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Phase diagram of the Hubbard model on a honeycomb lattice: A cluster slave-spin study
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The cluster slave-spin method is implemented to research the ground state properties of the honeycomb lattice
Hubbard model with doping δ and coupling U being its parameters. At half filling, a single direct and continuous
phase transition between the semimetal and antiferromagnetic (AFM) insulator is found at UAFM = 2.43t that
is in the Gross-Neveu-Yukawa universality class, where a relation between the staggered magnetization M and
the AFM energy gap �AFM is established as M ∝ �AFM, compared to M ∝ �AFM(ln �AFM)2 in the square lattice
case. A first-order semimetal to the underlying paramagnetic (PM) insulator Mott transition is corroborated
at UMott = 8.36t , which is responsible for a broad crossover around Uc = 5.4t between the weak- and strong-
coupling regimes in the AFM state that increases with δ, in contrast to the square lattice case. In the doped system,
the compressibility κ near the van Hove singularity at δ = 1/4 is suppressed substantially by the interaction
before the semimetal to AFM transition occurs, whereas κ near the Dirac points is very close to the noninteracting
one, indicating that the Dirac cone structure of the energy dispersion is rather robust. An overall phase diagram
in the U -δ plane is presented, consisting of four regimes: the AFM insulator at δ = 0 for U > UAFM, the AFM
metal with compressibility κ > 0 or κ < 0, and the PM semimetal; the AFM metal with κ < 0 only exists in an
extremely small area near the phase boundary between the AFM and PM state.
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I. INTRODUCTION

The Hubbard Hamiltonian [1] has been acting over decades
as a prototypical model for the description of interacting
electrons. In spite of its seeming simplicity, this model cap-
tures a rich phenomenology of strongly correlated electrons
such as metallic-insulating, nonmagnetic-antiferromagnetic,
and normal-superconducting phase transitions and cannot be
solved exactly in more than one dimension, which necessitates
some nonperturbative approaches to deal with the strong-
coupling aspect of the model [2,3]. In this paper, we will focus
on the one-band Hubbard model defined on a honeycomb
(hexagon) network (Bravais lattice for graphene), which is
bipartite and admits the antiferromagnetism (AFM) in the
strong-coupling limit. This model has a linear free electron
energy dispersion with nodal gapless points at the corners of
the Brillouin zone, leading to the so-called Dirac semimetal.
Due to the gapless Dirac points, there is a nontrivial semimetal
to antiferromagnetic insulator (AFMI) transition at a finite
coupling strength at half filling, which makes this model an
ideal playground to research the interaction-driven semimetal
to AFMI transition. Up till now, many numerical and ana-
lytical methods have been applied to the half-filled system
to study this transition and its critical behaviors. Large-scale
quantum Monte Carlo (QMC) simulations of 648 sites predict
a spin liquid state in a range of interaction 3.5t < U < 4.3t ,
beyond which the AFM sets in [4], and this argument was
supported by some numerical works [5–8]. Nevertheless, this
picture was disputed by many other numerical studies [9–17],
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especially those using the same method containing up to 2592
sites [9,15] and 20 808 sites [16,17]. By means of cluster dy-
namical mean-field theory, variational cluster approximation,
and cluster dynamical impurity approximation, Hassan et al.
[18] showed that the results are dependent on the shape and
size of the clusters, and they claimed that only the system with
two bath orbits per cluster boundary site is able to describe
the correct behavior and found that the Mott transition for the
spin liquid state is actually preempted by the AFM long-range
order. Though the early variational cluster calculations [19]
argued that the single-particle gap opens at an infinitesimal
value of U , recent dynamical cluster approximation study
found that this spurious excitation gap is due to the violation
of the translation symmetry of the system and the cluster with
one bath orbital per cluster site is sufficient for the description
of the short-range correlations within the honeycomb unit
cell [20]. A recent density matrix embedding theory study
revealed a paramagnetic insulating state with possible hexag-
onal cluster state at intermediate coupling strength whose
stability is highly cluster and lattice size dependent, and this
state is nonexistent in the thermodynamic limit, signaling no
intermediate state in the half-filled Hubbard model on a hon-
eycomb lattice [21]. In addition, a two-particle self-consistent
study presented a semimetal to AFMI transition and proved
that the transition from a semimetal to spin liquid phase is
forestalled by this transition [22]. The functional renormal-
ization group theory predicts a critical interaction strength
U = 3.8t that is consistent with the results from the methods
mentioned above, supporting that there is no spin liquid state
at intermediate coupling strengths [23,24].

