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Multi-impurity chiral Kondo model: Correlation functions and anyon fusion rules
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The multichannel Kondo model supports effective anyons on the partially screened impurity, as suggested
by its fractional impurity entropy. It was recently demonstrated for the multi-impurity chiral Kondo model,
that scattering of an electron through the impurities depends on the anyon’s total fusion channel. Here we
study the correlation between impurity spins. We argue, based on a combination of conformal field theory,
a perturbative limit with a large number of channels k, and the exactly solvable two-channel case, that the
interimpurity spin correlation probes the anyon fusion of the pair of correlated impurities. This may allow,
using measurement-only topological quantum computing protocols, to braid the multichannel Kondo anyons via
consecutive measurements.
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I. INTRODUCTION

Multichannel Kondo models display exotic behavior such
as anomalous correlation functions and fractional impurity
entropy [1–7]. This residual entropy, in particular, embodies
a partial screening of the impurity spin, which transforms,
otherwise inoffensive, magnetic moments into fractionalized
particles; see Fig. 1(a).

Several authors have put forward proposals for using frac-
tionalized Kondo impurities as building blocks for topological
quantum computing [8,9]. Some of us have proposed to do so
by leveraging a chiral one-dimensional (1D) multi-impurity
Kondo model [c.f. Fig. 1(b)]—described by k channels of
electrons co-propagating through M spin-1/2 impurities, de-
noted �Sn(n = 1, . . . , M ). The key property of the chiral Kondo
model is that it allows us to argue that the fractionalized im-
purity spins behave like non-Abelian anyons known from 2D
topological phases such as the fractional quantum Hall effect.
To make this argument, we studied the electronic propagator
〈ψ (x1, t1)ψ†(x2, t2)〉. When all the impurities are located at
positions {x�} between x1 and x2 along the 1D channel, we
found that the propagator depended on a quantity shared non-
locally by the impurities, the total fusion state of M emergent
anyons [c.f. Fig. 1(c)]. We refer the reader to the literature
[10–13] for a formal description of the computational space
shared by anyons whose basis of states is described by fusion
trees, see Figs. 1(c) and 1(d).

The development of an architecture for quantum comput-
ing involves few, but nontrivial, ingredients: one must identify
(i) robust qubits, (ii) a method of quantum control, and (iii)
a measurement mechanism for extracting quantum informa-
tion from the system. Point (i) was solved in our previous
paper, where a qubit computational space was identified as
the nonlocal fusion space of the effective anyons living on
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the fractionalized impurities. We also proposed an experimen-
tal design based on integer quantum Hall systems [14]. To
achieve point (ii), we proposed to leverage a measurement-
based topological quantum computation [10–13] (MBTQC)
scheme. The Kondo anyons in our geometry are stuck to
impurities, not necessarily easy to braid and maneuver. By
opting for a measurement-based scheme, we overcome that
difficulty, and reduce the computation process to a problem
of state preparation, as long as point (iii) is also solved. The
MBTQC approach requires strong measurements.

Measuring physical quantities, such as the electronic prop-
agator we proposed, provided a way to collapse the anyon
state to a given fusion sector. Yet, it was a clumsy solution:
for a given choice of x1 and x2, it would only measure the
total fusion outcome of all of the multiple anyons between the
chosen points of reference.

In this paper we continue the study of the chiral Kondo
model and show that measuring certain correlations of im-
purity spins allows a more direct access to sectors of fixed
fusion of desired pairs of fractionalized impurities, hence con-
siderably improving the method for addressing the previously
outlined point (iii). Using MBTQC schemes this allows to
effectively braid pairs of anyons [10–13]. Our main endeavour
is to show that the correlation function of a pair of impurity
spins Sn and Sm, filtered to a given SU(2)-superselection sec-
tor, probes their individual fusion state [ jnm in Fig. 1(d)] rather
than the total fusion state of the impurities between sites n and
m [ jtot in Fig. 1(c)].

As we explain in detail in Sec. III A, see also Appendix A,
the correlation functions that we study (as in Ref. [8]) are
not thermal correlation functions. To appreciated this, note
that the total low-energy Hilbert space can be separated into
the gapless fermionic modes traveling along the chiral mode,
and the decoupled fractionalized impurities described by the
fusion states. Since the fractionalized impurities are ideally
decoupled, they do not have a Hamiltonian and lead to a
degeneracy of the ground state, which is the computational
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FIG. 1. (a) Left: k channels of spinful conduction electrons in-
teracting with a single impurity spin �S (yellow-filled circle). Right:
By virtue of the multichannel Kondo effect, the impurity spin is
partially coupled with the conduction electrons, leaving an anyonic
operator denoted � (blue-filled circle). (b) The multi-impurity chiral
Kondo model. (c) Correlation functions such as the Green function
〈ψ (x1, t1)ψ†(x2, t2)〉 depend on the total fusion outcome jtot of the
spin-impurity anyons. (d) The impurity-spin correlation function
〈Sm(t1)Sn(t2)〉, on the other hand, probes the fusion outcome of the
corresponding pair of anyons jnm.

space. In this space, we do not perform thermal averages but
rather assume the state can be prepared, in the sense of (ii), in
a given state. For a pair of impurities this state is one of the
possible fusion sectors. We then study how this correlation
function depends on the fusion state.

Since the computation of correlation functions in the
Kondo problem is made difficult by the strongly interacting
nature of the system, we use complementary methods and
exactly solvable limits such as the two channel case [15],
k = 2. Here we find an opportunity to a technical innova-
tion. Taking note that the electron-impurity coupling constant
scales inversely with the number of channels at the nontrivial
Kondo fixed points, we obtain another case where exact solu-
tion is possible: k → ∞. This way, the large-k limit allows a
perturbative treatment of the multichannel Kondo interactions
including the multi-impurity problem.

The outline of the paper is as follows. In Sec. II we review
the key results of Lopes et. al. [8] and in Sec. III we confirm
them in the large-k limit. Building on this approach, in Sec. IV

we analyze multi-impurity correlations. In Sec. V we apply
refermionization methods for k = 2, in which the anyons take
the form of Majorana fermions. We conclude in Sec. VI.

