters (μ, ξ ) yields a favorable ratio of the maximum and
minimum values of det Sk over the BZ, namely <2 for all pa-
rameters (α, J ) considered, therefore indicating a smooth fit.
Remarkably, the same Wannier functions result from instead
inputting Gaussian trial functions μ = 0 with various ξ, indi-
cating that the annular features of the Wannier functions are
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FIG. 4. (a) Wannier function densities
∑

s |ds0 j (r)|2 derived from the lowest two Bloch skyrmion bands at R0/a = 0.49. The density is
equal for opposite j. The black hexagon indicates the boundary of a Wigner-Seitz cell of the skyrmion lattice and the orange ring indicates the
skyrmion core size, R = R0(1 + α)/2. The Wannier function density accumulates at R and is more tightly localized for larger Hund’s coupling
J. For small skyrmion size, the Wannier functions closely resemble the single skyrmion bound states. For larger skyrmion radius R (i.e., larger
α), the lower sixfold symmetry of the Wannier function density is more apparent. (b) Hopping parameters derived from the Wannier functions
at (J, R0/a) = (3, 0.49). The nearest-neighbor hoppings τ, τ̃ are most prominent. The shaded region marks the transition from the C = (0 : 0)
sector to C = (−1 : 1), whereas the vertical line at τ/ε = −1/6 marks where this boundary shifts upon truncating the hoppings at nearest
neighbor.

a product of the Hamiltonian and not the trial functions. Fur-
ther indication of our successful application of the projection
method is provided by the Wannier functions ds0 j (r) decaying
exponentially with distance from the skyrmion center, which
we verified numerically over the range of several unit cells.

The Wannier functions Fig. 4(a) are found to localize
around the radius R at which the Dirac mass nz(r) changes
sign. Moreover, the states localize more tightly around R
as the Hund’s coupling J is increased. These features are
consistent with the behavior of the previously studied single-
skyrmion bound states [68,71]. Where the lattice problem
differs, however, is in the breaking of continuous rotational
symmetry in the Wannier states at large R→R0 ∼a/2 where
the hybridization between the single-skyrmion bound states is
largest due to proximity.

2. Nearest-neighbor toy model

When the skyrmion cutoff radius is not too large com-
pared to the Hund’s length scale, R0Jeff/h̄vF � 3, only the
two lowest-lying bands are uniformly gapped from continuum
of states at higher energies. Correspondingly, it is shown in
Ref. [68] that only two electronic bound states accompany
an isolated skyrmion for sufficiently small skyrmion radius.
These observations motivate further investigation into the
two-band tight-binding problem in particular. We note that
Chern insulators in similar two-band lattice models with lo-
cal orbitals having nonzero angular momentum have been
discussed previously in the context of spin-orbit coupled fer-
romagnets [91,92].

In Fig. 4(b) we plot the two-band hopping parameters
as a function of the skyrmion radius for fixed J = 3 and

R0/a = 0.49. As discussed above and further detailed in the
Supplemental Material [84], constraints from symmetry en-
sure that the parameters ε, t j j′ , and tn

j j′ characterizing the
hopping Hamiltonian up to next-nearest neighbor are all real.
Crucially, we find that the nearest-neighbor terms t j j′ are more
prominent than longer-range terms for a wide range of param-
eters (J, R0), thereby motivating a full analytical investigation
of the two-band nearest-neighbor toy model.

In this case, the symmetry constraints Eqs. (32), (35), (39)
imply that the only free parameters are

ε ≡ ε−1/2

τ ≡ t−1/2,−1/2

τ̃ ≡ t+1/2,−1/2

(45)

and that they must all be real. The Hamiltonian Eq. (31) then
takes the simple form Hk = hk · σ, where

hk ≡ (τ̃ ReQk, −τ̃ ImQk, −(ε + τPk)), (46)

and Pk ≡ sk j j, Qk ≡ sk j j−1. This gives rise to energies

Ek± = ±|hk| = ±
√

|τ̃Qk|2 + (ε + τPk)2. (47)

