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In this paper, we provide state sum path integral definitions of exotic invertible topological phases proposed in
the recent paper by Hsin, Ji, and Jian [arXiv:2105.09454 [cond-mat.str-el]. The exotic phase has time-reversal (T )
symmetry, and depends on a choice of the space-time structure called the Wu structure. The exotic phase cannot
be captured by the classification of any bosonic or fermionic topological phases and thus gives a novel class of
invertible topological phases. When the T symmetry defect admits a spin structure, our construction reduces to a
sort of the decorated domain wall construction, in terms of a bosonic theory with T symmetry defects decorated
with a fermionic phase that depends on a spin structure of the T symmetry defect. By utilizing our path integral,
we propose a lattice construction for the exotic phase that generates the Z8 classification of the (3+1)d invertible
phase based on the Wu structure. This generalizes the Z8 classification of the T -symmetric (1+1)d topological
superconductor proposed by Fidkowski and Kitaev. On oriented space-time, this (3+1)d invertible phase with a
specific choice of Wu structure reduces to a bosonic Crane-Yetter TQFT which has a topological ordered state
with a semion on its boundary. Moreover, we propose a subclass of G-SPT phases based on the Wu structure
labeled by a pair of cohomological data in generic space-time dimensions. This generalizes the Gu-Wen subclass
of fermionic SPT phases.
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I. INTRODUCTION

The classification of gapped phases is an important prob-
lem in condensed matter physics. Though the classification
problem is difficult and unsolved in general, one can simplify
the problem by considering a simplified class of systems with
a unique gapped ground state on arbitrary closed spatial man-
ifolds. Such phases are called invertible topological phases. In
the presence of a global symmetry G, invertible topological
phases are also called symmetry protected topological (SPT)
phases protected by G.1

In the case of free fermions, a complete classification of
SPT phases has been obtained using K-theory [2,3]. In the
case of intrinsically interacting systems, the classification in
general differs from the free phases [4], and we have to
use a completely different method to perform the classifi-
cation [1,5–12]. For example, a large class of interacting
bosonic SPT phases with the global symmetry can be clas-
sified by utilizing group cohomology [1]. For the case of
fermionic systems, the SPT phases have a richer classifi-
cation than the bosonic phases; for example, Gu and Wen
found that a subclass of fermionic SPT phases is classified

1Precisely speaking, it is more common to define SPT phases as
invertible phases which become trivial when we forget the global
symmetry, following Ref. [1]. For example, the (1+1)-dimensional
topological superconductor (Kitaev wire) is not counted as an SPT
phase based on such a definition, though it is an invertible topological
phase. In this paper, we do not make a careful distinction between the
two concepts, namely invertible phases and SPT phases.

by a pair of cohomological data [5], generalizing the classi-
fication of bosonic phases. These fermionic SPT phases are
called Gu-Wen phases or supercohomology phases. Later, a
comprehensive classification scheme of SPT phases utilizing
cobordism group is proposed in Ref. [6], which is thought
to classify invertible field theories which effectively describe
SPT phases. The cobordism group provides a generic and
powerful framework that correctly predicts the classification
of interacting invertible topological phases, based on on-
site (0-form) global symmetries, time-reversal symmetry, or
higher-form symmetries [6,13–16].

So far, almost all the invertible topological phases dis-
cussed in literature have been either bosonic or fermionic.
This implies that the effective field theories describing these
topological phases require either oriented or spin structure (or
these space-time structures twisted by other symmetry groups
such as pin+ or pin−) of the space-time.2 As such, the classifi-
cation of invertible topological phases based on the cobordism
groups has been performed for the corresponding field theo-
ries with (possibly twisted) oriented or spin structure.

Recently, it was proposed in Ref. [22] that there are
nontrivial invertible topological field theories based on
the space-time structure called Wu structure, which is

2Here we assume that the effective field theories are Lorentz invari-
ant, and thereby oriented SO(d ) or spin group Spin(d ) contains the
Lorentz group. Recently, there are also classes of topological phases
whose effective field theories lack the Lorentz invariance, such as
fractons [17–20] or those realized by foliated field theories [21].
These theories are beyond the scope of the present paper.
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inequivalent to any (possibly twisted) oriented or spin struc-
ture previously discussed in literature, and thus gives a new
class of invertible field theories, which are phrased neither
as bosonic nor fermionic. The topological phases that depend
on the space-time Wu structure are called exotic topological
phases. Wu structure in d space-time dimensions corresponds
to the global symmetry given by a specific nontrivial mixture
of the space-time Lorentz symmetry O(d ) and the 1-form
Z2 symmetry. Since the Lorentz group is taken as O(d ), the
exotic topological phases possess the time-reversal symmetry.
Mathematically, the symmetry is described by a specific 2-
group that corresponds to a sort of the extension of O(d ) by
the 1-form Z2 symmetry. This generalizes spin/pin structure
required for fermionic systems, where one extends the Lorentz
symmetry SO(d ) or O(d ) by the ordinary (0-form) Z2 sym-
metry that corresponds to the Z2 fermion parity.

In this paper, we explore a lattice realization of exotic
topological phases. We define topologically invariant path
integral constructions of exotic invertible topological phases
in and more than (3+1)d in terms of state sum on a lattice. In
particular, the existence of an explicit state sum for the topo-
logical path integral of exotic invertible topological phases
suggests that there should also exist corresponding commut-
ing projector Hamiltonians, tensor network descriptions, and
explicit quantum circuits that prepare these exotic topological
phases. We leave it to future work to explicitly develop these
descriptions.

A. Summary of the main results

Here we summarize the main results of the paper. First,
we propose a state sum path integral for a specific the-
ory z(η, a) on a space-time d-manifold M equipped with
a triangulation, coupled with the Wu structure η and the
(d − 3)-form Z2 symmetry whose background gauge field is
given by a ∈ Zd−2(M,Z2). The partition function z(η, a) is
not topologically invariant, but has an ’t Hooft anomaly of
the (d − 2)-form Z2 symmetry characterized by the (d + 1)-
dimensional response theory

(−1)
∫

Sq3(a) = (−1)
∫

a∪d−5a, (I.1)

where Sqi denotes the Steenrod operation of cohomology
groups [23] and ∪i is higher cup product, see Appendix A
for their review. That is, if one considers gauge transforma-
tion and the re-triangulation of the space-time, the partition
function transforms as

z(M ′; η′, a′) = (−1)
∫

M̃ Sq3(a)z(M; η, a), (I.2)

where M̃ = M × [0, 1] is a (d + 1)-manifold that interpolates
M and M ′ equipped with the Wu structure and the (d − 2)-
form gauge field a, which restricts to (η, a) and (η′, a′) on M
and M ′ respectively. M ′ is a d-manifold which is the same
as M with a different triangulation and the gauge field a′,
equivalent to a in cohomology [a] = [a′].

One can further show that the partition function becomes
a quadratic function of the (d − 2)-form gauge field a ∈
Zd−2(M,Z2) which satisfies the quadratic property

z(η, a)z(η, b) = z(η, a + b)(−1)
∫

M a∪d−4b. (I.3)

The construction of the theory z(η, a) is done by a sort of
decorated domain wall construction. Namely, it involves dec-
orating the symmetry defect with a topological phase in lower
space-time dimensions. That is, z(η, a) is given by decorating
the codimension-1 defect of the time-reversal (T ) symmetry
of a bosonic phase with a specific gapped theory, which is
expressed as a path integral of Grassmann variables supported
on the T symmetry defect. The Grassmann integral z(η, a)
is originally introduced in Ref. [24] and mathematically for-
mulated in Ref. [25]. This Grassmann integral is essentially
the same as that utilized to express the partition function of
fermionic SPT phases based on the spin structure by Gu and
Wen [5]. In particular, when the T symmetry defect admits the
spin structure, we find that the Wu structure can be specified
by a choice of spin structure on the codimension-1 T symme-
try defect. If the Wu structure is given in this manner, our path
integral of z(η, a) is precisely given by a decorated domain
wall construction, where we decorate the T symmetry defect
of a bosonic topological phase with the fermionic topological
phase based on the spin structure of the T symmetry defect.

In the case of the space-time dimension d = 4, the theory
z(η, a) gives a topologically invariant path integral, since the
’t Hooft anomaly (I.1) vanishes in d = 4. Actually, when the
space-time is oriented, the Wu structure can be taken to be
trivial, so in that case the exotic topological phase reduces
to a bosonic topological phase. In particular, on oriented 4-
manifolds z(η, a) reproduces a (3+1)d bosonic Crane-Yetter
TQFT based on a unitary modular tensor category C = {1, s}
that has a single nontrivial anyon s which is a semion.

For the case of d = 4, one can gauge the 1-form Z2

symmetry of z(η, a), which gives the Arf-Brown-Kervaire
(ABK) invariant based on the quadratic refinement z(η, a) of
[a] ∈ H2(M,Z2). The resulting theory turns out to generate
the Z8 classification of the exotic invertible topological phase
[22]. This generalizes the Z8 classification of the (1+1)d pin−

invertible topological phases that corresponds to the (1+1)d
topological superconductor proposed by Fidkowski and Ki-
taev [4].

In addition, by utilizing the lattice construction of z(η, a)
we propose a subclass of the exotic invertible topological
phases with an onsite (0-form) symmetry G, which contains
anti-unitary time-reversal symmetry. In this paper, we limit
ourselves to the case of G = G0 × ZT

2 with ZT
2 a time-reversal

symmetry, and the total symmetry group is direct product of
G0 and the 1-form symmetry of the Wu structure. It should
be interesting to consider the nontrivial 2-group that involves
G and the 1-form Z2 symmetry of the Wu structure. We
comment on the expectation about some of twisted cases in
the discussion (Sec. VI), and leave the study on such a twisted
Wu structure by G for future work.