II. CHIRAL KONDO MODEL

In this section we introduce the chiral Kondo model [8],
and review the key results on the Green function, the appear-
ance of effective anyons, and the dependence of the Green
function on the total anyons fusion state. More details can be
found in Ref. [8].

The chiral M-impurity k-channel Kondo (kCK) system is
described by the Hamiltonian H = H0 + HK . The first term
H0 is characteristic of k spinful chiral channels

H0 = − vF

2π

∫
dxψ†i∂xψ. (1)

Here and below, we consider an infinite chiral system with∫
dx ≡ ∫∞

−∞ dx. The indices of the spinor ψiα span i = 1, ..., k
channels (flavors) and spin α =↑,↓. The electrons are as-
sumed to be right movers that propagate from infinity and
scatter at the positions of the impurities x1, ..., xM . The Hamil-
tonian HK describes the interaction of these spinful channels
with M impurity spins �S�,

HK = λ

M∑
�=1

∫
dx

[(
ψ† σ

2
ψ

)
· �S�

]
(x),

�S�(x) =

⎛
⎜⎝

Sx
�

Sy
�

	Sz
�

⎞
⎟⎠δ(x − x�). (2)

Here, σ is the vector of Pauli matrices and λ is the exchange
coupling constant. The spin-1/2 impurities are assumed to be
consecutively ordered along the 2k chiral spin channels x� <

x�+1, as depicted in Fig. 1(b), and each contain an anisotropic
parameter 	. Although the spin anisotropy is irrelevant for the
low-energy behavior [15], it will allow for an exact solution of
the 2CK systems.

For a single impurity (M = 1), Kondo physics is achieved
below the Kondo energy TK = a−1e−1/λ, where a−1 is the
ultraviolet cutoff. The Kondo energy has a corresponding
length scale ξK = h̄vF /kBTK dictating the radius at which the
spinful electrons are screened along the chiral channels. To
alleviate any unwanted correlations in the presence of mul-
tiple impurities (M > 1) [16], we will focus on the “dilute”
scenario whereby distances between consecutive impurities
surpass the Kondo length |x�+1 − x�| 
 ξK . Yet, the full linear
segment containing all the M impurities, |xM − x1| should be
smaller than the thermal length LT = h̄vF /T , which requires
T < TK/M.

A. Boundary condition dependent correlation functions

Similar to other quantum impurity problems, the chiral
Kondo problem can be analysed in the framework of boundary
conformal field theory (CFT) [1,2], which allows to compute
thermodynamic properties and correlation functions. The free
part of the Hamiltonian can be separated into charge, flavour,
and spin sectors. The Kondo effect takes place in the latter.
The spin sector is described by the theory known as SU(2)k .
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Similar to the anyons fusion rules, this theory has primary
field denoted as � j , with j = 0, 1/2, 1, ..., k/2. The field
� j=1 is a vector field for example. The idea is that the Kondo
interactions lead to new conformal invariant boundary condi-
tions. They are described by Cardy’s boundary CFT [17–20].

We first review a key result of Affleck and Ludwig for a
single impurity at x = 0 [2]. Due to the chirality of H0 with
a convention of right movers, correlation functions depend
only on holomorphic coordinates z = τ − ix. The correla-
tion function of a pair of primary fields � j spatially located
before Im(z1) < 0 and after Im(z2) > 0 the effective bound-
ary, depend on the (conformal invariant) boundary condition.
The boundary conditions themselves are labeled by an index
i = 0, 1/2, 1, ..., k/2, where i = 0 corresponds to the trivial
boundary condition without the Kondo impurity, and i = 1/2
is the boudnary condition corresponding to a single Kondo
impurity. Other boundary conditions were not realized. Then
for conformal invariant boundary condition i the correlation
function is [19]

〈� j (z1)� j (z2)〉i = 1

(z1 − z2)2	 j

Si
j/S0

j

Si
0/S0

0

. (3)

Here 	 j = j( j + 1)/(2 + k) is the scaling dimension of the
field � j and the modular-S matrix is given by [1]

S j′
j =
√

2

2 + k
sin

[
π (2 j + 1)(2 j′ + 1)

2 + k

]
. (4)

This result (initially known as the fusion ansatz) of Af-
fleck and Ludwig had been extensively verified in numerous
regimes [21–24], and can be elegantly described by Cardy’s
boundary CFT [17–20] even against experiment [3,25].

Lopes et al. [8] generalized the boundary CFT ansatz to
multiple impurities. As depicted in Fig. 1(c), for multiple
spin-1/2 impurities, one can achieve a conformal invariant
boundary condition jtot ∈ {0, 1/2, 1, ..., k/2} via multiple fu-
sion

jtot ∈ 1/2 × 1/2 × · · · × 1/2. (5)

We refer to each impurity as a spin-1/2 anyon with fusion
rule 1/2 × 1/2 = 0 + 1 (k � 2). To treat multiple anyons, one
needs to use the SU(2)k fusion rules, jn × jm = | jn − jm| +
· · · + min( jn + jm, k − jn − jm). Then,

〈� j (z1)� j (z2)〉 jtot
= 1

(z1 − z2)2	 j

S jtot
j /S0

j

S jtot
0 /S0

0

. (6)

Per the fusion tree of Fig. 1(c), the ratio of modular S ma-
trices carries a dependence on the multifusion outcome of an
effective anyon jtot.

This ansatz was then specified for the case of the fermionic
Green function. The fermion field ψ being a spinor, involves
the j = 1/2 spinor field �1/2 from SU(2)k . Hence [8]

〈ψiα (z)ψ†
qβ (w)〉

jtot
= δiqδαβ

z1 − z2

S jtot
1/2/S0

1/2

S jtot
0 /S0

0

. (7)

For a single channel, k = 1, the fusion rule 1/2 × 1/2 = 0
results in a unique fusion outcome. Effectively, all chiral

one-channel Kondo models with M odd (even) impurities
behave in a similar fashion to one (no) impurity. In these
two cases, the ratio of modular S matrices in Eq. (6), with
j = 1/2 and either jtot = 1/2 or 0, give ∓1, where the −1
corresponds to the Fermi-liquid π/2 phase shift of the single
channel Kondo effect.