Within this toy model, the Chern numbers of the bands n = ±
are given by the number of times the unit vector hk covers the
unit sphere as the momentum is scanned through the BZ. Con-
sequently, flipping the sign of τ̃ has no bearing on the Chern
number since it merely changes the helicity of the momentum
space texture Eq. (46) and not its winding. Due to continuity,
the phase boundaries must occur at gap closures between the
two bands, i.e., where |hk| vanishes. Invoking Eq. (47), these
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FIG. 5. Topological phase diagram for the Bloch two-band
nearest-neighbor toy model. We have assumed ε > 0, which is con-
sistent with Fig. 4(b), but the ε < 0 phase diagram may be obtained
by negating the Chern numbers. Both the C = (−1 : 1) and (0 : 0)
Chern sectors are realized in the continuum model, as exhibited in
Fig. 3.

gap closures are realized at the parameter values

τ/ε = −1/6, 1/3, 1/2, (48)

with the gap closures located at the  point, three M points,
and two K points, respectively, as shown in the Supple-
mental Material [84]. Special attention must be paid to the
axis τ̃ /ε = 0 along which the gap is closed for τ/ε � 1/3
and τ/ε � −1/6. Having identified the locations of all gap
closures of the two-band toy model, we may compute the
Chern numbers numerically. The results are summarized in
Fig. 5.

Comparing the Chern number diagram to that which we
derived from the continuum model, Fig. 3, we observe that
only the C = (−1 : 1) and (0 : 0) Chern sectors are accessible
by tuning the parameters R0, R, J of the continuum Hamilto-
nian. Moreover, we remark that the behavior at the boundary
between these two Chern sectors is consistent between the
continuum and toy models. As exhibited in Fig. 4(b), which
displays the hopping parameters obtained from the continuum
model at (J, R0/a) = (3, 0.49), truncating the tight-binding
model at nearest-neighbor hopping causes only a small shift
in the boundary between the two Chern sectors. Similar agree-
ment is seen at other parameter values (J, R0). Finally, the
gap closure at this transition is Dirac-like and occurs at the
 point in both the full tight-binding model and truncated
toy model. We caution, however, that longer-range hoppings
must be preserved in order to accurately fit to energies away
from the  point. Finally, given the experimental capacity
to simulate magnetic fluxes and the Hofstadter Hamiltonian
using atoms in optical lattices [93], we note that it would be
interesting to attempt to realize our family of tight-binding
models in the ultracold atom setting.

IV. NÉEL SKYRMION LATTICE

In contrast to the Bloch skyrmion case, the Néel in-plane
divergence ∇2D · n(r) does not vanish identically but only
in total when integrated over a single unit cell [67]. Conse-
quently, there exists no gauge transformation which removes
the in-plane magnetization component, thereby sacrificing
both the particle-hole and chiral symmetries. The bands in the
Néel case are therefore not symmetric across zero energy and
do not have related Berry curvature.

Nonetheless, computation of the band eigenstates again
reveals isolated low-energy bands with nontrivial Chern num-
ber. As in the Bloch case, tuning the skyrmion proximity,
radial profile, and the effective Hund’s coupling leads to a
collection of phases distinguished by these Chern numbers.
In Fig. 6 we plot the bands for fixed parameters (J, R0/a) =
(3, 0.3) and for three values of the skyrmion size R. Two of
these values R/a = 0.2, 0.29 sit on the boundaries between
topological sectors. In Fig. 6(c) we observe the emergence
of particle-hole symmetry. This is due to the Bloch and Néel
skyrmions losing their distinction in the limit R → R0, with
both textures approaching a domain wall droplet with no in-
plane magnetization.

In Fig. 7 we display the full topological phase diagram
for fixed R0/a = 0.3. Let us continue to label the bands
by integers n where n < 0 (n > 0) denote the bands below
(above) half-filling. We find that the bands n ∈ {−1, 1, 2, 3}
are consistently gapped from the remaining bands and there-
fore have well-defined Chern numbers. We denote them by
(C−1 :C1, C2, C3) with the colon marking half filling. The tran-
sition between the C = (0 :0, 1, 1) and (0 :0, 0, 2) sectors
upon increasing R and J occurs due to a gap closure at the
 point, Fig. 6(a). Two further topological sectors are then
accessible, including an island of C = (0 :0, 0,−1) near the
minimal value R = R0/2, as well as a robust Chern-trivial
region which persist for large J. We remark that the chosen
value of R0/a = 0.3 showcases that Chern bands can be ob-
tained in the Néel case for smaller cutoff radii R0 and smaller
skyrmion core sizes R than in the Bloch case.