Then, we propose a subclass of exotic SPT phases labeled
by a pair of the cohomological data

(νd , nd−2) ∈ Cd
ρ (BG, U(1)) × Zd−2(BG,Z2), (I.4)

which are subject to the constraint

δρνd = 1
2 Sq3(nd−2) mod 1, (I.5)

where ρ denotes the twisted G-action on U(1) that acts by
complex conjugation. This generalizes the Gu-Wen phase [5]
that constitutes the subclass of the fermionic SPT phases,
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labeled by (νd , nd−1) ∈ Cd
ρ (BG, U(1)) × Zd−1(BG,Z2) sub-

ject to the Gu-Wen equation which basically replaces Sq3 in
(I.5) with Sq2.

In general, by utilizing the theory z(η, a), one can produce
a state sum path integral of an exotic topological phase, start-
ing with a bosonic theory with a (d − 3)-form Z2 symmetry
which has a specific ’t Hooft anomaly. That is, we consider a
partition function of a bosonic topological phase Zb(a) cou-
pled with a (d − 2)-form Z2 gauge field a ∈ Zd−2(M,Z2).
Let us assume that the bosonic theory Zb(a) has an ’t Hooft
anomaly characterized by the response action (−1)

∫
Sq3(a).

Then, the partition function of the exotic topological phases
can be constructed as

Z (η) ∝
∑

[a]∈Hd−2(M,Z2 )

Zb(a)z(η, a). (I.6)

This construction of exotic topological phases generalizes
that of fermionic topological phases by Gaiotto and Kapustin
[24] based on fermion condensation within the path integral
framework.

This paper is organized as follows. After reviewing Wu
structure in Sec. II, we provide a path integral definition
for the theory coupled with the Wu structure in Sec. III.
In Sec. IV, we study the space-time dimensions d = 4, and
construct an invertible topological phase that generates the
Z8 classification. We also show that the phase is equivalent
to a bosonic Crane-Yetter TQFT in the oriented case with a
specific choice of the Wu structure. In Sec. V, we propose a
Gu-Wen type subclass of the G-SPT phases based on the Wu
structure.

II. REVIEW ON WU STRUCTURE

In this section, we briefly review for Wu structure of
the space-time in continuum. First of all, let us recall spin
structure of the space-time required for fermionic phases. Wu
structure is then regarded as a natural generalization of spin
structure.

A. Spin structure

A relativistic quantum field theory in d space-time di-
mensions possesses the Lorentz SO(d ) symmetry. However,
since fermions are spinors, fermions transform according to
the double cover of SO(d ), which is Spin(d ). To define the
field theory on a generic space-time manifold, one needs to
consider a SO(d ) bundle φ : M → BSO(d ), which is the tan-
gent bundle T M of an oriented triangulated manifold M. In
order to have fermions, the transition functions φi j ∈ SO(d )
defined on 1-simplices 〈i j〉 must be lifted to φ̃i j ∈ Spin(d ).
Since Spin(d ) is the group extension

Z2 → Spin(d ) → SO(d ) (II.1)

whose extension is given by w2 ∈ H2(BSO(d ),Z2). Then,
Spin(d ) is identified as SO(d ) × Z2 as a set, so we can
express φ̃i j as a pair (φi j, ηi j ) ∈ SO(d ) × Z2. The nontrivial
group extension is reflected in the multiplication law of Z2

elements ηi j twisted by w2. Namely, for transition functions

φ̃i j ∈ Spin(d ), we have the multiplication law

φ̃01φ̃12 = (φ01φ12, η01 + η12 + w2(φ01, φ12)). (II.2)

Due to the cocycle condition φ̃01φ̃12 = φ̃02, we find on each
2-simplex 〈012〉

η01 + η12 + η02 = w2(φ01, φ12) (II.3)

In coordinate-free notation, this is precisely the equation δη =
w2.

B. Wu structure

The Wu structure is a natural generalization of the spin
structure illustrated above. The symmetry groups involved
are Lorentz group O(d ) that includes time-reversal symmetry,
and a 1-form Z2 symmetry denoted as Z[1]

2 here. Then, the
total structure of the symmetry G is described as a nontrivial
mixture called a 2-group between O(d ) and Z[1]

2 symmetry,

Z[1]
2 → G → O(d ) (II.4)

and the 2-group structure involving O(d ) and Z[1]
2 is specified

by the cohomology class w1w2 ∈ H3(BO(d ),Z2) called the
Postnikov class. Analogously to the nontrivial group exten-
sion for the spin structure, a nontrivial 2-group has a distinct
algebra of symmetry generators, thereby has a distinct con-
figuration of background gauge field from that of the direct
product Z[1]

2 × O(d ).
That is, if we denote the background gauge field of Z[1]

2
as η ∈ C2(M,Z2) and that of O(d ) as φ : M → BO(d ), then
these background gauge fields are correlated on each 3-
simplex 〈0123〉 as

η012 + η013 + η023 + η123 = w1(φ01)w2(φ12, φ23). (II.5)

In coordinate-free notation, this is precisely the equation δη =
w1w2.

It is worth noting that the background Z[1]
2 gauge field

twisted by the Postnikov class δη = w1w2 reflects the algebra
for the symmetry generators of Z[1]

2 and O(d ) in the 2-group.
To see this, we regard the background gauge field of p-
form symmetry as an insertion of a (d − p − 1)-dimensional
symmetry defects on the Poincaré dual of the (p + 1)-form
background gauge field. Then, a 3-simplex is understood as
an associator which shifts the configuration of 0-form O(d )
symmetry defects by the F -move, see Fig. 1(a).

During the F -move inside a 3-simplex, the three O(d )
symmetry defects φ01, φ12, φ23 meets at the junction in the
middle of the movie, which gives a codimension-3 junction of
the O(d ) symmetry defects, see Fig. 1(b). Then, the 2-group
relation δη = w1w2 means that the Z[1]

2 symmetry genera-
tor w1(φ01)w2(φ12, φ23) is sourced from the codimension-3
junction. The 2-group is understood as the modification of
the associativity of the 0-form O(d ) symmetry generators
by a generator of the 1-form Z[1]

2 symmetry, controlled by
the Postnikov class in H3(BO(d ),Z2). See [26–29] for an
introduction of the 2-group.
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FIG. 1. Wu structure is the nontrivial 2-group between the Lorentz O(d ) symmetry and the Z[1]
2 1-form symmetry. The Wu structure is

specified by a choice of a Z2 2-cochain η with δη = w1w2, where η gives a background gauge field of the Z[1]
2 symmetry. This is understood

as sourcing the Z[1]
2 symmetry defect from the codimension-3 junction of O(d ) symmetry defects on each 3-simplex.

III. PATH INTEGRAL OF AN EXOTIC PHASE

Now we construct a path integral definition for z(η, a) on
a triangulated d-manifold M that depends on the Wu structure
specified by a choice of η ∈ C2(M,Z2) with δη = w1w2, and
a (d − 2)-form gauge field [a] ∈ Hd−2(M,Z2). The partition
function z(η, a) is valued in {±1,±i}. Then, the main proper-
ties of z(η, a) is summarized as follows.

(1) The quadratic property

z(η, a)z(η, b) = z(η, a + b)(−1)
∫

M a∪d−4b. (III.1)

(2) The change of z(η, a) under the gauge transformation
a → a + δχ or under the change of the triangulation is con-
trolled by ’t Hooft anomaly whose response action is given
by

(−1)
∫

Sq3(a). (III.2)

The description of the Wu structure used for z(η, a) is
based on a specific chain S ∈ Zd−3(M,Z2) that represents
the Poincaré dual of the obstruction class w1w2 for the Wu
structure. Then, the Wu structure is specified by a choice
of a (d − 2)-chain E ∈ Cd−2(M,Z2) with ∂E = S, which is
Poincaré dual to η ∈ C2(M,Z2). As discussed in Appendix C,
we prepare S based the choices of the cochain and chain repre-
sentative of w1 and w2 respectively, and then take the pairing
of them. In particular, when the space-time manifold M is
oriented, we take the representative of w1 as zero and thereby
S = 0. So, for oriented space-time manifolds η is closed and
one can specify the Wu structure by [η] ∈ H2(M,Z2). As a
warm-up, we start with the description of the simplest case
z(η, a) on oriented manifolds.

A. Oriented case

Here let M be an oriented manifold. In that case, η is closed
δη = 0, and z(η, 0) is given by

z(η, a) = e2π i
∫

q(a)(−1)
∫

E a, (III.3)

where E ∈ Zd−2(M,Z2) is the Poincaré dual of η, and

q(a) = 1
4 (̂a ∪d−4 â + â ∪d−3 δ̂a), (III.4)

where â ∈ Cd−2(M,Z4) is the Z4 lift of a. When d = 4, the
above q(a) gives a cohomology operation q : H2(M,Z2) →
H4(M,Z4) known as the Pontryagin square [30–32], and thus
z(η = 0, a) is topologically invariant. However, the action
z(η, a) is not topologically invariant for d > 4, because

δ(q(a)) = 1
2 a ∪d−5 a = 1

2 Sq3(a) mod 1. (III.5)

This demonstrates the ’t Hooft anomaly of z(η = 0, a) repre-
sented in (III.2). This can be seen by using the Leibniz rule
for higher cup product

δ(u ∪i v) = (−1)p+q−iu ∪i−1 v + (−1)pq+p+qv ∪i−1 u

+ δu ∪i v + (−1)pu ∪i δv, (III.6)

with u ∈ Cp, v ∈ Cq cochains. According to the Leibniz rule
we have

δ (̂a ∪d−4 â) = 2(−1)d â ∪d−5 â + δ̂a ∪d−4 â

+ (−1)d â ∪d−4 δ̂a,

δ (̂a ∪d−3 δ̂a) = (−1)d â ∪d−4 δ̂a − δ̂a ∪d−4 â + δ̂a ∪d−3 δ̂a.