Based on the charge-spin separation theory [25–27], the
U (1) slave-spin method has been proposed to cope with the
Mott transition in multiorbital systems [28], which is very
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economical computationally because only 2M slave spins
need to be introduced per site with M being the number of
orbits. This method can not only reproduce the Gutzwiller
factor gt = 1−x−2d

1−x−(1−x)2/2 (
√

x + d + √
d )2, but also capture the

right noninteracting behaviors at U = 0 because of an extra
orbital-dependent chemical potential in the spinon Hamilto-
nian, which makes it a powerful method to deal with the
strong-coupling systems [29]. Then, a cluster slave-spin ap-
proach was developed to address strongly correlated systems
to take the short-range charge fluctuations into account [29]
and has been employed to solve the square lattice Hubbard
model to obtain an overall ground state phase diagram in the
parameter space of doping δ and interaction U [30]. In the
present work, we apply the same method with the Lanczos
exact diagonalization as the slave-spin cluster solver to the
honeycomb lattice Hubbard model to study its ground state
properties, including the quantum critical behavior in the
vicinity of the interaction-driven semimetal to AFMI transi-
tion at half filling and an overall phase diagram in the whole
U -δ plane. Our motivation is twofold: (i) Because the results
of this model are shown to be highly dependent on the size
of the lattice adopted for QMC simulations, as well as the
size and shape of the clusters used within various cluster
approximations, more results from different approaches ought
to be included and compared with each other. (ii) Away from
half filling, much attention was paid to the 1/4 doping, where
the free density of states shows a van Hove singularity of loga-
rithmic type, favoring an instability toward superconductivity
in the weak-interaction regime [31–33], whereas an overall
U -δ phase diagram pertaining to the magnetism is still absent.

In the honeycomb lattice Hubbard model, we find that
the first-order Mott transition occurs at UMott = 8.36t in the
half-filled paramagnetic (PM) state, characterized by discon-
tinuities and hystereses in all quantities, and transforms into a
broad crossover in the AFM state because of long-range AFM
correlations. Besides, the phase separation, manifested by a
negative compressibility, has been observed in a region near
the phase boundary δM (U ) between the AFM and PM state
and at intermediate couplings, whose area is much smaller
compared to the square lattice Hubbard model [30]. Finally,
a phase diagram in the U -δ plane is presented, consisting of
four regimes: AFMI, AFM metal with positive and negative
compressibility, and the PM semimetal.

The rest of this paper is organized as follows. In Sec. II, we
reintroduce the cluster slave-spin mean-field theory [29,30]
and implement it in the honeycomb lattice Hubbard model
by making use of two- and six-site cluster approximations.
In Sec. III A, for the half-filled system, an analytical relation
between the staggered magnetization M and the AFM energy
gap �AFM in the vicinity of the semimetal to AFMI transition
is established, and the first-order Mott transition at UMott =
8.36t is observed in the PM state. In Sec. III B, the results
of finite-doping cases obtained by two- and six-site clusters
are discussed thoroughly, and we find that the two-site cluster
is inadequate to capture the AFM transition appropriately
because it violates the symmetry of the honeycomb lattice. In
Sec. IV, the properties of M, �AFM, and the compressibility
κ are combined to show a phase diagram of the model in the
U -δ plane.

II. FORMALISM

The standard one-band fermionic Hubbard model [1] reads

H = −t
∑
〈i, j〉σ

(c†
iσ c jσ + H.c.) + U

∑
i

ni↑ni↓ − μ
∑

iσ

niσ ,

(1)
where t , U , μ are the nearest hopping constant, the on-site
Coulomb repulsion energy, and the chemical potential, respec-
tively. The sum 〈i, j〉 runs over all pairs of nearest-neighbor
sites on a honeycomb lattice, and c†

iσ is the creation operator
of the electron at site i with spin σ =↑, ↓, and the number
operator niσ = c†

iσ ciσ . Hereafter, we use t = 1 as the unit of
energy.

In the U (1) slave-spin method [28], an electron operator is
factorized into a slave-spin operator (S = 1

2 ) and a fermionic
spinon operator, describing the charge and spin degrees of
freedom of an electron, respectively:

c†
α ≡ S†

α f †
α , (2)

on account of which the original Hilbert space
with basis {|0〉, |1〉} is enlarged to {|n f

α, Sz
α〉} =

{|0,− 1
2 〉, |1, 1

2 〉, |0, 1
2 〉, |1,− 1

2 〉}. Thus, an extra constraint
needs to be imposed to restrict the Hilbert space to the
physical one: {|n f

α, Sz
α〉} = {|0,− 1

2 〉, |1, 1
2 〉},

Sz
α = f †

α fα − 1
2 . (3)

A gauge degree of freedom must be introduced to incorporate
the constraint, signifying that the slave-spin representation is
invariant under a local gauge transformation f †

α → f †
α e−iφα

and S†
α → S†

αeiφα , and all physical quantities should be invari-
ant under this U (1) gauge transformation [26,34–37].