V. SUMMARY AND FUTURE DIRECTIONS

We have determined the band structure of TI helical Dirac
surface states coupled to skyrmion crystal textures, revealing
a strong dependence on the single-skyrmion radial profile nz

which we studied by interpolating continuously between a
sinusoidal and domain wall limit. This stands in contrast to
previous single-skyrmion [68,69] and skyrmion lattice studies
[77,94] in which the textures were approximated by domain
wall droplets. The question of tuning the radial profile, or
of determining its most stable realization, is likely material
dependent and remains open to further investigation.

Significant qualitative differences between Néel and
Bloch-type skyrmions were also elucidated. In the latter
case, additional particle-hole and chiral symmetries led to
constraints on the eigenstates and Berry curvature of the as-
sociated bands, producing a rich topological phase diagram
upon varying the skyrmion separation, core size, and the
spin-fermion coupling. In both cases we demonstrated the
appearance of topologically nontrivial bands whose Chern
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FIG. 6. Néel skyrmion bands and density of states (DOS) at Hund’s coupling J = 3 and cutoff radius R0/a = 0.30. Colored red are the
bands whose Chern numbers are displayed in Fig. 7, namely the first band below half filling and the three bands above it. (a) Whereas the
bands carry Chern number C = (0 : 0, 1, 1) at the minimum value R = R0/2 = 0.15a of the core size, increasing R leads to a gap closure
(circled) between the n = 2, 3 bands. (b) These four bands enter the C = (0 : 0, 0, 2) Chern sector. The nontrivial C+3 = 2 Chern band hovers
near the continuum before eventually closing a gap and descending toward zero energy. (c) While the Néel bands generically do not exhibit
the particle-hole symmetry that they enjoyed in the Bloch case, we observe its reemergence in the limit R→R0 where both skyrmion types
approach a domain wall droplet.

numbers depend sensitively on the skyrmion radial profile.
This intrinsic contribution to the Hall conductance contrasts
with the topological Hall effect observed when nonrelativistic
electrons couple to a skyrmion texture [72].

Going beyond the work described in this paper, we expect
the coupling between skyrmion texture and fermions to be
anisotropic [17], with the coupling to nz being different from
that to nx, ny. For Bloch skyrmions, this anisotropy has no
impact since the in-plane component of the skyrmion texture
can still be gauged away. It may, however, be interesting to
investigate the impact of this anisotropy on the bands of Néel
skyrmion crystals.

Using band theory techniques, we have constructed lo-
calized, symmetric Wannier orbitals for Dirac surface states
coupled to a skyrmion crystal. To the best of our knowledge,
such Wannier functions have not been extracted in previous

FIG. 7. R0/a = 0.3. Chern number phase diagram in the Néel
skyrmion case for a single band below half filling and three bands
above half filling. The Chern numbers in each tuplet C are listed in
order of increasing energy, with the colon marking half filling. The
marked points correspond to the band-structure plots presented in
Fig. 6.

work on this subject. For well-separated skyrmions, we have
shown that the Wannier functions are ‘ring’-like states which
resemble the previously studied single-skyrmion bound states.
Within a two-band study, the truncation of the associated
tight-binding model to nearest-neighbor hopping is found to
capture the most relevant topological features.

In future studies it could prove fruitful to explore the effects
of electron-electron interactions in such lattice models, which
could support fractional Chern insulator phases [95] or other
correlated states due to the presence of narrow Chern bands
at large skyrmion core size and effective Hund’s coupling
strength. Furthermore, it would be interesting to explore how
external magnetic fields tune the density and core size of
skyrmions in the lattice, thereby allowing for systematic ex-
ploration of the topological phase diagrams discussed above.
In this work, we assumed that a weak external magnetic field
is sufficient to stabilize skyrmions [96,97]. However, in ma-
terials where stronger external fields are needed to stabilize
skyrmions, the Landau levels of the helical Dirac surface
states could begin to play an important role in the skyrmion-
skyrmion interaction as well as the nature of electronic states,
leading to distinct topological features deserving of a separate
investigation.

Note added. Recently, we came across a related paper [94]
which examines the impact of spiral textures on TI Dirac sur-
face states and the energetic stabilization of Néel skyrmions
in intrinsically magnetic TIs. Our band theory calculations for
Néel and Bloch skyrmion crystals, construction of Wannier
orbitals, and tight-binding model results provide a comple-
mentary perspective on this topic.
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