(III.7)
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Putting these expressions into δ(q(a)) shows (III.5). Next, let us consider a quadratic property of z(η, a) in (III.1). We have

q(a) + q(b) − q(a + b) = 1
4 (̂a ∪d−4 b̂ + b̂ ∪d−4 â + â ∪d−3 δb̂ + b̂ ∪d−3 δ̂a). (III.8)

Here, the right-hand side (rhs) can be rewritten as

q(a) + q(b) − q(a + b) = 1
2 a ∪d−4 b + 1

4δ (̂a ∪d−3 b̂ + δ̂a ∪d−2 b̂) mod 1. (III.9)

To see this, we note that
1
4δ (̂a ∪d−3 b̂) = 1

4 (δ̂a ∪d−3 b̂ + (−1)d â ∪d−3 δb̂ + (−1)d−1â ∪d−4 b̂ + (−1)d b̂ ∪d−4 â)

= 1
4 ((−1)d−1b̂ ∪d−3 δ̂a + (−1)d−1δ(δ̂a ∪d−2 b̂) − δ̂a ∪d−2 δb̂

+ (−1)d â ∪d−3 δb̂ + (−1)d−1â ∪d−4 b̂ + (−1)d b̂ ∪d−4 â).

(III.10)

Here we again used the Leibniz rule (III.6). Since 1
4 δ̂a ∪d−2 δb̂ = 0 mod 1, we have

1
4δ (̂a ∪d−3 b̂) = 1

4 ((−1)d−1b̂ ∪d−3 δ̂a + (−1)d−1δ(δ̂a ∪d−2 b̂)

+ (−1)d â ∪d−3 δb̂ + (−1)d−1â ∪d−4 b̂ + (−1)d b̂ ∪d−4 â) mod 1.
(III.11)

Hence,

1

2
(̂a ∪d−4 b̂) + 1

4
δ (̂a ∪d−3 b̂ + δ̂a ∪d−2 b̂) = (−1)d

4
(̂a ∪d−4 b̂ + b̂ ∪d−4 â + â ∪d−3 δb̂ + b̂ ∪d−3 δ̂a) mod 1. (III.12)

Thus we obtain (III.9). When the space-time manifold M is
oriented, only the first term of the rhs of (III.9) contributes
mod 1 to the integral on M. Thus we obtain the quadratic
property as

z(η, a)z(η, b) = z(η, a + b)(−1)
∫

M a∪d−4b. (III.13)

This is what we want.

B. Unoriented case

Now let us construct the Grassmann integral z(η, a) on a
d-manifold M which might be unoriented. We construct an
unoriented manifold by picking locally oriented patches, and
then gluing them along codimension one loci by transition
functions. The locus where the transition functions are orien-
tation reversing, constitutes a representative of the dual of first
Stiefel-Whitney class w1. We will sometimes call the locus an
orientation reversing wall, represented as a (d − 1)-cycle W
Poincaré dual to w1. For convenience, we endow M with a
barycentric subdivision for the triangulation of M. Namely,
each d-simplex in the initial triangulation of M is subdivided
into (d + 1)! simplices, whose vertices are barycenters of the
subsets of vertices in the d-simplex. We then assign a local
ordering to vertices of the barycentric subdivision, such that
a vertex on the barycenter of i vertices is labeled as i. Each
simplex can then be either a + simplex or a − simplex,
depending on whether the ordering agrees with the orientation
or not, see Fig. 2.

Then, one can explicitly obtain a (d − 3)-cycle S ∈
Zd−3(M,Z2) that represents the Poincaré dual of w1w2 based
on the barycentric subdivision. That is, S is given by the set of
all (d − 3)-simplices of W . Since it is known that the set of all
(D − i)-simplices in a D-dimensional closed manifold gives
the representative of wi [33,34], one can see that S also gives
the representative for the Poincaré dual of w2 in W . The proof
that S represents the Poincaré dual of w1w2 of M is given in
Appendix C.

Analogously to what we did in the oriented case, we would
like to define z(η, a) in terms of the action e2π iq(a) with q(a)
defined in (III.4). However, the action e2π iq(a) does not cor-
rectly produce the quadratic property (III.1); according to the
quadratic property of q(a) obtained in (III.9), we instead have

e2π i
∫

q(a)e2π i
∫

q(b) = e2π i
∫

q(a+b) · (−1)
∫

M a∪d−4b(−1)
∫

W a∪d−3b.

(III.14)

This is because the integration of the coboundary term
1
4

∫
δ (̂a ∪d−3 b̂ + δ̂a ∪d−2 b̂) in (III.9) evaluates nontrivially

on the orientation-reversing wall, as 1
2

∫
W a ∪d−3 b mod 1.

Hence, in order to obtain the desired quadratic property
of z(η, a), we introduce an additional term σ (W ; a) on the
orientation-reversing wall, and define

z(η, a) = e2π iq(a)σ (W ; a)(−1)
∫

E a, (III.15)

FIG. 2. The ± signs of d-simplices near the orientation reversing
wall W for d = 2, which is represented as a red line. The d-simplices
are barycentric-subdivided.
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where σ (W ; a) is a (d − 1)-dimensional action supported on
W , and E ∈ Cd−2(M,Z2) is the Wu structure that satisfies
∂E = S. If W admits a spin structure, E can be taken as
the element of Cd−2(W,Z2) since S represents the Poincaré
dual of w2 on W . Then the Wu structure of M is specified
by the spin structure of W . In that case the action (III.15) is
regarded as a decorated domain wall construction, where one
decorates the T symmetry defect of a bosonic theory with a
spin (fermionic) theory σ (W ; a)(−1)

∫
E a.

σ (W ; a) is realized by the Grassmann integral which is
reviewed in Appendix B. Here we list two main properties
of the Grassmann integral as follows.

(1) The quadratic property

σ (W ; a)σ (W ; a) = σ (W ; a + b)(−1)
∫

W a∪d−3b. (III.16)

(2) if one considers gauge transformation and the re-
triangulation of the space-time, the partition function trans-
forms as

σ (W ′; a′) = (−1)
∫

W̃ Sq2(a)(−1)
∫

SW̃
a
σ (W ; a), (III.17)

where W̃ = W × [0, 1] is a d-manifold that interpolates W
and W ′ equipped with the (d − 2)-form gauge field a, which
restricts to a and a′ on W and W ′ respectively. W ′ is a (d − 1)-
manifold which is the same as W with a different triangulation
and the gauge field a′, equivalent to a in cohomology [a] =
[a′]. SW̃ is a set of all (d − 2)-simplices of W̃ .

Based on the quadratic property of σ (W ; a), one can im-
mediately check that the combined action (III.15) satisfies
the desired quadratic property (III.1), since the extra factor
(−1)

∫
W a∪d−3b for the quadratic property of e2π iq(a) in (III.14)

is precisely canceled by the quadratic property of σ (W ; a) in
(III.16).

One can further check the invariance of z(η, a) under mov-
ing the orientation-reversing wall W , which guarantees the
invariance of the path integral under shifting the T symmetry
defect. To see this, suppose we initially have the orientation-
reversing wall W which is moved to the final configuration
W ′. Let W̃ be a d-manifold that interpolates W and W ′,
∂W̃ = W 	 W

′
. According to the property of the Grassmann

integral (III.17), we have

σ (W ′; a|W ′ ) = (−1)
∫

W̃ Sq2(a)(−1)
∫

SW̃
a
σ (W ; a|W ). (III.18)

Meanwhile, since the action e2π iq(a) is complex conjugated un-
der the orientation reversal, which means when the orientation
is reversed on a single d-simplex

e2π iq(a) → e−2π iq(a) = e2π iq(a) · (−1)a∪d−4a, (III.19)

so the action e2π i
∫

q(a) gets shifted by (−1)
∫

W̃ a∪d−4a. In ad-

dition, the factor (−1)
∫

E a gets shifted by (−1)
∫

SW̃
a
. This

is shown by noting that ∂SW̃ = SW + SW ′ , where SW (resp.
SW ′) is the set of all (d − 3)-simplices of W (resp. W ′), see
Appendix D for the derivation. This means that ∂ (SW̃ + E +
E ′) = 0, with E (resp. E ′) a choice of the Wu structure that
satisfies ∂E = SW (resp. ∂E ′ = SW ′). This shows that

(−1)
∫

E a = (−1)
∫

SW̃
a
(−1)

∫
E ′ a. (III.20)

Thus one can see that the combined action z(η, a) in (III.15) is
completely invariant under the shift of the T defect, since the
variation of each term is precisely canceled with each other.