For the two channel case, k = 2, and an even number of
impurities, the ratio of modular S matrices for fermions with
j = 1/2 take two possible values ±1. This exemplifies the
dependence of an electronic correlation function on the fusion
outcome of the impurities, 1/2 × 1/2 × · · · × 1/2 = jtot =
0, 1 as in Fig. 1(c), which acts as two different conformal
invariant boundary conditions.

In the following section, we further demonstrate that the
fusion dependence can be reproduced using perturbation the-
ory in the large-k limit.

III. LARGE-k LIMIT

In this section, we introduce an analytical perturbative
approach for the multichannel Kondo model, based on the
large-k limit. To set the stage for the next sections, we use
the large-k approach to show that the results reviewed in the
previous section are consistent in this limit.

In the large-k limit, the coupling constant λ in the
Hamiltonian of Eq. (2) becomes gradually smaller, with its
renormalization group flow trending as λ = 2/k [26]. The
nontrivial outcome of the ratio of S-modular matrices can
therefore be verified by comparing the lowest-order expansion
of S-modular matrices to perturbation theory. For a single
impurity, this results in a O(1/k2) correction [1]

S1/2
1/2/S0

1/2

S1/2
0 /S0

0

= 1 − 3

2

π2

k2
+ · · ·. (8)

A derivation of this result from perturbation theory for
fermions, demonstrated in Appendix B and performed in Ref.
[1], serves as a rigorous cross check of the fusion ansatz.

For multiple impurities, a similar test can be constructed
for the multifusion ansatz. Using Eq. (4), the ratio of S-
modular matrices is expanded for large k as

S jtot
1/2/S0

1/2

S jtot
0 /S0

0

= 1 − 2
π2

k2
jtot ( jtot + 1) + · · ·. (9)

We can now use perturbation theory to demonstrate that, for a
two-point fermionic correlator from holomorphic coordinate
Re{w} to Re{z} with Im{z} < 0 and Im{w} > 0, the multi-
fusion ansatz correctly generates the O(1/k2) coefficient in
Eq. (9). To achieve this, we begin by prescribing an ultraviolet
cutoff a to the interacting Hamiltonian of Eq. (2)

HK = λ

a2

M∑
�=1

∫ a/2

−a/2
dx
∫ a/2

−a/2
dy

[(
ψ†(x)

σ

2
ψ (y)

)
· �S�

]
. (10)

Using a path integral approach, we can then expand the ex-
ponential of the Kondo action to second order within the
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fermionic correlator to arrive at

〈ψiα (z)ψ†
qβ (w)〉 = 〈ψiα (z)ψ†

qβ (w)〉
(0)

+ λ2

8a4

M∑
��′=1

∫ a/2

−a/2
dx1 · · · dx4

×
∫

dτ ′dτ ′′〈ψiα (z)ψ†
qβ (w)ψ†

mγ (τ ′, x1)ψmδ (τ ′, x2)ψ†
nμ(τ ′′, x3)ψnν (τ ′′, x4)〉(0)

∑
ab

σ a
γ δσ

b
μν

〈
Sa

� (τ ′)Sb
�′ (τ ′′)

〉
.

(11)

Here, summation is assumed over repeated indices, and 〈. . . 〉(i) stands for a correlation function computed to order λi. Due to the
rotational invariance of the impurity spin, its expectation value vanishes (i.e., 〈Sa〉 = 0) and the first-order contribution dropped
out.

All the spin-spin correlators computed in this section are of
zero order in λ and we omit their subscript 〈Sa

� (τ ′)Sb
�′ (τ ′′)〉(0).

Yet, before proceeding with the calculation, we make an im-
portant clarification on the nature of these spin correlators.

A. Thermal versus state-dependent spin correlators and
expectation values

In this subsection, before continuing with the evaluation of
Eq. (11), we explain that we do not consider 〈Sa

� (τ ′)Sb
�′ (τ ′′)〉

as thermal correlation functions, but rather, following the in-
gredients (ii) and (iii) in the introduction, we assume that the
system can be prepared in a specific state and ask how that is
reflected in the correlations.

To zeroth order in λ, the spins are decoupled. Then the
thermal expectation value for M decoupled spins is defined
as 〈A〉T = TrA

2M . Consider the correlation function of a pair of
decoupled spin-1/2 impurities � �= �′ appearing in Eq. (17).
Combining their singlet and triplet total angular momentum
sectors, their thermal average would naturally result in zero
expectation value,

〈
Sa

nSb
m

〉
T

= δab

3
〈�Sn �Sm〉T

= δab

6

[〈
(�Sn + �Sm)2〉

T − 〈�S2
n

〉
T − 〈�S2

m

〉
T

]

= δab

24
Tr

⎡
⎢⎣
⎛
⎜⎝

0
2

2
2

⎞
⎟⎠−3

2
I4×4

⎤
⎥⎦ = 0, (n �=m).

(12)

Instead, we are interested separately in the singlet and
triplet states spanned by the two spins in Eq. (12). To that

end, the 2-spin correlator would contain an index jnm = 0, 1
spanning these two states, and

〈
Sa

n (τ ′)Sb
m(τ ′′)

〉
jnm

= δab

6

[
jnm( jnm + 1) − 3

2

]
. (13)

More generally, the expectation value of M-impurity spins
would take the form

〈A〉 j = Tr jA

2 j + 1
, (14)

where the trace is taken over the jth multiplet of size (2 j + 1).
Thus, below we will use 〈. . . 〉 j to denote correlation functions
in a specific super-selection sector j (whereas we use 〈. . . 〉(i)

to denote different orders in perturbation theory in λ).
The total fusion of all the spins jtot as well as some set of

internal fusion states jnm, describe the computational state. We
ask how correlation functions depend on the computational
state.