With the constraint a†
αaα + b†

αbα = 1, the slave-spin oper-
ator is rewritten in the Schwinger boson representation

S†
α = a†

αbα, Sz
α = 1

2 (a†
αaα − b†

αbα ). (4)

To ensure the correct noninteracting behaviors, the slave-
boson operators need to be dressed as follows [38]:

S̃†
α = P+

α a†
αbαP−

α , (5a)

P±
α = 1√

1/2 ± Sz
α

, (5b)

which can be linearized as follows:

S̃†
α ≈ z̃†

α + 〈z̃†
α〉〈Sz

α

〉
�Sz

α(
1
2

)2 − 〈
Sz

α

〉2 , (6)

with �Sz
α = Sz

α − 〈Sz
α〉 and z̃†

α = a†
αbα/[( 1

2 )2 − 〈Sz
α〉2]1/2.

Following the recipe of Lee and Lee [29], with the local
constraints (3) being ensured roughly by two global Lagrange
multipliers λIσ on sublattices I = A and B, Hamiltonian (1)
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can be cast into the form

H f
MF = −tZ

∑
〈i, j〉σ

(a†
iσ b jσ + H.c.)

−
∑

iσ

[(μ + λAσ − μ̃Aσ )a†
iσ aiσ

+(μ + λBσ − μ̃Bσ )b†
iσ biσ ], (7a)

HS
nc-site = Hλ

nc-site + HU
nc-site + HK

nc-site, (7b)

where

Hλ
nc-site =

nc∑
ic=1,σ

λIσ Sz
icσ

, (8a)

HU
nc-site =

nc∑
ic=1

U

(
Sz

icσ
+ 1

2

)(
Sz

ic σ̄
+ 1

2

)
, (8b)

HK
2-site =

∑
σ

{
εδ1
σ (z̃†

Aσ z̃Bσ + z̃†
Bσ z̃Aσ ) + (

εδ2
σ + εδ3

σ

)
× [z̃†

Aσ 〈z̃Bσ 〉 + z̃†
Bσ 〈z̃Aσ 〉 + H.c.]

}
, (8c)

HK
6-site =

∑
σ

{
εδ1
σ (z̃†

1σ z̃2σ + z̃†
4σ z̃5σ )

+ εδ2
σ (z̃†

1σ z̃6σ + z̃†
3σ z̃4σ ) + εδ3

σ (z̃†
2σ z̃3σ + z̃†

5σ
z̃6σ )

+ εδ1
σ (z̃†

3σ 〈z̃6σ 〉 + 〈z̃†
3σ 〉z̃6σ )

+ εδ2
σ (z̃†

2σ 〈z̃5σ 〉 + 〈z̃†
2σ 〉z̃5σ )

+ εδ3
σ (z̃†

1σ 〈z̃4σ 〉 + 〈z̃†
1σ 〉z̃4σ ) + H.c.

}
. (8d)

The mean-field Hamiltonian HS
nc-site is a Bose-Hubbard

model for two species of bosons, and actually a model of
interacting XY spins in a magnetic field [28]. Senthil has sys-
tematically investigated the gauge field fluctuations’ effects on
charge and spin degrees of freedom of the one-band Hubbard
model in the slave-rotor representation [36], which is very
similar to the slave-spin method adopted in this paper. He
found that [37] the dynamical exponent z = 1 at the mean-
field critical fixed point renders that the Landau damping term
of the gauge bosons, |ω|/q, scales as a Higgs mass term.
Hence, for the rotors, the gauge bosons are gapped and harm-
less, indicating that the universality class of the rotor quantum
critical point remains unaltered from the 3D XY model [39].
In this paper, the gauge fluctuations will not be considered
further on the same ground.

The cluster slave-spin Hamiltonian (7b) with nc = 2, 6,
marked by the red color geometry in Fig. 1, will be solved
by using the Lanczos exact-diagonalization method. The pa-
rameters Z , μ̃Iσ , and εδ

σ in Eqs. (7) and (8) are calculated as
follows:

Z = 〈z̃†
Aσ 〉〈z̃Bσ 〉, ε

δ1/2/3
σ = −t〈a†

iσ bi+δ̂1/2/3σ
〉,

μ̃Iσ = 2Z
〈
Sz

Iσ

〉(
εδ1
σ + εδ2

σ + εδ3
σ

)
(

1
2

)2 − 〈
Sz

Iσ

〉2 . (9)

FIG. 1. Schematic illustration of the (a) two- and (b) six-site
cluster configurations. The lattice constant a is set to unity, and
the positions of three nearest neighbors of site A are δ1 = (1, 0),
δ2 = (−1/2,

√
3/2), δ3 = −(1/2,

√
3/2).

Moreover, the fermionic spinon Hamiltonian can be
Fourier transformed into momentum space:

H f
MF =

∑
k,σ

(εAσ a†
kσ

akσ + εBσ b†
kσ

bkσ

+ �ka†
kσ

bkσ + �∗
kb†

kσ
akσ ) (10)

with

εA/Bσ = μ̃A/Bσ − μ − λA/Bσ ,

�k = −tZγk, γk =
∑

δ

eik·δ. (11)

Diagonalization of the spinon Hamiltonian (10) gives rise to
the eigenenergies as

E±
k = ±

√
|�k|2 + �2

σ − μeff, (12a)

μeff = μ − 1
2 (μ̃Aσ − λAσ + μ̃Bσ − λBσ ), (12b)

�σ = 1
2 (μ̃Aσ − λAσ − μ̃Bσ + λBσ ). (12c)

Here, the AFM energy gap �AFM = |�σ | is identical in
form to that in the square lattice case [29,30].