This shows that the ’t Hooft anomaly of z(η, a) is the
same as the oriented case, since one can freely move the T
symmetry defect without shifting the partition function. Thus
the ’t Hooft anomaly is given by the response action (III.2),

(−1)
∫

Sq3(a). (III.21)

IV. (3+1)D EXOTIC INVERTIBLE PHASE:
Z8 CLASSIFICATION

A. Arf-Brown-Kervaire invariant: Kitaev type phase

In the space-time dimensions d = 4, the partition function
z(η, a) is free of ’t Hooft anomaly and gives a topologically
invariant path integral, with a quadratic property for [a] ∈
H2(M,Z2) given by

z(η, a)z(η, b) = z(η, a + b)(−1)
∫

M a∪b. (IV.1)

Then the partition function for the exotic invertible phase is
obtained by gauging the Z2 1-form symmetry

ZABK(η) = 1√
|H2(M,Z2)|

∑
a∈H2(M,Z2 )

z(η, a). (IV.2)

This is the Arf-Brown-Kervaire (ABK) invariant based on the
quadratic function z(η, a), valued in eight root of unity. The
theory generates the Z8 classification of the exotic invertible
topological phase proposed in Ref. [22]. This generalizes the
Z8 classification of the (1+1)d pin− invertible topological
phases that corresponds to the (1+1)d topological supercon-
ductor [35] proposed by Fidkowski and Kitaev [4], whose
partition function is given by the ABK invariant based on the
quadratic refinement of H1(M,Z2), see Refs. [36–38].

B. Relation to the Crane-Yetter model in oriented case

When the space-time 4-manifold is oriented, the above
theory ZABK(η) with a specific choice of the Wu structure
η = 0 is identical to the Crane-Yetter TQFT [39,40] based
on a unitary modular tensor category (UMTC) whose objects
are {1, s}, with s a semion with s × s = 1, θs = i. The above
ABK invariant on oriented space-time 4-manifolds has been
discussed in Refs. [41,42], and known to be the signature σ

of the oriented 4-manifold mod 8 when the Wu structure is
chosen as η = 0,

ZABK(η = 0) = exp
(

2π i · σ

8

)
. (IV.3)

Meanwhile, the partition function of the Crane-Yetter TQFT
is also a signature,

ZCY = exp
(

2π ic− · σ

8

)
, (IV.4)

where c− is the topological central charge (i.e., framing
anomaly) mod 8 of the given UMTC. Since we have c− = 1
mod 8 for the UMTC {1, s}, the partition function is iden-
tical ZABK(η = 0) = ZCY. In the rest of this section, let us
demonstrate the relation between the above invariant ZABK(η)
in (IV.2) and the Crane-Yetter TQFT at the level of the micro-
scopic action.
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FIG. 3. The amplitude associated to a + 4-simplex 01234, where
the branching structure induces the order on the labels. Black lines
are anyon lines taking values in the input UMTC C.

The Crane-Yetter TQFT takes as input a UMTC C de-
scribing the (2+1)d topological order. It associates a partition
function ZCY(M ) to a triangulated 4-manifold M with branch-
ing structure. See [43,44] for a review of UMTC.

The state sum consists of a summation over all possible
assignments of the following data.

(1) To each 2-simplex (i jk), assign a simple object
(anyon) ai jk ∈ C.

(2) To each 3-simplex 〈i jkl〉, assign an anyon bi jkl ∈ C
and an element of the fusion and splitting space V b

i jl, jkl ⊗
V ikl,i jk

b .
For convenience, we will often ignore the distinction be-

tween a simplex and the anyon or group element data assigned
to it, i.e., simply write ai jk as i jk, or bi jkl as i jkl . We then as-
sign an amplitude Zε(
4 )

b (
4) to each 4-simplex 
4 of M, with
ε(
4) a sign of the 4-simplex determined by the branching
structure. This amplitude is given diagrammatically in Fig. 3,
with a normalization factor

N01234 =
√∏


3∈3-simplices db
3∏

2∈2-simplices da
2

. (IV.5)

The 15j symbol is explicitly given by

Z+(01234) =
∑

d,a∈C
F 024,234,012

d,0234,a R012,234
a

(
F 024,012,234

d

)−1

a,0124

× F 014,124,234
d,0124,1234 × (

F 014,134,123
d

)−1

1234,0134

× F 034,013,123
d,0134,0123 × (

F 034,023,012
d

)−1

0123,0234 (IV.6)

Z−(01234) =
∑

d,a∈C

(
F 024,234,012

d

)−1

a,0234

(
R012,234

a

)−1

× F 024,012,234
d,0124,a

(
F 014,124,234

d

)−1

1234,0124

× F 014,134,123
d,0134,1234

(
F 034,013,123

d

)−1

0123,0134

× F 034,023,012
d,0234,0123 (IV.7)

on a + and − 4-simplex, respectively. Then we can define the
full path integral of the Crane-Yetter TQFT. Let χ be the Euler
characteristic of M, and let T k be the set of k-simplices of M.
Then define

ZCY(M ) = D2(N0−N1 )−χ
∑
{a,b}

∏

2∈T 2 da
2

∏

4∈T 4 Zε(
4 )(
4)∏


3∈T 3 db
3

,

(IV.8)

where Nk is the number of k-simplices of M, da is quantum
dimension of an anyon a, and D = √∑

a∈C d2
a is the total

dimension.
Now let us demonstrate the equivalence of the Crane-Yetter

path integral to the ABK invariant in (IV.2) for the case that C
is a semion theory C = {1, s}. The nontrivial F and R symbols
of C = {1, s} are F sss

s = −1, Rss
1 = i, otherwise 1 [45].

Since the F abc
d is real and symmetric under the permutation

of labels a, b, c for our UMTC, we can see that

Z+(01234) = R012,234
a F 014,124,234

d F 014,134,123
d

× F 034,013,123
d F 034,023,012

d , (IV.9)

and we have Z−(01234) = (Z+(01234))−1. a, d ∈ C that ap-
pears in (IV.9) is uniquely determined since C = {1, s} is
Abelian.

Now, let us consider a 2-form Z2 field a ∈ Z2(M,Z2) and
we take the anyon at a 2-simplex (i jk) s (resp. 1) if we have
ai jk = 1 (resp. ai jk = 0). Then, we show that

Z+(01234) = e2π iq(a). (IV.10)

To see this, we utilize the hexagon equation for UMTC [43]

Rac
e F acb

d Rbc
g = F cab

d R f c
d F abc

d , (IV.11)

with d = a × b × c, e = a × c, f = a × b. Due to the invari-
ance of the F symbol under permutation of labels, it simplifies
as

F abc
d = Rac

e Rbc
g

(
R f c

d

)−1
. (IV.12)
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By putting the hexagon equations to (IV.9) and noting that F is real, and both F and R symbols are symmetric under permutation
of labels, we can see that

Z+(01234) = R012,234(R014,234R014,124(R1234,014)−1)((R014,134)−1(R014,123)−1R1234,014)

× (R034,123R034,013(R0123,034)−1)((R034,023)−1(R034,012)−1R0123,034)

= R012,234 × (R014,234R014,124(R014,134)−1(R014,123)−1)(R034,123R034,013(R034,023)−1(R034,012)−1)

= exp
(
2π i · 1

4 (̂a ∪ â + â ∪1 δ̂a)
) = e2π iq(a). (IV.13)

This equation shows that the Crane-Yetter path integral with
a fixed anyon configuration specified by the 2-form field a
is identical to z(η, a), since the normalization factor (IV.5)
is unit for Abelian UMTC. So if we further sum over the
configuration a ∈ Z2(M,Z2), we obtain the partition function
of the Crane-Yetter TQFT as

ZCY(M ) = D2(N0−N1 )−χ (M )
∑

a∈Z2(M,Z2 )

z(η = 0, a)

=
√

2
−χ (M )

2(N0−N1 )|B2(M,Z2)|
∑

a∈H2(M,Z2 )

z(η = 0, a)

=
√

2
−χ (M ) |H0(M,Z2)|

|H1(M,Z2)|
∑

a∈H2(M,Z2 )

z(η = 0, a)

= 1√
|H2(M,Z2)|

∑
a∈H2(M,Z2 )

z(η = 0, a)

= ZABK(η = 0).
(IV.14)

Thus, on oriented manifolds, the exotic invertible phase
ZABK(η = 0) is identical to the Crane-Yetter TQFT with the
semion UMTC {1, s} at the level of the microscopic action.
We note that the (3+1)d theory z(η = 0, a) = e2π i

∫
q(a) in the

oriented space-time has been studied in Ref. [46] as a lattice
model that realizes a (3+1)d SPT phase protected by 1-form
Z2 symmetry. Also, a Hamiltonian model (the Walker-Wang
model [40]) for the Crane-Yetter TQFT based on the semion
UMTC {1, s} has been obtained in Ref. [47].

V. GU-WEN TYPE PHASES

Finally, we propose an analog of the Gu-Wen SPT phase
based on the onsite (0-form) G symmetry and the Wu structure
of the space-time, labeled by a pair of cohomological data

(νd , nd−2) ∈ Cd
ρ (BG, U(1)) × Zd−2(BG,Z2), (V.1)

which are subject to the constraint similar to the Gu-Wen
equation,

δρνd = 1
2 Sq3(nd−2) mod 1, (V.2)

where ρ denotes the twisted G-action on U(1) where the anti-
unitary elements act by complex conjugation.