B. Fusion-dependent Green’s function

We now proceed from Eq. (11) with the calculation of the
Green’s function.

The zeroth-order contribution is the free-field Green’s
function

〈ψiα (z)ψ†
qβ (w)〉

(0)
= δiqδαβ

z − w
. (15)

We can then apply Wick’s theorem to the six-point fermionic
correlator within the second-order contribution. By keeping
only the fully connected contractions, we get

λ2

8a4

M∑
��′=1

∫ a/2

−a/2
dx1 · · · dx4

∫
dτ ′dτ ′′[〈ψiα (z)ψ†

mγ (τ ′, x1)〉
(0)

〈ψmδ (τ ′, x2)ψ†
nμ(τ ′′, x3)〉

(0)
〈ψnν (τ ′′, x4)ψ†

qβ (w)〉
(0)

+ 〈ψiα (z)ψ†
nμ(τ ′′, x3)〉

(0)
〈ψmδ (τ ′, x2)ψ†

qβ (w)〉
(0)

〈ψnν (τ ′′, x4)ψ†
mγ (τ ′, x1)〉

(0)
]
∑

ab

σ a
γ δσ

b
μν

〈
Sa

� (τ ′)Sb
�′ (τ ′′)

〉
. (16)

Using the free-field Green’s function of Eq. (15), spin SU(2) symmetry 〈Sa
� (τ ′)Sb

�′ (τ ′′)〉 = δab 〈Sz
�(τ ′)Sz

�′ (τ ′′)〉, the identity in
Eq. (B2), and reversing the integration order τ ′ ↔ τ ′′ in the second component within the square bracket of Eq. (16), we arrive
at

〈ψiα (z)ψ†
qβ (w)〉

(2)
= λ2

8a2

M∑
��′=1

∫ a/2

−a/2
dx1dx4

∫
dτ ′dτ ′′ 6δiqδαβ

(z − τ ′)[τ ′ − τ ′′ − i(x1 − x4)](τ ′′ − w)

〈
Sz

�(τ ′)Sz
�′ (τ ′′)

〉
. (17)
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We ignore any sum of xp (for p = 1, ..., 4) with z,w under
the assumption that |Im(z)|, |Im(w)| 
 a. We are then left
with determining the expectation value of the 2-spin corre-
lator. Before proceeding, we take a short detour clarifying our
formal definition of impurity-spin expectation values, see also
Appendix A.

By inserting the two sums within Eq. (17) into the 2-spin
correlator, we recognize that, in an analogous way to Eq. (13),
the total angular momentum sectors of M-impurity spins can
elegantly be captured

∑
��′

〈
Sa

� (τ ′)Sb
�′ (τ ′′)

〉
jtot

= δab

3

〈(∑
�

�S�

)2〉
jtot

= δab

3
jtot ( jtot + 1), (18)

where the index jtot now spans the total angular momentum
sectors of M impurities. The spatial coordinates of the impuri-
ties within the integral can be assumed to be negligible so long
as Im(z), Im(w) 
 xn for n = 1, ..., M (see Appendix C). The
spatiotemporal integrals of Eq. (17) can then be evaluated,
as is done in Appendix C, to show that the second-order
contribution in 1/k correctly corresponds to Eq. (9),

〈ψiα (z)ψ†
qβ (w)〉

jtot
= δiqδαβ

z − w

[
1 − 2

π2

k2
jtot ( jtot + 1) + · · ·

]
.

(19)

The total spin jtot is the large k limit of total anyon fusion
channel, following the SU(2)k fusion rules. Namely, the large-
k approach provides a simple picture for the fusion rules,
which become those of conventional SU(2) spins in the large-
k limit.

IV. IMPURITY-SPIN CORRELATIONS: LARGE-k LIMIT

In the previous section we focused on the Green’s func-
tion. This is an example of a correlation function of fields
evaluated far from the impurities, which we term “asymptotic
correlators.” As such, they probe the total fusion state. In this
section we focus, instead, on interimpurity spin correlations.

A. Statement of main result: Interimpurity correlation and
fusion of anyons pairs

Before diving into the calculations, we outline the main
result of this section.

The picture we demonstrate is that in the chiral multi-
impurity Kondo model, the expression �S ∼ ��(x = 0) for a
single impurity spin gets generalized to include an operator ��

acting on the degenerate Hilbert space spanned by the anyons,

�S� ∼ �� ��(x�), (� = 1, . . . M ). (20)

As the main result, we show that, unlike asymptotic cor-
relations, which probe the total fusion sector jtot [Eq. (6)],
impurity-spin correlations probe the fusion outcome of the
individual pair of anyons associated with the correlated im-
purities. We conjecture a general form of the leading-order

contribution to the impurity-spin correlation function,

〈
Sa

n (zn)Sb
m(zm)

〉
jnm

≈ δab Fk ( jnm)

(zn − zm)
4

2+k

, (k � 2). (21)

Here, jnm = 0, 1 spans the total angular momentum sectors of
impurity spins �Sm and �Sn. This expression, in accordance with
Eq. (20), shows on the one hand the power law dependence
on the coordinates (zn − zm) dictated by the primary field ��,
and on the other hand carries a dependence on the fusion state.
Our large k results below are consistent with

Fk→∞( jnm) = 1
6 jnm( jnm + 1) − 1

4 . (22)

From this equation, the impurity spin correlator probes the
fusion state of the specific pair of anyons, independently of
the impurity spins between them. In this section we confirm
this conjecture in the large-k limit.

B. Single impurity

Next we dive into the technical calculations that lead to
Eq. (21). First, we develop the large-k techniques for the
single impurity case and only then discuss the multi-impurity
case in Sec. IV C. The impatient reader may skip to the main
result in Eq. (32).