In most occasions, it proves effective to adopt the density
of states (DOS) of the noninteracting electrons to calculate
the physical quantities in the thermodynamic limit. On the
honeycomb lattice, it is defined as

D(γ ) = 1

Ntriangle

∑
k

δ(γ − |γk|)

=
{

N (γ ), 0 � γ < 1,

Ñ (γ ), 1 < γ � 3,
(13)

where Ntriangle is the site number of the underlying triangular
lattice, which is half of that of the honeycomb lattice, and

N (γ ) = 4

π2

γ√
(3 − γ )(1 + γ )3

K

(√
16γ

(3 − γ )(1 + γ )3

)
,

Ñ (γ ) = 1

π2

√
γ K

(√
(3 − γ )(1 + γ )3

16γ

)
, (14)

with K (x) being the complete elliptic integral of the first kind.
In comparison to the self-dual situation on a square lattice, we
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now have a duality transformation

γ̃ = 3 − γ

1 + γ
(15)

to connect these two parts, under which

(3 − γ̃ )(1 + γ̃ )3

16γ̃
= 16γ

(3 − γ )(1 + γ )3
, (16a)

(3 − γ̃ )(1 + γ̃ )

4γ̃
= 4γ

(3 − γ )(1 + γ )
, (16b)

and

Ñ (γ ) = (3 − γ̃ )(1 + γ̃ )

4γ̃
N (γ̃ )

= 4γ

(3 − γ )(1 + γ )
N

(
3 − γ

1 + γ

)
. (17)

Then, the self-consistent quantities εδ
σ = ε and n(A/B)σ ≡

〈a†
iσ aiσ 〉/〈b†

iσ biσ 〉 can be calculated through

ε =
∫ 3

0
dγ D(γ )

(tZγ )2

6Z
√

(tZγ )2 + �2

∑
s=±

sθ [−Es(γ )],

(18)

n(A/B)σ =
∫ 3

0
dγ D(γ )

∑
s=±

θ [−Es(γ )]

× 1

2

(
1 ± s

�σ√
(tZγ )2 + �2

)
, (19)

where E±(γ ) = ±
√

(tZγ )2 + �2 − μeff and �2
σ = �2.

III. RESULTS AND DISCUSSION

A. Half-filled system

In this case, the particle-hole symmetry implies μeff = 0
and E+(γ ) > 0, and by relation (3), Eqs. (18) and (19) are
simply

ε = − tλ

6
Iε (λ), (20)

〈
Sz

(A/B)σ

〉 = (−/+)
sgn(�σ )

2
IS (λ), (21)

where λ = tZ/�AFM and

Iε (λ) =
∫ 3

0
dγ D(γ )

γ 2√
(γ λ)2 + 1

, (22)

IS (λ) =
∫ 3

0
dγ D(γ )

1√
(γ λ)2 + 1

. (23)

For the half-filled square lattice Hubbard model at T = 0, the
AFM order emerges for any nonzero U because of the perfect
nesting of the free Fermi surface, whereas the honeycomb lat-
tice is known to have a semimetal phase at small U due to the
low coordination number which allows more fluctuations and
an antiferromagnetic phase at large U . It is well established
that there is a single direct and continuous phase transition
from semimetal to AFMI at a finite critical interaction strength
UAFM for the half-filled honeycomb lattice Hubbard model.
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FIG. 2. (a) The AFM energy gap �AFM and (b) the staggered
magnetization M as function of U , where the insets show the same
data in the vicinity of the critical coupling together with the fitting
data (blue lines). The results from two-site cluster approximation are
presented as well (black).

This UAFM from large-scale QMC simulations mainly locates
around U ≈ 3.8 [9–11,15,17,40], whereas the results from
various cluster scenarios, such as cluster dynamical impurity
approximation, variational cluster approximation, dynamical
cluster approximation, and density matrix embedding theory,
are strongly cluster dependent and the U ′

AFMs are in a wide
range of 1.5 � U � 4.0 [13,18–21]. As shown in Fig. 2, we
find that UAFM = 2.75 or 2.43 in our two- or six-site cluster
approximation, which is larger than that from the Hartree-
Fock approximation of 2.235 [10,14], but smaller than those
from QMC simulations [9,11,15,17,40], reflecting the fact
that fluctuations have been incorporated in the six-site cluster,
but not enough to give the accurate value. This shortcoming
may be remedied by enlarging the cluster size and strictly
dealing with the constraint Sz

α = f †
α fα − 1

2 locally. However,
the two-site cluster value of UAFM is larger than that from
the six-site cluster, necessitating more investigations on the
dependence of UAFM upon the cluster size. To extract the
critical information around UAFM, we fit our self-consistent
data from the six-site cluster using the U -dependent form of
M and �AFM that have been verified by QMC simulations
[9,11,15,17] and density matrix embedding theory [21],

�AFM/M = α1/2|U − UAFM|β1/2 , (24)

and we obtain

α1 = 0.74021 ± 0.00836, β1 = 0.77086 ± 0.01597;
α2 = 0.19739 ± 0.000753, β2 = 0.755 ± 0.0049.