By utilizing the path integral of z(η, a), it is a simple matter
to consider the Gu-Wen type phase coupled with the Wu
structure, for a given data of (νd , nd−2) ∈ Cd

ρ (BG, U(1)) ×
Zd−2(BG,Z2) with δρνd = 1

2 Sq3(nd−2) mod 1. For a given

G-gauge field g : M → BG, the action is defined as

Z (M; g, η) = z(η, g∗nd−2) exp

(
2π i

∫
M

g∗νd

)
. (V.3)

Due to the Gu-Wen type equation (V.2), one can see that the ’t
Hooft anomaly is canceled out in the expression of Z (M; g, η),
and therefore provides a topologically invariant theory.

VI. DISCUSSION

In this paper, we studied a state sum path integral that
realizes an exotic invertible topological phase based on Wu
structure of the space-time. In the study of the Gu-Wen type
exotic G-SPT phases, we only considered the case of G =
G0 × ZT

2 with ZT
2 a time-reversal symmetry, and the total

symmetry group is direct product of G0 and the 1-form sym-
metry of the Wu structure. It should be interesting to consider
the case where G is not a direct product between unitary group
and ZT

2 , or the case of the nontrivial 2-group that involves G
and the 1-form Z2 symmetry of the Wu structure.

For instance, one can think of the case G = G0 × ZT
2 and

G0 has a 2-group structure with respect to the 1-form Z2

symmetry of the Wu structure, characterized by the Postnikov
class ω ∈ H3(BG0,Z2). In that case, the Wu structure is
twisted as δη = w1w2 + ω. Since z(η, a) constructed in this
paper has the dependence on η in the form of (−1)η∪a, we
expect the extra contribution to the ’t Hooft anomaly given
by the response action (−1)

∫
ω∪a in the twisted case. Hence,

z(η, a) for the twisted Wu structure is expected to have the ’t
Hooft anomaly characterized by the response action

(−1)
∫

Sq3(a)+ω∪a. (VI.1)

Then, to define the Gu-Wen type phase using the pair
(νd , nd−2) ∈ Cd

ρ (BG, U(1)) × Zd−2(BG,Z2) in the form of
(V.3), we need a twisted version of the Gu-Wen equation

δρνd = 1
2 (Sq3(nd−2) + ω ∪ nd−2) mod 1. (VI.2)

It would be interesting to have an explicit lattice construction
of these Gu-Wen type phases based on the twisted Wu struc-
ture.

While we focused on the Wu structure based on the 2-
group δη = w1w2, it would also be interesting to consider
the Wu structure realized by a higher n-group involving the
Lorentz O(d ) symmetry and the (n − 2)-form Z2 symme-
try, given by the trivialization of the (n + 1)-th Wu class
δη = νn+1 [23,48]. In general, the Wu class in Hn(N,Z2)
has a property that Sqn+1(x) + νn+1 ∪ x is exact on a closed
(d + 1)-manifold N , for any x ∈ Hd−n(N,Z2).
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Hence, we expect that a generalization of z(η, a) with a ∈
Zd−n(M,Z2) given in the form of z(η, a) = z′(a)(−1)

∫
η∪a

also exists for n-th Wu structure, where z′(a) is regarded as
a coboundary of a trivial cochain Sqn+1(a) + νn ∪ a evalu-
ated on a space-time d-manifold M. Since the (−1)

∫
η∪a part

has an ’t Hooft anomaly characterized by a response action
(−1)

∫
νn+1∪a, we expect that the generalization of z(η, a) for

the n-group has an ’t Hooft anomaly with the response action

(−1)
∫

Sqn+1(a). (VI.3)

It would be interesting to consider an explicit lattice construc-
tion of the theory z(η, a) based on the higher Wu structure,
and Kitaev or Gu-Wen type phases obtained by utilizing this
theory.
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APPENDIX A: REVIEW ON HIGHER CUP PRODUCT

A branching structure on a triangulation is a local or-
dering of vertices, which can be specified by an arrow on
each 1-simplex 〈i j〉, such there are no closed loops on any
2-simplices. This defines a total ordering of vertices on ev-
ery single d-simplex 〈0 . . . d〉. In this Appendix, we review
cochain-level product operation called higher cup product,
whose definitions are based on branching structure of the
triangulation. See also Ref. [49] for a reference on higher cup
product.

Let M be a triangulated d-dimensional manifold. Firstly,
the cup product gives the product of cochains

− ∪ − : Ck (M,Zn) × Cl (M,Zn) → Ck+l (M,Zn), (A1)

whose explicit form is written as

(a ∪ b)(0, . . . , k + l ) = a(0, . . . , k)b(k, . . . , k + l ). (A2)

Note that this definition of cup product depends on the
branching structure on the triangulation, where the ordering
of vertices on each (k + l )-simplex is specified as 0 → 1 →
· · · → k + l . The cup product satisfies the Leibniz rule at the
cochain level,

δ(a ∪ b) = δa ∪ b + (−1)ka ∪ δb. (A3)

According to the Leibniz rule, one can show that
the cup product defines the product of cohomologies
Hk (M,Zn) × Hl (M,Zn) → Hk+l (M,Zn). Actually, for
given a ∈ Zk (M,Zn), b ∈ Zl (M,Zn), the shift of these
cocycles by coboundaries is evaluated as

(a + δA) ∪ (b + δB)

= a ∪ b + δ((−1)ka ∪ B + A ∪ b + A ∪ δB), (A4)

so this also shifts a ∪ b by a coboundary, thus defines a map
between cohomologies. Such a product operation defined on
cohomologies is called a cohomology operation.

As a generalization of the cup product, the higher cup
product ∪i gives [50]

− ∪i − : Ck (M,Zn) × Cl (M,Zn) → Ck+l−i(M,Zn), (A5)

whose explicit form is written as

(a ∪i b)(0, . . . , k + l − i)

=
∑

0� j0<···< ji�k+l−i

(−1)p · a(0 → j0, j1

→ j2, . . . )b( j0 → j1, j2 → j3, . . . ). (A6)

Here, the notation i → j denotes all vertices from i to j, {i, i +
1, . . . , i + j}. p is the number of permutations need to bring
the sequence of vertices

0 → j0, j1 → j2, . . . , j0 +1 → j1 − 1, j2 +1 → j3 −1, . . .

(A7)

to the sequence

0 → k + l − i. (A8)

In particular, ∪0 is identified as the cup product ∪ defined
in (A2). The higher cup product is subject to the generalized
Leibniz rule,

δ(a ∪i b) = (−1)k+l−ia ∪i−1 b + (−1)kl+k+l b ∪i−1 a

+ δa ∪i b + (−1)ka ∪i δb, (A9)

which is regarded as that the noncommutative property of
∪i−1 is controlled by the ∪i product. According to the above
Leibniz rule, for closed a and b, one can see that a ∪i b is not
necessarily closed, δ(a ∪i b) = a ∪i−1 b + (−1)kl+k+l b ∪i−1

a for a ∈ Zk (M,Zn), β ∈ Zl (M,Zn). Hence, the product ∪i

doesn’t give a cohomology operation for i > 0.
However, when we take Zn as Z2 it turns out that the map

Sqd−i(a) : Zk (M,Z2) → Zk+d−i(M,Z2)

Sqd−i(a) := a ∪i+k−d a
(A10)

does give a cohomology operation. Actually, one can
check that Sqd−i(a + δA) = Sqd−i(a) + δ(a ∪i+k−d A +
A ∪i+k−d a + A ∪i+k−d−1 A + A ∪i+k−d δA) by using the
generalized Leibniz rule. This shows that Sqd−i defines a map
Hk (M,Z2) → Hk+d−i(M,Z2).

For convenience, we extend the definition of the Sqd−i

operation to nonclosed cochains. For a given λ ∈ Ck (M,Z2),
we define

Sqd−i(λ) : Ck (M,Z2) → Ck+d−i(M,Z2), (A11)

Sqd−i(λ) := λ ∪i+k−d λ + δλ ∪i+k−d+1 λ. (A12)

One can immediately check that Sqd−i commutes with the
coboundary,

δ Sqd−i(λ) = Sqd−i(δλ). (A13)

APPENDIX B: THE DEFINITION OF σ(W ; a): GU-WEN
GRASSMANN INTEGRAL

In this Appendix, we provide the definition of σ (W ; a) in-
troduced in Sec. III B, and demonstrate the properties (III.16)
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FIG. 4. Assignment of Grassmann variables on 1-simplices in
the case of d = 2. θ (respectively θ ) is represented as a black (re-
spectively white) dot.

and (III.17). σ (W ; a) is realized by a theory called the Gu-
Wen Grassmann integral [5,24], expressed as a path integral
of Grassmann variables supported on W . We note that W is
oriented, and the sign of each (d − 1)-simplex of W is defined
by taking the sign of the neighboring d-simplex of M.

To construct the Grassmann integral σ (W ; a), we assign a
pair of Grassmann variables θe, θ e on each (d − 2)-simplex
e of W such that a(e) = 1, we associate θe on one side of
e contained in one of (d − 1)-simplices of W neighboring e
(which will be specified later), θ e on the other side. Then, we
define σ (W ; a) as

σ (W ; a) =
∫ ∏

e|a(e)=1

dθedθ e

∏
t

u(t ), (B1)

where t denotes a (d − 1)-simplex of W , and u(t ) is the
product of Grassmann variables contained in t . For in-
stance, for (d − 1) = 2, u(t ) on t = (012) is the product of
ϑ

a(12)
12 , ϑ

a(01)
01 , ϑ

a(02)
02 . Here, ϑ denotes θ or θ depending on the

choice of the assigning rule, which will be introduced later.
The order of Grassmann variables in u(t ) will also be defined
shortly. We note that u(t ) is ensured to be Grassmann-even
since a is closed.