We begin with the preparatory step of studying the sin-
gle impurity-spin correlation using perturbation theory in the
large-k limit. The intraimpurity-spin correlation can be de-
rived perturbatively to second order in λ by expanding the
exponential of the Hamiltonian in path integral form,

〈Sa(τn)Sb(τm)〉 = 〈Sa(τn)Sb(τm)〉(0) + λ2

2

∑
cd

∫
dτ ′dτ ′′

× 〈Sa(τn)Sb(τm)(JcSc)(τ ′)(Jd Sd )(τ ′′)〉.
Here, Ja = 1

2ψ†σ aψ is the spin density field. The zeroth-order
contribution is quite trivial, giving

〈Sa(τn)Sb(τm)〉(0) = δab

4
. (23)

The first-order contribution vanishes by rotational invariance,
since 〈 �J〉 = 0. This leaves us with the second-order contribu-
tion, containing a nontrivial 4-spin correlator

〈Sa(τn)Sb(τm)〉(2) = k

4
λ2
∫

dτ ′dτ ′′ δab

(τ ′ − τ ′′ − iε)2

×
∑

c

〈Sa(τn)Sa(τm)Sc(τ ′)Sc(τ ′′)〉,
(24)

where we utilize the free spin density field operator product
expansion (OPE)

[Ja(z), Jb(w)] = k

2

δab

(z − w)2
+ iεabcJc

z − w
. (25)

The second term of the OPE does not contribute to Eq. (24).
The infinitesimal value ε is fictitiously prescribed to capture
the logarithmic divergence from the integral evaluation done
in Appendix D. It is now a matter of recognizing the various
time orderings resulting from the spin correlator to determine
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whether a nonzero second-order contribution exists. More
generally, the 4-spin correlator can be reexpressed as

〈SaSbScSd〉 = 1
16 (δabδcd − δacδbd + δadδbc). (26)

For τ ′ > τ ′′, the spin indices in Eq. (24) for the six possible
time orderings [numbers (1)–(6) depicted in Fig. 5(a)] can
then be expressed as

(1) =
∑

c

〈Sa(τn)Sa(τm)Sc(τ ′)Sc(τ ′′)〉 = 3

16
,

(2) =
∑

c

〈Sa(τn)Sc(τ ′)Sa(τm)Sc(τ ′′)〉 = − 1

16
,

(3) =
∑

c

〈Sa(τn)Sc(τ ′)Sc(τ ′′)Sa(τm)〉 = 3

16
,

(4) =
∑

c

〈Sc(τ ′)Sa(τn)Sc(τ ′′)Sa(τm)〉 = 3

16
,

(5) =
∑

c

〈Sc(τ ′)Sa(τi )S
a(τm)Sc(τ ′′)〉 = − 1

16
,

(6) =
∑

c

〈Sc(τ ′)Sc(τ ′′)Sa(τn)Sa(τm)〉 = 3

16
. (27)

Inserting this result back into Eq. (24) and evaluating the
integral, as is done in Appendix D, we obtain a logarithmic
k-dependent correction to the impurity-spin correlator

〈Sa(τn)Sb(τm)〉 = δab

4

[
1− 4

k
log(τn − τm) + O

(
1

k2

)]
. (28)

Interestingly, using �S ∼ C ��(x = 0) with some nonuniversal
constant C, as in Ref. [2], we have

〈Sa(τn)Sb(τm)〉 ∝ δab |C|2
(τn − τm)

4
2+k

. (29)

Equation (28) contains the first two terms in the large-k ex-
pansion of this CFT result. In what follows, we show that a
similar expression is attained in the multi-impurity scenario,
up to a nontrivial factor associated to the total spin sectors of
the correlated impurities.

C. Multiple impurities

In the multi-impurity scenario, the Kondo Hamiltonian
contains a sum over M impurity spins. This sum is carried
over to the first and second-order perturbation terms.

As before, the first-order contribution is null due to the
expectation value of the spin density. The zeroth- and second-
order contributions of the interimpurity-spin correlator for
impurity spins at holomorphic coordinates zn = τn − ixn and
zm = τm − ixm are〈
Sa

n (zn)Sb
m(zm)

〉 = 〈Sa
n (τn)Sb

m(τm)
〉
(0)

+ λ2

2

M∑
��′=1

∑
cd

∫
dτ ′dτ ′′

× 〈Sa
n (τn)Sb

m(τm)Jc(z′)Sc
� (τ ′)Jd (z′′)Sd

�′ (τ ′′)
〉
.

(30)

The zeroth-order contribution can be evaluated by adopting
the result of Eq. (13), where jnm = 0, 1 represents the differ-
ent total angular momentum sectors generated by the pair of
spins. This procedure is different from tracing over the total
angular momentum sectors, as emphasized in the previous
section.

Using the OPE of Eq. (25), the second-order contribution
to the interimpurity-spin correlator is

〈
Sa

n (zn)Sb
m(zm)

〉
(2) = k

4
λ2

M∑
��′=1

∫
dτ ′dτ ′′ δab

(τ ′ − τ ′′ − i	x)2

×
∑

c

〈
Sa

n (τn)Sa
m(τm)Sc

� (τ ′)Sc
�′ (τ ′′)

〉
,

(31)

where 	x = x� − x�′ .
Evaluating this integral is more cumbersome than the one-

impurity case. One has to consider all of the possible impurity
configurations within the 4-spin correlator, as is done in Ap-
pendix E. After evaluating this integral and letting λ trend as
2/k, the zeroth- and second-order contributions to the inter-
impurity correlator in the large-k limit are

〈
Sa

n (τn)Sb
m(τm)

〉
jnm

= δab

(
1

6
jnm( jnm + 1) − 1

4

)

×
[

1 − 4

k
log(τn − τm) + O

(
1

k2

)]
.

(32)

This is quite remarkable. We obtain the same expression as
the large-k limit of the single impurity scenario, i.e., Eq. (28),
up to a factor 1

6 jnm( jnm + 1) − 1
4 dictating the total angular

momentum sectors of the correlated impurity spins (i.e., either
a singlet or triplet corresponding to values of −1/4 and 1/12,
respectively). To leading order, Eq. (32) can be understood
within the framework of CFT by expanding the �th impurity-
spin �S� as [2]

�S� ∼ �� ��. (33)

In the large-k limit, interimpurity-spin correlations, follow-
ing this expansion, would result in Eq. (21). The additional
dependence on jnm implies that, instead of Eq. (29), the
impurity-spin effectively has an operator �� acting nontriv-
ially on the anyon sector.