(25)
The critical exponent β2 = 0.755 ± 0.0049 for M is very
close to β2 = 0.75 ± 0.06 [9] and 0.79 [11] from the large-
scale QMC simulations, and β2 = 0.72 from the density

035155-4



PHASE DIAGRAM OF THE HUBBARD MODEL ON A … PHYSICAL REVIEW B 105, 035155 (2022)

embedding theory [21]. It should be mentioned that β2 =
0.86546 ± 0.01849 from the two-site approximation is close
to that from the six-site one, and both results fall in the ball-
park of the QMC estimates, reflecting the universal aspect of
the critical exponent. The critical exponent for single particle
gap �AFM is slightly larger than that of M [11,17].

We now expand asymptotically the integrals Iε (λ) and IS (λ)
defined in Eqs. (22) and (23) as λ → ∞ [41]:

ε = − t

6

(
1.574597 − 0.448221�̃2 + 4

3
√

3π
�̃3 + · · ·

)
,

(26)

〈
Sz

(A/B)σ

〉 = (−/+)
sgn(�σ )

2

(
0.896441�̃ − 2√

3π
�̃2

− 0.014�̃3 + 4

9
√

3π
�̃4 + · · ·

)
, (27)

where �̃ = λ−1 = �AFM/tZ . The relation between M and
�AFM in the honeycomb lattice around U = UAFM is estab-
lished as

M = 1

2

∣∣〈Sz
Aσ

〉 − 〈
Sz

Bσ

〉∣∣ ≈ 1

2

(
0.896441�̃

− 2√
3π

�̃2 − 0.014�̃3 + 4

9
√

3π
�̃4

)
. (28)

To the leading order, M ∝ �AFM, compared to M ∝
�AFM(ln �AFM)2 in the square lattice, supporting the AFM at
small U in the latter case is driven by the perfect nesting of its
free Fermi surface.

On the other hand, �AFM reaches its maximum around
the crossover coupling strength Uc = 5.4t that separates the
weak- and strong-coupling regimes, which is consistent with
the traditional mean-field behavior �AFM ∼ U at small U ,
and �AFM ∼ 4t2/U in the large-U limit supported by the
superexchange mechanism. It ought to be mentioned that M
drops abruptly when U is larger than a certain value where
the quasiparticle weight happens to drop to zero as shown in
Fig. 3(a), implying that at half filling, the cluster slave-spin
method is incapable of capturing the crossover between the
Hubbard model with finite U and its counterpart in the large-U
limit—the Heisenberg model, which can be understood from
the expression of M at half filling,

M = 1

2
|nAσ − nBσ | =

∫ 3

0
dγ D(γ )

|�σ |√
(tZγ )2 + �2

, (29)

where the integration encounters 0
0 when the AFM energy gap

�AFM and the quasiparticle residue Z drop to zero simulta-
neously at large U [see Figs. 2(a) and 3(a)]. However, for a
doped system, Z decreases to a constant [Fig. 4(a)] to be free
from this glitch.

The quasiparticle residue Z , the generalized Gutzwiller
factor gt [29,42,43], the holon-doublon correlators Ci j [29]
between the nearest neighbors C12, the next-nearest neighbors
C13, and the next-next-nearest neighbors C14, the ground state
energy of the slave-spin Hamiltonian per site 〈HS

nc-site〉/nc with
nc being the cluster size, and the double occupancy 〈D〉 as
function of U at half filling obtained from two- and six-site
cluster approximations are presented in Fig. 3, where Ci j is

FIG. 3. (a) The quasiparticle weight Z and the generalized
Gutzwiller factor gt . (b)–(d) The holon-doublon correlators between
the nearest neighbors C12, the next-nearest neighbors C13, and the
next-next-nearest neighbors C14. (e) The expectation value of the
cluster slave-spin Hamiltonian 〈HS

nc-site〉/nc. (f) The double occu-
pancy 〈D〉 in the AFM state vs U obtained by the 2/6-site clusters
(blue/red). All quantities in the PM state obtained by 6-site cluster
are black lines.

defined as

Ci j = 〈NiDj〉 − 〈Ni〉〈Dj〉
〈Ni〉〈Dj〉 , (30)

with the holon operator Ni = (1 − niσ )(1 − niσ̄ ) and doublon
operator Dj = n jσ n jσ̄ .