Due to the fermionic sign of Grassmann variables, σ (W ; a)
becomes a quadratic function, whose quadratic property de-
pends on the order of Grassmann variables in u(t ). We will
adopt the order used in Gaiotto-Kapustin [24], which is de-
fined as follows.

(1) For t = (01 . . . d − 1), we label a (d − 2)-simplex
(01 . . .̂ i . . . d − 1) [i.e., a (d − 1)-simplex given by omitting
a vertex i] simply as î.

(2) Then, the order of ϑi for + (d − 1)-simplex t is defined
by first assigning even (d − 2)-simplices in ascending order,
then odd simplices in ascending order again:

0̂ → 2̂ → 4̂ → · · · → 1̂ → 3̂ → 5̂ → . . . (B2)

(3) For − (d − 1)-simplices, the order is defined in oppo-
site way:

· · · → 5̂ → 3̂ → 1̂ → · · · → 4̂ → 2̂ → 0̂. (B3)

For example, for (d − 1) = 2, u(012) = ϑ
a(12)
12 ϑ

a(01)
01 ϑ

a(02)
02

when (012) is a + triangle, and u(012) = ϑ
a(02)
02 ϑ

a(01)
01 ϑ

a(12)
12

for a − triangle. Then, we choose the assignment of θ and θ

on each e such that, if t is a + (resp. −) simplex, u(t ) includes
θ e when e is labeled by an odd (resp. even) number, see Fig. 4.

Based on the above definition of u(t ), the quadratic prop-
erty of u(t ) is given by (III.16),

σ (W ; a)σ (W ; a′) = σ (W ; a + a′)(−1)
∫

W a∪d−3a′
, (B4)

for closed a, a′. To see this, we just have to bring the product
of two Grassmann integrals

σ (W ; a)σ (W ; a′) =
∫ ∏

e|a(e)=1

dθedθ e

∏
e|a′(e)=1

dθedθ e

×
∏

t

u(t )[a]
∏

t

u(t )[a′] (B5)

into the form of σ (W ; a + a′) by permuting Grassmann vari-
ables, and count the net fermionic sign. First of all, each
path integral measure on e picks up a sign (−1)a(e)a′(e) by

permuting dθ
a(e)
e and dθa′(e)

e . For integrands, u(t ) on different
(d − 1)-simplices commute with each other for closed a, so
nontrivial signs occur only by reordering u(t )[a]u(t )[a′] to
u(t )[a + a′] on a single (d − 1)-simplex. The sign on t is
explicitly written as

(−1)
∑e>e′

e,e′∈t a(e)a′(e′ ), (B6)

where the order e > e′ is determined by u(t ). Hence, the net
fermionic sign is given by

σ (W ; a)σ (W ; a′) = σ (W ; a + a′)
∏

t

(−1)ε[t,a,a′], (B7)

with

ε[t, a, a′] =
∑

e,e′∈t,e>e′
a(e)a′(e′) +

∑
e∈t,e>0

a(e)a′(e), (B8)

where e > 0 if u[t] includes a θ e variable. The sign ε[t, a, a′]
turns out to have a neat expression in terms of the higher cup
product.

At a + simplex, after some efforts we can rewrite ε[t, a, a′]
as

ε[t, a, a′] =
∑

i

a2i+1 · δa′(t ) +
∑
i< j

a2i+1a′
2 j+1 +

∑
i> j

a2ia
′
2 j

= a ∪d−3 a′ + a ∪d−2 δa′.
(B9)

At a − simplex, similarly we have

ε[t, a, a′] =
∑

i

a2i · δa′(t ) +
∑
i< j

a2i+1a′
2 j+1 +

∑
i> j

a2ia
′
2 j

= δa(t )δa′(t ) + a ∪d−3 a′ + a ∪d−2 δa′. (B10)

We can see the quadratic property (B4) when a, a′ are closed.
When a = δλ for some λ ∈ Cd−3(W,Z2), the Grassmann

integral can be explicitly computed as

σ (W ; δλ) = (−1)
∫

W λ∪d−4δλ+λ∪d−5λ(−1)
∫

S λ, (B11)

see [24] for its derivation. Now let us show the effect of
gauge transformation and re-triangulation of σ (W ; a) given in
(III.17). To see this, let us introduce an expression of σ (W ; a)
convenient for our purpose. Let us assume that W equipped
with the background gauge field a ∈ Zd−2(W,Z2) is null-
bordant, i.e., W is a boundary of some oriented d-manifold
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X and a is extended to X . Then, one can consider the Wess-
Zumino-Witten (WZW) like expression of the Grassmann
integral

σ (W ; a) = (−1)
∫

X Sq2 a(−1)
∑

SX
a
, (B12)

where SX is a set of all (d − 2)-simplices of X . Due to the
Wu relation [48], Sq2(a) + w2 ∪ a is exact for an arbitrary
oriented d-manifold. Hence, the above expression does not
depend on the extending manifold X . We can explicitly check
that (B12) satisfies the properties of the Grassmann integral
(B4) and (B11). First, let us check the quadratic property of
the WZW-like expression

σ (W ; a)σ (W ; a′) = σ (W ; a + a′)(−1)
∫

X (a∪d−4a′+a′∪d−4a)

= σ (W ; a + a′)(−1)
∫

W a∪d−3a′
. (B13)

Next, when a = δλ for some λ ∈ Cd−3(X,Z2), we have

σ (W ; δλ) = (−1)
∫

X Sq2 δλ(−1)
∑

SX
δλ

= (−1)
∫

W λ∪d−4δλ+λ∪d−5λ(−1)
∑

SX
λ
, (B14)

where we used ∂SX = S, namely, the boundary of SX gives
the dual of w2 on W . See Appendix D for the derivation of
∂SX = S.

Since the WZW-like expression satisfies the key properties
(B4) and (B11), one can identify the original definition of
σ (W ; a) as the WZW-like expression up to gauge invariant
counterterms, i.e., the Grassmann integral is expressed in the
form of

σ (W ; a) = (−1)
∫

X Sq2 a(−1)
∑

SX
a
ε(a), (B15)

where ε : Hd−2(W,Z2) → {±1} is gauge invariant. The ad-
ditional term ε(a) does not affect on the response to gauge
transformation or retriangulation, so we can identify σ (W ; a)
as the WZW-like expression for a practical purpose.

Based on the WZW-like expression, we immediately know
the effect of re-triangulation as follows. Suppose we have
two configurations of a and triangulations on W × {0} and
W × {1} interpolated by W̃ = W × [0, 1]. Then, according to
the WZW-like expression for σ (W × {0})σ (W × {1}), up to
gauge invariant counterterms σ (W × {0}) is given by

σ (W × {0}) = (−1)
∫

W̃ Sq2 a(−1)
∑

SW̃
a · σ (W × {1}), (B16)

where a on W × {0}, W × {1} is extended to W̃ . This expres-
sion directly shows that the effect of gauge transformation and
re-triangulation of σ (W, a) is controlled by the bulk response
action

(−1)
∫

W Sq2 a(−1)
∑

SW̃
a
. (B17)

This proves (III.17).

APPENDIX C: THE OBSTRUCTION CLASS
FOR WU STRUCTURE

Wu structure is specified by a choice of a (d − 2)-chain
E ∈ Cd−2(M,Z2) with ∂E = S, where S ∈ Zd−3(Md ,Z2) rep-
resents the Poincaré dual of the Wu class w1w2. Here we
explain how to prepare the chain S. We will see that S is
supported on the orientation-reversing wall W , and gives the
Poincaré dual of the 2nd Stiefel-Whitney class w2 of W .

We describe w2 as a (d − 2)-chain W2 ∈ Zd−2(Md ,Z2),
and w1 as a 1-cochain w1 ∈ Z1(Md ,Z2). Then S is prepared
by S = W2 ∩ w1. The cap product ∩ can be computed explic-
itly using the formula [51]

(0 . . . j + k) ∩ a = ( j . . . j + k)

(∫
(0... j)

a

)
(C1)

for a ∈ C j (M,Z2) and (0 . . . j + k) is a ( j + k)-chain. Then
one can extend it by linearity in adding up chains.

Once we take the barycentric subdivision of the trian-
gulation of M, we can prepare W2 as the set of all (d −
2)-simplices of M, except for (d − 2)-simplices supported on
W . To see this, we note that the Poincaré dual of w2 is given
by the set of all 2-simplices. Meanwhile, since W is oriented,
the set of all (d − 2)-simplices of W that represents w1 of W
gives a trivial (d − 2)-chain, so we can take the above W2 as
the dual of w2.

Then we explain how we prepare the cochain representa-
tive for w1 of a d-manifold Md . This is done by considering
a perturbation of a codimension-1 orientation-reversing wall
W described as a yellow object in Fig. 5 for the case of
d = 3. That is, we think of shifting W along a vector field
expressed as orange vectors in Fig. 5, which are perpendicular
to the tangent of W . This vector field is thought of as a
section of the normal bundle of W . Since the normal bundle of
W can be nontrivial, the vector field in general has a (d − 2)-
dimensional zero locus in W , shown as a red line in Fig. 5(a).
The zero locus is taken as a (d − 2)-cycle of W .

At the (d − 2)-dimensional zero locus, we further consider
a vector field tangent to W and perpendicular to the zero locus,
shown as a red vector in Fig. 5(a). Then, we perturb the yellow
object along the red vectors along the (d − 2)-dimensional
zero locus. The red vector field is regarded as a section for the
normal bundle of the zero locus in W , which again can have
a (d − 3)-dimensional zero locus, as shown in Fig. 5(b). By
repeating the process of shifting the yellow object along the
j-dimensional zero locus to get a ( j − 1)-dimensional zero
locus until we perform for j = 0, we finally get a perturbation
of W .