The prescribed impurity-spins allow us to probe their in-
ternal fusion-tree states independently of the impurity-spins
residing between them. In the following section, this outcome
will be demonstrated for two-channel Kondo systems.

V. IMPURITY-SPIN CORRELATIONS - 2CK

In the previous section we made the conjecture Eq. (21) on
the dependence of spin-spin correlations on the fusion state,
and showed that it is fully consistent with the perturbative
large-k limit. In this section we show that it is also consistent
with the exactly solvable k = 2 case. Below, we dive into
explicit calculations. The impatient reader may skip to the
main results, Eqs. (55) and (59).

Upon scattering at an impurity, electrons in the kCK prob-
lem are completely transformed into collective degrees of
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freedom. Remarkably, using the EK prescription [15], which
consists of a bosonization and refermionization procedure,
this process can be described explicitly. More so, impurity-
spin correlations can be calculated exactly for k = 2. Before
calculating these correlation functions, we review the notation
introduced in the paper of Lopes et al. [8]. The impatient
reader may skip to Sec. V A.

We begin by bosonizing [27,28]

ψiα (x) = a−1/2κiαe−iφ̃iα (x), (34)

where κiα are Klein factors. Channel and spin indices span
i = 1, 2 and α =↑,↓, respectively. The spin-channel bosons
φ̃iα obey the commutation relations

[φ̃iα (x), φ̃qβ (y)] = iπδiqδαβsgn(x − y), (35)

while the Klein factors obey

{κiα, κqβ} = 2δiqδαβ. (36)

We can express the Hamiltonians of Eqs. (1)–(2) in a more
convenient basis by mapping the spin-channel densities to
their charge (c), spin (s), flavor ( f ), and spin-flavor (s f ) de-
grees of freedom. The orthogonal transformation⎛

⎜⎝
Nc

Ns

N f

Ns f

⎞
⎟⎠ = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠
⎛
⎜⎜⎝
Ñ1↑
Ñ1↓
Ñ2↑
Ñ2↓

⎞
⎟⎟⎠ (37)

is performed, where the spin-channel density Ñiα is

Ñiα =
∫

dx

2π
ψ

†
iαψiα. (38)

In this alternative basis, the commutation relations for the
bosonic fields remain the same

[φη(x), φη′ (y)] = iπδηη′sgn(x − y), (η = c, s, f , s f ).(39)

The charge and flavor degrees of freedom decouple. The new
Klein factors satisfy [28]

κ
†
1↑κ1↓ = κ

†
s f κ

†
s , (40)

κ
†
2↑κ2↓ = κs f κ

†
s , (41)

κ
†
1↑κ2↑ = κ

†
s f κ

†
f , (42)

with anticommutation relations {κη, κη′ } = 2δηη′ .
The strong coupling limit of the bosonized Hamiltonian,

not including symmetry breaking perturbations, includes only
the spin and spin-flavor degrees of freedom

H0 =
∑

η

∫
dx

4π
(∂xφη )2, (43)

HK,+ = λ+
2a

M∑
�=1

(
κ

†
s f eiφs f (x� ) + κs f e−iφs f (x� ))

× (S−
� κ†

s eiφs (x� ) − S+
� κse

−iφs (x� )), (44)

HK,z = λz

M∑
�=1

∂xφs(x�)Sz
�. (45)

Here, we use vF = 1. The coupling constants λz = 	λ and
λ+ = λ are assumed to be equal for all impurities and we
define S±

� = Sx
� ± iSy

� .
We can further decouple the spin and spin-flavor degrees of

freedom at the Toulouse point λz = 1 by applying a particular
unitary transformation U = UM · · · U1, with U� transforming
each impurity

U� = eiλzSz
�φs (x� ). (46)

By carefully considering the chiral bosonic commutation re-
lations, impurity spin commutation relations, and ordering
of the impurities, only the spin-flavor remains in the strong-
coupling limit of the Hamiltonian. This result can then be
refermionized by use of the identity

ψη(x) = a−1/2κηe−iφη (x), (47)

resulting in a significantly simplified Hamiltonian

H0 = −
∑

η

∫
dx

2π
ψ†

η i∂xψη, (48)

HK,+ = λ+
2
√

a

M∑
�=1

[ψ†
s f (x�) + ψs f (x�)](d� − d†

� ), (49)

where the complex impurity fermion resembles Jordan-
Wigner-like strings

d� = κ†
s S−

� eiπ
∑M

m=�+1 Sz
m . (50)

Clearly, the Toulouse limit of the 2CK problem in the
refermionized form is exactly solvable. In further introducing
the Majorana basis

ψη = χ1
η + iχ2

η√
2

, d� = a� + ib�√
2

, (51)

the Hamiltonian can be further simplified

H = −
∫

dx

4π
χ1

s f i∂xχ
1
s f + i

λ+√
a

M∑
�=1

χ1
s f (x�)b�. (52)

In the absence of symmetry breaking perturbations, only the
set of Majoranas b1, ..., bM are strongly coupled, while their
fractionalized pairs a1, ..., aM are entirely free, resulting in a
1
2 log2 residual entropy per impurity.