The results are as follows: (i) All quantities in the PM state
show discontinuities and hystereses at the critical coupling
strength UMott = 8.36 for the semimetal to paramagnetic in-
sulator transition as the characteristics of the first-order Mott
transition in the PM state [18,44]. (ii) In Fig. 3(a), compared
to that in the PM state, Z is largely suppressed as entering the
AFM phase. (iii) In Figs. 3(b)–3(d), C12 and C13 are positive
and increase monotonically with U , signaling that the holon
and doublon between the nearest and next-nearest neighbors
tend to attract each other, which is enhanced by the coupling
strength. However, C14 presents a negative minimum beyond
the AFM transition or as U approaches UMott in the PM state,
suggesting that at half filling, the holon and doublon between
the next-next-nearest neighbors attract each other when U is
small or large, while they behave repulsively at intermediate
U . (iv) In Fig. 3(e), 〈HS

nc-site〉/nc in the AFM state is smaller
than that from the PM state, favoring an AFM ground state.
(v) In Fig. 3(f), 〈D〉 in the PM state decreases linearly with
the increasing U when U � UMott [45], whereas in the AFM
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FIG. 4. (a) The quasiparticle weight Z and the generalized
Gutzwiller factor gt , (b) the AFM energy gap �AFM/t , (c) the stag-
gered magnetization M, (d) the holon-doublon correlators between
the nearest neighbors C12, the next-nearest neighbors C13, and the
next-next-nearest neighbors C14, (e) the expectation value of the clus-
ter slave-spin Hamiltonian 〈HS

nc-site〉/nc, and (f) the double occupancy
〈D〉 as function of U at δ = 0.02 in the AFM state obtained by the
two-site (blue) and six-site (red) cluster, as well as the PM state
(black) by six-site cluster.

state, its slope changes abruptly as AFM sets in denoting a
second-order transition from a semimetal to an AFMI.

B. Systems with finite doping

In Fig. 4, we plot Z , gt , �AFM, M, C12/3/4, 〈HS
nc-site〉/nc, 〈D〉

as functions of U at δ = 0.02 obtained from two- and six-site
cluster approximations to further compare the results from
these two slave-spin clusters. In Fig. 4(a), the quasiparticle
residue from six-site cluster is much smaller than that from
two-site because of more quantum fluctuations, and becomes
flattened when U > UMott. In Fig. 4(b), the critical coupling
strength for the AFM transition from the six-site cluster is
UAFM = 3.0, while that from the two-site cluster locates at
UAFM = 25.0, which indicates that the two-site cluster is in-
adequate to describe the AFM transition in the honeycomb
lattice because it does not keep track of the lattice symmetry.
In Fig. 4(d), C12 increases slowly when U < UMott, then rises
dramatically as U approaches UMott, and finally grows pro-
gressively as U goes to infinity, while C13 shows a maximum
near UMott, the reason for which is that the hopping proba-
bility between the next-nearest neighbors falls faster than the
one between the nearest neighbors when U is increased as
demonstrated in our previous work on a square lattice [30].
Unlike C12 and C13, both positive for all U ′s, C14 is nega-
tive at δ = 0.02 and its magnitude grows monotonically with
the coupling strength, indicating that the holon and doublon

0 10 20 30 40

-0.6

-0.4

-0.2

0.0

0.2

�E
(S
) /
t

U/t

�E(S)K
�E(S)U
�E(S)Total5.4 8.0

FIG. 5. The difference of the kinetic energy �E (S)
K (red), inter-

action potential �E (S)
U (black), and their summation �E (S)

Total (blue)
of the six-site cluster slave-spin Hamiltonian Eq. (8d) between the
AFM and PM states as function of U at δ = 0.02.

between the next-next-nearest neighbors repulse each other,
whose tendency is strengthened as U increases. In Fig. 4(e),
as shown by the blue line with 0 < U < 25 (where the sys-
tem within the two-site approximation is in the PM state)
and the black line, the difference of 〈HS

nc-site〉/nc in the PM
state between the two- and six-site cluster approximations is
much smaller when U > UMott, denoting that the cluster size’s
effect on the properties of the system in the PM state is less
important at large U as the system becomes more localized,
where the intersite fluctuations are much weaker in contrast to
the weak-coupling limit. In Fig. 4(f), there exists an inflection
in 〈D〉 in the PM state around U ≈ 10t , meaning that the
first-order Mott transition at half filling turns into a continuous
crossover at finite dopings. For U < 8.0, the double occu-
pancy in the AFM state is smaller than that in the PM state
while the opposite is true for U > 8.0, bespeaking that the
AFM at small U is triggered by the interaction potential gain
while that in the large-U limit is not driven by this mechanism.
This picture can also be seen in Fig. 5, where there exists
a region (5.4 < U < 8.0) with �E (S)