Then, the perturbation of W intersects transversally with
1-simplices of M. Assigning the intersection number mod 2
on each 1-simplex defines a cocycle representative of w1.

Now we compute the cycle representative of w1w2 using
the representative of w1 and W2 defined above. We take a
branching structure of the barycentric-subdivided simplical
complex, by labeling the barycenter of i-simplices by (d − i).
According to the formula for the cap product (C1), S =
W2 ∩ w1 is given by a set of (d − 3)-simplices ( j0 . . . jd−3),
weighted by a number of (d − 2)-simplices (i, j0 . . . jd−3),
where w1(i j0) = 1 and (i, j0 . . . jd−3) ∈ W2.

This (d − 3)-chain S can be rephrased as follows. S
is given by a set of (d − 3)-simplices ( j0 . . . jd−3) of W
weighted by a number of (d − 2)-simplices (i, j0 . . . jd−3)
whose vertex i lies on a specific domain separated by W , and
the domain is fixed by the perturbation of W to define the
cocycle w1. The weight on each (d − 3)-simplex ( j0 . . . jd−3)
on W is regarded as the intersection number between W2 and
the w1 sheet that occurs “in the vicinity of” ( j0 . . . jd−3), see
Fig. 6.
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W

w1

W
w1

FIG. 5. (a) The figure of the orientation reversing wall for the space-time dimension d = 3. We perturb W by a vector field perpendicular
to W (orange arrows) to obtain a perturbed object (yellow sheet). Then, on the zero locus (red line) we further perturb it by a vector field
tangent to W and normal to the zero locus (red arrow). (b) At the zero locus of the red vector field, e further perturb the yellow sheet to make
the perturbed object intersects transversally with 1-simplices of Md .

Then, we can show that the weight for each (d − 3)-
simplex W is always odd. To see that the weight is odd
for a (d − 3)-simplex ( j0 . . . jd−3), we take a nonclosed d-
submanifold N as shown in Fig. 7 such that ∂N is oriented
and contains ( j0 . . . jd−3), and N contains all the (d − 2)-
simplices (i, j0 . . . jd−3) counted in the weight. N is contained
in a specific domain of M separated by W , and is taken to
respect the original triangulation before taking barycentric
subdivision, i.e., all the (d − 1)-simplices on ∂N are labeled
as (1, 2, . . . d ).

Let SN be a set of all (d − 2)-simplices of N , except for
those of ∂N . Let S∂N be a set of all (d − 3)-simplices of ∂N .
We can then see that

∂SN = S∂N , (C2)

which shows that the weight on ( j0 . . . jd−3) is odd, since
∂SN contributes to ( j0 . . . jd−3) from (i, j0 . . . jd−3) in SN

counted in the weight. Its derivation is essentially found in Ap-
pendix D. This proves that S is the set of all (d − 3)-simplices
of W .

APPENDIX D: BULK-BOUNDARY GRASSMANN
INTEGRAL

In this Appendix, we prove the following formula for the
chains of barycentric subdivision frequently used in this paper.
Let N be a d-manifold with a nonempty boundary ∂N . Then

FIG. 6. The situation near the orientation reversing wall for the
space-time dimension d = 3. The weight on each 0-simplex of
W corresponds to the intersection number between the perturbed
sheet and W2 near the 0-simplex. In this figure, the barycenter of
a 2-simplex has the weight 1 while that of a 1-simplex has the
weight 3.

we have

∂SN = S∂N , (D1)

where SN is a set of all (d − 2)-simplices of N and S∂N is a set
of all (d − 3)-simplices of ∂N .

To see this, we introduce a theory for a bulk-boundary
system σ (∂N, N ; a, b) with a ∈ Cd−2(∂N,Z2) and b ∈
Zd−1(M,Z2), which satisfy δa = b on the boundary ∂N .
σ (∂N, N ; a, b) satisfies the following two properties.

(1) When b is a coboundary b = δλ and a = λ, we have

σ (∂N, N ; λ, δλ) = (−1)
∫

N Sq2 λ(−1)
∫

SN
λ
. (D2)

(2) When b = 0 and a is a coboundary a = δχ , we have

σ (∂N, N ; δχ, 0) = (−1)
∫
∂N Sq2 χ (−1)

∫
S∂N

χ
. (D3)

Then, setting λ = δχ in (D2) gives

σ (∂N, N ; δχ, 0) = (−1)
∫
∂N Sq2 χ (−1)

∫
∂SN

χ
, (D4)

where we used δ Sq2(χ ) = Sq2(δχ ) reviewed in Appendix A.
Comparing this expression of σ (∂N, N ; δχ, 0) with (D3)
shows ∂SN = S∂N .

The theory σ (∂N, N ; a, b) with the above two properties is
realized by a bulk-boundary version of the Grassmann integral
constructed in Refs. [38,52]. Since we deal with the oriented
N, ∂N in this paper, we present the proof only for the oriented
case for simplicity. However, ∂SN = S∂N is also valid in un-
oriented cases.

W

N

FIG. 7. The configuration of N for d = 3. Picking a 0-simplex
of W represented as a red star, then there are 1-simplices that eval-
uate nonzero w1 around the 0-simplex, represented as red lines. N
contains all red 1-simplices in N and ∂N contains the starred vertex.
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Now let us write down the boundary Gu-Wen integral cou-
pled with bulk; we simply write the integral by σ (a, b). We
assign Grassmann variables θe, θ e on each (d − 2)-simplex e
of ∂N , and θ f , θ f on each (d − 1)-simplex f of N \ M. We
define the Gu-Wen integral as

σ (a, b) =
∫ ∏

f |b( f )=1

dθ f dθ f

∫ ∏
e|a(e)=1

dθedθ e

∏
t

u(t ),

(D5)

u(t ) is a monomial of Grassmann variables defined on a d-
simplex of N . u(t )[b] is defined in the same fashion as in the
case without boundary if t is away from the boundary, which
is introduced in Sec. III B of the main text. However, its defi-
nition gets modified when t shares a (d − 1)-simplex with the
boundary. For simplicity, we assign an ordering on vertices of
such t = (01 . . . d ), so that the (d − 1)-simplex shared with M
becomes f0 = (12 . . . d ); the vertex 0 is contained in N \ M.
For instance, we can take a barycentric subdivision on N , and
assign 0 to vertices associated with d-simplices. We further
define the sign of (d − 1)-simplices on M, such that f0 and t
have the same sign.

Then, u(t ) neighboring with M is defined by replacing the
position of ϑ f0 in u(t )[b] with the boundary action of the
Grassmann integral on f0, u( f0)[a] = ∏

e∈ f0
ϑa(e)

e . We then
have: On a + simplex,

u(t ) = u( f0)[a] ·
∏

f ∈∂t, f �= f0

ϑ
b( f )
f . (D6)

On a − simplex,

u(t ) =
∏

f ∈∂t, f �= f0

ϑ
b( f )
f · u( f0)[a]. (D7)

One can check that u(t ) defined above becomes Grassmann-
even. Then, one can see that the bulk-boundary Grassmann
integral satisfies the quadratic property

σ (a + a′, b + b′)

= σ (a, b)σ (a′, b′)(−1)
∫
∂N (a∪d−3a′+a∪d−2δa′ )+∫

N b∪d−2b′
. (D8)

The proof for the quadratic property is found in Ref. [52].
Now let us demonstrate (D2). The quadratic part of

σ (λ, δλ) is determined by noting that the quadratic property

σ (λ + λ′, δλ + δλ′) = σ (λ, δλ)σ (λ′, δλ′)(−1)
∫
∂N λ∪d−3λ

′

× (−1)
∫

N λ∪d−3δλ
′+δλ′∪d−3λ, (D9)

is solved by (−1)
∫

N Sq2 λ up to a linear term. So, σ (λ, δλ) can
be expressed as

σ (λ; δλ) = (−1)
∫

N Sq2 λ(−1)
∑

e∈S′ λ(e), (D10)

with S′ some set of (d − 2)-simplices e of N . The linear term
is fixed by computing σ (λ; δλ) explicitly in the simplest case;
λ(e) = 1 on a single (d − 1)-simplex, otherwise 0. Then we
find that we get σ (λ; δλ) = −1 for arbitrary choice of a (d −
1)-simplex e, which shows that S′ = SN .

One can also see (D3) by noting that σ (∂N, N ; δχ, 0)
reduces to the ordinary Grassmann integral σ (∂N ; δχ ) sup-
ported solely on ∂N . Then, (D3) is equivalent to (B11) in the
main text by replacing W with ∂N .

[1] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry pro-
tected topological orders and the group cohomology of their
symmetry group, Phys. Rev. B 87, 155114 (2013).

[2] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[3] A. Kitaev, Periodic table for topological insulators and super-
conductors, AIP Conf. Proc. 1134, 22 (2009).

[4] L. Fidkowski and A. Kitaev, Topological phases of fermions in
one dimension, Phys. Rev. B 83, 075103 (2011).

[5] Z.-C. Gu and X.-G. Wen, Symmetry-protected topological or-
ders for interacting fermions: Fermionic topological nonlinear
σ models and a special group supercohomology theory, Phys.
Rev. B 90, 115141 (2014).

[6] A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang,
Fermionic symmetry protected topological phases and cobor-
disms, J. High Energy Phys. 12 (2015) 1.