A. Correlations

We now calculate the impurity-spin correlation for the
Hamiltonian of Eq. (52). We begin with the z component of
the impurity spin. It is immediately evident that the unitary
transformation has no effect on Sz

�. We therefore proceed to
expressing the correlator in Majorana form using the identity
Sz

� = ia�b�. The Majorana a� is completely decoupled from
the Hamiltonian Eq. (52), leaving only the strongly coupled
Majorana b�. It has been demonstrated, both for single and
multiple impurities, that the latter Majoranas are absorbed by
the conduction electrons in the 2CK process. [8,29–31] This
allows us to use the following identity:

Sz
�
∼= i

πλ+
a�χ

1
s f (z�). (53)
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This is an explicit form of Eq. (1), where the anyonic operator
�� is now represented by a Majorana fermion a�. The field
χ1

s f has scaling dimension 1/2 and can be identified with the

z-component of ��.
By inserting Eq. (53) into the longitudinal interimpurity-

correlation and recognizing that χ1
s f = (ψ†

s f + ψs f )/
√

2, we
arrive at the correlator

〈
Sz

nSz
m

〉 = Pa

4iπ2λ2+
〈ψs f (zn)ψ†

s f (zm)〉 (54)

= 1

2iπ2λ2+

Pa

zn − zm
. (55)

Here, Pa = 2ianam is the parity factor associated to Majoranas
an and am. Quite remarkably, independent of the order of the
M impurities, the correlation of the two measured impurity
spins does not depend on the remaining M − 2 impurities
within the system.

Notice the factor of i in Eq. (55) compared to the k → ∞
limit in Eq. (21). For a single impurity, the longitudinal intra-
impurity correlation correctly corresponds to Eq. (29)

〈Sz(τn)Sz(τm)〉 = 1

2π2λ2+

1

τn − τm
, (56)

where a2 = 1
2 . This does not occur for the interimpurity

correlation of Eq. (55), where the operator anam = 1
2iPa is

anti-Hermitian. Such a discrepancy may occur at small k due
to the k dependence of Fk in Eq. (21).

The same result can be attained for the transverse impurity-
spin correlation 〈S+

n S−
m 〉. To exemplify this, we follow the

EK prescription, starting by carefully applying the unitary
transformation outlined in Eq. (46)

US±
n U−1 = S±

n e±iφs (xn )e∓iπ
∑M

�=n+1 Sz
� . (57)

After mapping the impurity spins to their Jordan-Wigner-
like strings, the correlator between impurity spin S+

n and S−
m

at holomorphic coordinates zn = τn − ixn and zm = τm − ixm,
respectively, is

〈S+
n S−

m 〉 = 〈S+
n eiφs (zn )e−iπ

∑M
�=n+1 Sz

�S−
m e−iφs (zm )eiπ

∑M
�=m+1 Sz

�

〉
= 〈d†

n dm〉 〈eiφs (zn )e−iφs (zm )〉. (58)

We utilize the identity of Eq. (51) to express the correlator
purely in Majorana form and consider only its leading-order
contribution

〈S+
n S−

m 〉 = 1

2

anam

zn − zm
= 1

4i

Pa

zn − zm
, (59)

where the vertex operator associated to the spin bosonic field
gives the conventional CFT result. Clearly, both the longitudi-
nal and transverse impurity-spin correlators result in a parity
dependence, analogous to the singlet and triplet total angular
momentum sectors in the large-k limit of impurity-spin corre-
lations.

We now compare the k = 2 results of Eqs. (55)–(59) with
the large-k limit of Eq. (21). On the one hand, Fk→∞( jnm)
in Eq. (21) takes values −1/4 and 1/12 for fusion chan-
nels jnm = 0 and 1, respectively. On the other hand, parity
eigenvalues for k = 2 are Pa = ±1. This could result from

the additional 1/k dependence of Fk ( jnm) emerging at higher
orders in perturbation theory in the large-k limit.

VI. SUMMARY

In this paper we studied impurity spin correlation func-
tions of the chiral multi-impurity Kondo model. Substantial
evidence has been provided, both from the large-k limit and
two-channel case, that, when computed in pure states within
specific quantum sectors, impurity spin correlations display
a dependence on the internal state nonlocally shared by the
effectively fractionalized spins. An interpretation of this de-
pendence has been given in terms of anyon fusion rules.
Different than asymptotic correlators like the Green’s function
that depend only on the total fusion channel [8], here the
interimpurity correlations depend on the fusion state of the
given pair of correlated impurities.

In contrast to paradigmatic gapped topological phases as
in the fractional quantum Hall effect, our proposed multi-
impurity Kondo system is gapless. Nevertheless, the anyons
do not couple to unfractionalized degrees of freedom, demon-
strating a source of protection. To illustrate this, consider
for example Majorana fermions in quantum wires [32–35]
coupled to gapless modes of a nearby metal. This has been
essential for observation of Majorana modes via tunneling
[36,37], as well as in numerous suggestions to probe their
properties including braiding [38–41] and fractional entropy
[42,43]. At the same time, the hybridization of Majorana
fermions to the surrounding metallic gapless environment
leads to decoherence and quasiparticle poissoning [44–46].
In contrast, the two-channel Kondo Majorana fermion is a
strongly interacting degree of freedom, and as a result it does
not hybridize directly with external Fermi liquid metallic sys-
tems. It would be an interesting direction of future inquiry to
consider whether the robustness of the isolation of our degrees
of freedom survives different types of noise.

Measurement-only schemes [11,13,47] require orthogonal
projective measurements to be applied onto a sequence of
anyons in order to determine the probability of their fusion
state. A sequence of such projective measurements generates
exchange matrices that can be used for braiding. A schematic
system allowing to probe different fusion channels is depicted
in Fig. 2. Here, switches are used to prescribe a sequence of
operations on a set of impurities. At the top, weakly coupled
contacts are used to measure a sequence of impurities, while,
at the bottom, a specific pair of impurities. For example,
contacts α1 and α5 at the top allow to probe the total fusion
of anyons 1,2,3,4. At the bottom, contacts β2 and β4 allow to
probe the fusion of anyons 2 and 4.