U < 0 and �E (S)
K < 0,

signaling that the AFM in this region is supported by both the
kinetic energy and interaction potential gain. The dependence
of the quantities discussed above upon the interaction strength
at various dopings of δ = 0.02, 0.0375, 0.1, 0.1531, 0.1725
obtained through six-site cluster approximation are presented
in Fig. 6, where δ = 0.1531 is the critical doping for the AFM
to PM phase transition at U = 40, and δ = 0.1725 is the max-
imum of δM , i.e., the boundary between the AFM and PM state
(see Figs. 8 and 11). The following results are concluded: (i)
In Fig. 6(a), the increasing Z with δ for all coupling strengths
suggests that the system with the increasing doping tends to be
metallic. When U > UMott, the quasiparticle residues decrease
progressively to constants, manifesting that the properties in
the AFM state are controlled by the underlying Mott transi-
tion. (ii) In Fig. 6(b), �′

AFMs at all dopings exhibit a maximum
around the crossover coupling strength Uc(δ) that grows with
δ. (iii) In Fig. 6(d), C12 increases monotonically with U at
all dopings and diminishes as δ goes up, which makes it
eligible to be an indicator of the magnitude of correlations.
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FIG. 6. (a) The quasiparticle weight Z , (b) the AFM en-
ergy gap �AFM/t , (c) the staggered magnetization M, (d)–(f) the
holon-doublon correlator between the nearest neighbors C12, the
next-nearest neighbors C13, and the next-next-nearest neighbors C14,
(g) the expectation value of the cluster slave-spin Hamiltonian, and
(h) the double occupancy 〈D〉 as function of U at a series of doping
concentrations δ = 0.02 (red), 0.0375 (blue), 0.1 (green), 0.1531
(dark green), 0.1725 (violet) in the AFM state obtained by the six-site
cluster.
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between the AFM and PM states.

(iv) In Fig. 6(g), compared to the PM state, 〈HS
6-site〉/6 is

suppressed dramatically as soon as AFM sets in and this effect
is weakened by the increasing δ.

The compressibility of the system is defined as κ =
n−2∂n/∂μ. At U = 0, it is calculated by using the noninter-
acting DOS D(γ ), Eq. (13), via

κ (μ) =

⎧⎪⎨
⎪⎩

N (|μ|)[
3
4 +∫ μ

−1 N (|γ |)dγ

]2 , 0 < δ < 1
4 ,

Ñ (|μ|)[ ∫ μ

−3 Ñ (|γ |)dγ

]2 ,
1
4 < δ < 1,

(31)

which is proportional to the free DOS. For U > 0, κ should
evolve simultaneously with the quasiparticle DOS which
makes it adequate to indicate the dependence of this quantity
upon interaction. The κ ′s as a function of δ at U = 0, 2, 4, 6,
and 8 are plotted in Fig. 7. For U < UAFM, the compressibility
near the van Hove singularity is suppressed most drastically
by interaction, while that at low energy (near the Dirac points)
remains very close to the noninteracting one, reflecting that
the Dirac cone structure is very robust, and the DOS of the
quasiparticles is transferred away from the van Hove singu-
larity as U increases. Furthermore, at U = 4, 6, there exhibit
a discontinuity at δ = δM where the AFM to PM phase tran-
sition occurs, and the one-sided peak of κ as δ approaches
δM manifests that the system now is an itinerant AFM metal.
However, at U = 8, there exist two consecutive discontinu-
ities: (i) between positively and negatively divergent κ; (ii)
between negatively divergent and positive small κ .

IV. PHASE DIAGRAM

The staggered magnetization M with U and δ being its
parameters is plotted in Fig. 8, where the phase boundary
between the AFM and PM states is delineated by δM (U ). Ob-
viously, M maximizes at small dopings and large couplings.
The phase boundary δM (U ) shows a nonmonotonic behavior
upon U that may be connected to the crossover of �AFM as
U increases. We also notice that M saturates when U > UMott

at small dopings, reflecting that the physical properties in the
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FIG. 9. The AFM gap �AFM as function of U and δ obtained by
six-site cluster with δM (U ) separating the AFM and PM states.

AFM state are dominated by the underlying Mott transition in
the half-filled PM state.

The AFM energy gap �AFM in the same parameter space
is plotted in Fig. 9, where the phase boundary δM (U ) still
holds, denoting that there are no intermediate states before the
semimetal to AFMI transition occurs. An overall crossover be-
tween the weak- and strong-coupling regimes can be observed
in �AFM when U grows, at which �AFM reaches its maximum,
and the coupling Uc for this crossover is highly δ dependent,
in contrast to that in the square lattice case [30]. For U > Uc,
the maximum of �AFM occurs at δ ∼ 0.075, leading to an
interesting vertical reentrance behavior as δ increases, the
same as the square lattice case [30].