[7] C. Wang, C. H. Lin, and Z. C. Gu, Interacting fermionic
symmetry-protected topological phases in two dimensions,
Phys. Rev. B 95, 195147 (2017).

[8] E. Witten, Fermion path integrals and topological phases, Rev.
Mod. Phys. 88, 035001 (2016)

[9] M. A. Metlitski, L. Fidkowski, X. Chen, and A. Vishwanath,
Interaction effects on 3D topological superconductors: surface

topological order from vortex condensation, the 16 fold way and
fermionic Kramers doublets, arXiv:1406.3032.

[10] M. Cheng, Z. Bi, Y.-Z. You, and Z.-C. Gu, Classification of
symmetry-protected phases for interacting fermions in two di-
mensions, Phys. Rev. B 97, 205109 (2018).

[11] Q.-R. Wang and Z.-C. Gu, Towards a Complete Classification
of Fermionic Symmetry Protected Topological Phases in 3D
and a General Group Supercohomology Theory, Phys. Rev. X
8, 011055 (2018).

[12] Q.-R. Wang and Z.-C. Gu, Construction and Classification of
Symmetry Protected Topological Phases In Interacting Fermion
Systems, Phys. Rev. X 10, 031055 (2020).

[13] D. S. Freed and M. J. Hopkins, Reflection positivity and invert-
ible topological phases, Geom. Topol. 25, 1165 (2021).

[14] K. Yonekura, On the cobordism classification of symmetry
protected topological phases, Commun. Math. Phys. 368, 1121
(2019).

[15] M. Guo, K. Ohmori, P. Putrov, Z. Wan, and J. Wang,
Fermionic finite-group gauge theories and interacting symmet-
ric/crystalline orders via cobordisms, Commun. Math. Phys.
376, 1073 (2020).

[16] Z. Wan and J. Wang, Higher anomalies, higher symmetries, and
cobordisms i: classification of higher-symmetry-protected topo-
logical states and their boundary fermionic/bosonic anomalies

035153-13

https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.90.115141
https://doi.org/10.1007/JHEP12(2015)052
https://doi.org/10.1103/PhysRevB.95.195147
https://doi.org/10.1103/RevModPhys.88.035001
http://arxiv.org/abs/arXiv:1406.3032
https://doi.org/10.1103/PhysRevB.97.205109
https://doi.org/10.1103/PhysRevX.8.011055
https://doi.org/10.1103/PhysRevX.10.031055
https://doi.org/10.2140/gt.2021.25.1165
https://doi.org/10.1007/s00220-019-03439-y
https://doi.org/10.1007/s00220-019-03671-6


RYOHEI KOBAYASHI PHYSICAL REVIEW B 105, 035153 (2022)

via a generalized cobordism theory, Ann. Math. Sci. Appl. 4,
107 (2019).

[17] J. Haah, Local stabilizer codes in three dimensions without
string logical operators, Phys. Rev. A 83, 042330 (2011).

[18] B. Yoshida, Exotic topological order in fractal spin liquids,
Phys. Rev. B 88, 125122 (2013).

[19] S. Vijay, J. Haah, and L. Fu, A new kind of topological quantum
order: A dimensional hierarchy of quasiparticles built from
stationary excitations, Phys. Rev. B 92, 235136 (2015).

[20] S. Vijay, J. Haah, and L. Fu, Fracton topological order, general-
ized lattice gauge theory, and duality, Phys. Rev. B 94, 235157
(2016).

[21] W. Shirley, K. Slagle, and X. Chen, Universal entanglement
signatures of foliated fracton phases, Sci. Post Phys. 6, 015
(2019).

[22] P.-S. Hsin, W. Ji, and C.-M. Jian, Exotic invertible phases with
higher-group symmetries, arXiv:2105.09454 [cond-mat.str-el].

[23] J. W. Milnor and J. D. Stasheff, Characteristic Classes (Prince-
ton University Press, Princeton, N. J., University of Tokyo
Press, Tokyo, 1974), pp. vii+331, annals of Mathematics Stud-
ies, No. 76.

[24] D. Gaiotto and A. Kapustin, Spin TQFTs and fermionic phases
of matter, Int. J. Mod. Phys. A 31, 1645044 (2016).

[25] G. Brumfiel and J. Morgan, Quadratic functions of cocycles and
pin structures, arXiv:1808.10484 [math.AT].

[26] F. Benini, C. Córdova, and P.-S. Hsin, On 2-group global sym-
metries and their anomalies, J. High Energy Phys. 03 (2019)
118.

[27] C. Córdova, T. T. Dumitrescu, and k. Intriligator, Exploring 2-
group global symmetries, J. High Energy Phys. 02 (2019) 184.

[28] Y. Tachikawa, On Gauging Finite Subgroups, Sci. Post Phys. 8,
015 (2020).

[29] A. Kapustin and R. Thorngren, Higher symmetry and gapped
phases of gauge theories, Algebra, Geometry, and Physics in
the 21st Century (Birkhäuser, Switzerland, 2017), pp.177–202.

[30] W. Browder and E. Thomas, Axioms for the generalized Pon-
tryagin cohomology operations, Quarterly J. Math. 13, 55
(1962).

[31] O. Aharony, N. Seiberg, and Y. Tachikawa, Reading between
the lines of four-dimensional gauge theories, J. High Energy
Phys. 08 (2013) 115.

[32] A. Kapustin and R. Thorngren, Topological field theory on
a lattice, discrete theta-angles and confinement, Adv. Theor.
Math. Phys. 18, 1233 (2014).

[33] S. Halperin and D. Toledo, Stiefel-Whitney homology classes,
Ann. Math. 96, 511 (1972).

[34] J. D. Blanton and C. McCrory, An axiomatic proof of Stiefel’s
conjecture, Proc. Amer. Math. Soc. 77, 409 (1979).

[35] A. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[36] R. Kirby and L. Taylor, Pin structure on low-dimensional
manifolds, Geometry of Low-Dimensional Manifolds Symplec-
tic Manifolds and Jones-Witten Theory (Cambridge University
Press, Cambridge, UK, 1991), pp. 177–242 .

[37] R. Thorngren, Anomalies and bosonization, Commun. Math.
Phys. 378, 1775 (2020).

[38] R. Kobayashi, Pin TQFT and Grassmann integral, J. High
Energy Phys. 12 (2019) 014.

[39] L. Crane and D. Yetter, Quantum Topology (World Scientific,
Singapore, 1993).

[40] K. Walker and Z. Wang, (3+1)-TQFTs and topological insula-
tors, Front. Phys. 7, 150 (2012).

[41] L. Bhardwaj, Y. Lee, and Y. Tachikawa, SL(2,Z) action on
QFTs with Z2 symmetry and the Brown-Kervaire invariants,
J. High Energy Phys. 11 (2020) 141.

[42] S. Morita, On the pontrjagin square and the signature, J. Fac.
Sci. University Tokyo. Sect. 1 A: Math. 18, 405 (1971).

[43] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[44] P. H. Bonderson, Non-abelian anyons and interferometry, Ph.D.
thesis, California Institute of Technology, 2007.

[45] E. Rowell, R. Stong, and Z. Wang, On classification of
modular tensor categories, Commun. Math. Phys. 292, 343
(2009).

[46] L. Tsui and X.-G. Wen, Lattice models that realize Zn-1
symmetry-protected topological states for even n, Phys. Rev. B
101, 035101 (2020).

[47] C. W. von Keyserlingk, F. J. Burnell, and S. H. Simon, Three-
dimensional topological lattice models with surface anyons,
Phys. Rev. B 87, 045107 (2013).

[48] Karlheinz Knapp, Wu class, http://www.map.mpim-bonn.mpg.
de/Wu_class.

[49] S. Tata, Geometrically interpreting higher cup products, and
application to combinatorial pin structures, arXiv:2008.10170
[hep-th].

[50] N. Steenrod, Products of cocycles and extensions of mappings,
Ann. Math. 48, 290 (1946).

[51] R. Thorngren, Combinatorial topology and applications to
quantum field theory, Ph.D. thesis, 2018.

[52] R. Kobayashi, K. Ohmori, and Y. Tachikawa, On gapped bound-
aries for SPT phases beyond group cohomology, J. High Energy
Phys. 11 (2019) 131.

035153-14

https://doi.org/10.4310/AMSA.2019.v4.n2.a2
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.21468/SciPostPhys.6.1.015
http://arxiv.org/abs/arXiv:2105.09454
https://doi.org/10.1142/S0217751X16450445
http://arxiv.org/abs/arXiv:1808.10484
https://doi.org/10.1007/JHEP03(2019)118
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.21468/SciPostPhys.8.1.015
https://doi.org/10.1093/qmath/13.1.55
https://doi.org/10.1007/JHEP08(2013)115
https://doi.org/10.4310/ATMP.2014.v18.n5.a4
https://doi.org/10.2307/1970823
https://doi.org/10.2307/2042195
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1007/s00220-020-03830-0
https://doi.org/10.1007/JHEP12(2019)014
https://doi.org/10.1007/s11467-011-0194-z
https://doi.org/10.1007/JHEP11(2020)141
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1007/s00220-009-0908-z
https://doi.org/10.1103/PhysRevB.101.035101
https://doi.org/10.1103/PhysRevB.87.045107
http://www.map.mpim-bonn.mpg.de/Wu_class
http://arxiv.org/abs/arXiv:2008.10170
https://doi.org/10.2307/1969172
https://doi.org/10.1007/JHEP11(2019)131