Combining Figs. 8–10, an overall phase diagram in the
U -δ plane emerges in Fig. 11. In contrast to the square lattice
case [30], the crossover Uc in the AFM state at which �AFM
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FIG. 10. The compressibility κ as function of U and δ obtained
by six-site cluster. The staircase is an artifact because of discrete U ′s
adopted to calculate κ , i.e., �U = t when U � 10t and �U = 2t
when 10t < U � 20t , which can only be eliminated in the �U → 0
limit. The blue region between δ1

κ (U ) and δ2
κ (U ) is characterized by

κ < 0, where δ1
κ (U ) and δ2

κ (U ) are delineated by the midpoints of the
blue and red steps, respectively. The discontinuities in κ at these two
phase boundaries are reflected in the color jumpings.
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FIG. 11. The U -δ phase diagram of the honeycomb lattice Hub-
bard model within the six-site cluster scheme. The critical coupling
UMott = 8.36t for the Mott transition in the half-filled PM state is
marked by the red triangle. The crossover coupling Uc(δ) in the AFM
state at δ = 0, 0.02, 0.0375, 0.1, 0.1531, and 0.1725 are symbolized
by red squares, at which �AFM reaches its maximum. The half-filling
case with U > 2.43t is highlighted by the heavy blue line, in which
the system is an AFM insulator with κ = 0.

is maximized, symbolled by the red squares, is shown to be
highly δ dependent. On the other hand, Uc at δ = 0 is smaller
than UMott (red triangle), implying that at half filling, the
coupling strength separating the weak- and strong-coupling
regimes is suppressed by long-range AFM correlations [30].
The blue region in this figure enclosed by δ1

κ (U ) and δ2
κ (U )

is characterized by M �= 0 and κ < 0 with δ1
κ (U ) being the

phase boundary between M �= 0, κ > 0 and M �= 0, κ < 0,
and δ2

κ (U ) between M �= 0, κ < 0 and M = 0, κ > 0. The
region with κ < 0 is extremely small compared to the square
lattice Hubbard model [30], and exists only in the vicinity of
the phase boundary between the AFM and PM state and at
intermediate U . It should be noted that the phase diagram has
been greatly improved from the two-site to six-site schemes,
since in the former case UAFM jumps from 2.75t at δ = 0 to
25.5t at δ = 0.02, while in the latter it is almost continuous
from 2.43t to 2.97t .

V. CONCLUSION

We have exploited the cluster slave-spin method to explore
extensively the ground state properties of the one-band honey-
comb lattice Hubbard model with U and δ as its parameters.
At half filling, the first-order semimetal to insulator Mott
transition in the PM state is revealed, characterized by dis-
continuities and hystereses in all quantities at UMott = 8.36t
[18,21,44]. In the AFM state, a single direct and continu-
ous phase transition between PM semimetal and AFMI at
UAFM = 2.43t is substantiated, which belongs to the Gross-
Neveu-Yukawa universality class [9–16,18], precluding the
existence of intermediate phases such as a spin liquid state. At
finite dopings, an extended crossover is discovered between
the weak- and strong-coupling regimes in the AFM state at
which the AFM energy gap �AFM reaches its maximum, and
the AFM within this crossover is driven by both the kinetic
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energy and interaction potential gain. The interaction Uc for
this crossover is shown to be highly δ dependent, in contrast to
the square lattice system where Uc remains almost unchanged
with large dopings [30].

Moreover, for the half-filled system, by analytically calcu-
lating the relation between M and �AFM in the vicinity of PM
semimetal to AFM insulator transition, Eq. (28), we found
that to the leading order, M is linearly dependent on �AFM,
compared to the square lattice result that is proportional to
�AFM(ln �AFM)2 (Ref. [30]). This difference is consistent
with the vanishing noninteracting DOS at Dirac points in the
honeycomb lattice, in contrast to the van Hove singularity of
the free electron DOS at the Fermi surface in a half-filled
square lattice.

Finally, an overall phase diagram in the U -δ plane is
presented in Fig. 11; the phase boundary δM (U ) separating
the AFM and PM phases shows a nonmonotonic behavior
with the increasing U , which is consistent with the crossover
behavior of �AFM. The phase boundary between the AFM
metal with κ > 0 and the AFM insulator with κ = 0 locates
exactly at δ = 0. The region with κ < 0 only exists in the
vicinity of the phase boundary between the AFM and PM
state and at intermediate coupling strengths, whose area is
extremely small compared to the counterpart in the square
lattice Hubbard model [30].

It is worth mentioning that though lacking available data
from the previous studies to verify our results at finite dopings,
we corroborate that there are no intermediate states such as

a spin liquid between the PM semimetal and AFMI phases
at half filling [9–16,18], and the critical transition exponent
of staggered magnetization between these two states is quite
close to those from large-scale QMC simulations [9,11,15,17]
and density matrix embedding theory calculations [21], which
could well justify our calculations. We would like to men-
tion that the interesting physics in the Hubbard model on
a honeycomb lattice could be connected with the properties
of graphene-based material [40,46–48], and also the optical
lattice systems for ultracold atoms [49]. The ionic Hubbard
model with ultracold fermions based on the honeycomb lattice
has been realized where the transition from metal to charge
density wave has been observed, and our theoretical prediction
is consistent with the experimental results at the limit of stag-
ger potential equal to zero. We hope our full phase diagram
in the parameter space of on-site interaction and doping may
simulate further experimental detection on graphene-based
material or optical lattice systems for ultracold atoms.
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