It should be emphasized that the nontrivial fusion outcome
of correlation functions only appears in fully connected sys-
tem, where all spin-channels propagate in a chiral manner
from one impurity to the next, as in Fig. 1(b). Fusion of any-
onic degrees of freedom does not affect correlation functions
within partially connected systems, such as that of Fig. 3.
This fact can be easily understood from Eq. (21), where the
fusion-dependent factor is multiplied by the correlation of pri-
mary fields of different impurities 〈 ��(n)(zn) ��(m)(zm)〉, which
vanishes for dissimilar impurities n �= m that are partially con-
nected. This requirement for a fully-connected multichannel
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FIG. 2. Schematic for quantum computing platform depicting 2k
channels chirally connecting Kondo anyons �1, ..., �4. Two meth-
ods of probing the system are depicted: (1) at the top, fixed total
angular momentum jtot of Kondo anyons residing between weakly
coupled contacts is measured through the strongly coupled chiral
edge states using switches α1, ..., α5. Here, switches α1 and α5 are
turned on, allowing for a projective measurement of Kondo anyons
�1 · · · �4 in the basis of their total fusion state; (2) At the bottom,
fixed total angular momentum sectors jnm of pairs of impurity spins
are measured using a weakly coupled chiral edge state controlled
by switches β1, ..., β4. Here, switches β2 and β4 apply a projective
measurement to Kondo anyons �2 and �4, independent of the Kondo
anyons residing between them.

chiral Kondo model serves as a restriction that should be
considered in future experimental setups that could display
our predictions.

While here we considered the usual k-channel Kondo
model with SU(2) symmetry, leading to SU(2)k anyons, it
is interesting to explore anyons in other non-Fermi liquid
systems with emergent symmetries [48–52].
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APPENDIX A: CORRELATION FUNCTIONS

In this Appendix, we seek to provide a clear technical
explanation on the distinction between thermal correlation
functions and the ones we focus in this paper. We concentrate
on the perturbative large-k case, as a concrete way to state our
point.

FIG. 3. A partially connected k = 2 chiral Kondo system with
spin-up (↑) channels fully connected and spin-down (↓) channels
disconnected.

We start from the general definition of a thermal correlation
function, which can be obtained in imaginary time from

〈...〉 = Z−1Tr[Tτ (...)e−β(H0+HK )], (A1)

Z = Tr[e−β(H0+HK )], (A2)

where Tτ is the time-ordering operator. In the zero-
temperature limit, this is nothing but the average of the
operators depicted by the ellipsis in the ground state. The
trace can be computed in a product space between all spin
and fermionic degrees of freedom. Applying a path-integral
formalism to the fermions, but not the spins, we obtain

〈...〉 = Tr �S
∫
D[ψ†, ψ](...)e−S[ψ†,ψ,{�S�}]

Tr �S
∫
D[ψ†, ψ]e−S[ψ†,ψ,{�S�}]

, (A3)

where

S = S0 + SK =
∫ ∞

−∞
dτ

[∫
dxψ†∂τψ + H0 + HK

]
, (A4)

and we took the zero-temperature limit and the remaining
trace is only in the impurity degrees of freedom. Perturbation
theory follows normally here, resulting in

〈...〉 =
∞∑

n=0

(−1)n

n!
(...)
〈
Sn

K

〉
(0), (A5)

where

〈...〉(0) = Tr �S
∫
D[ψ†, ψ](...)e−S0[ψ†,ψ]

Tr �S[1]
∫
D[ψ†, ψ]e−S0[ψ†,ψ]

. (A6)

For M impurities, the denominator reads Tr �S[1] = (2 × 1/2 +
1)M = 2M .

Now, by expanding the order-n term in a multinomial for
all the impurities, the arbitrary thermal correlation function
reduces to

〈...〉 =
∞∑

n=0

(−λ)n

n!

∑
|k|=n

(
n
k

)∫ ( n∏
i=0

dτi

)
Ck

ψ [...] · Ck
�S [...],

(A7)

where k = (k1, ..., kM ) and(
n
k

)
= n!

k1! · · · kM!
, |k| ≡ k1 + ... + kM, (A8)

(JaSa)k ≡ (Ja1 (x1, τ1)Sa1
1 (τ1)

)k1

...
(
JaM (xM, τM )SaM

M (τM )
)kM (A9)

≡ (Ja1
1 Sa1

1

)k1 · · · (JaM
M SaM

M

)kM
, (A10)

and �J = 1
2ψ†σψ is the spin current density. Note that a nota-

tion is implied here where, whenever the power ki = k1, ..., kM

is greater than 1, we also have to introduce different time
variables. At perturbation theory of order n, n distinct time
variables must exist. Finally,

Ck
ψ [...] = 〈(...)ψ (Ja)k

〉
(0), (A11)

Ck
�S [...] = 〈(...)�S (Sa)k

〉
(0), (A12)
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are tensors computed independently for the fermion or spin
degrees of freedom.

For spin-spin correlations,

〈
Sa

� (τ )Sb
�′ (τ ′)

〉 = ∞∑
n=0

(−λ)n

n!

∑
|k|=n

(
n
k

)

×
∫ ( n∏

i=0

dτi

)
Ck

ψ [1] · Ck
�S
[
Sa

� (τ )Sb
�′ (τ ′)

]
.

(A13)

For example, the zeroth-order spin piece can be written, in
general,

C0
�S
[
Sa

� (τ )Sb
�′ (τ ′)

] = δab

6

∑
j

Tr

[
(�S� + �S�′ )2 − 3

2
I2 j+1

]

×
{

2−1 � = �′, j = 1/2
2−2 � �= �′, j = 0, 1

. (A14)

Note that, summing over all j for � �= �′, C0
�S = 0. For a general

second-order term, we have the spin contribution

C2
�S
[
Sa

� (τ )Sb
�′ (τ ′)

] = 2−MTr
[
Tτ

[
Sa

� (τ )Sb
�′ (τ ′)Sc

μ(τ ′′)Sd
ν (τ ′′′)

]]
.

(A15)

Although the result of this calculation is basis-independent,
if we want to consider the � �= �′ results, we may pick a
basis where we single-out the two external spins � and �′, and
consider their sectors of total angular momentum. In this case,
we are interested in

C2
�S
[
Sa

� (τ )Sb
�′ (τ ′)

]= 1

2M

∑
j,Mz,{sp,p�=�,�′}

〈{sp}, j, Mz|Tτ

×[Sa
� (τ )Sb

�′ (τ ′)Sc
μ(τ ′′)Sd

ν (τ ′′′)
]|{sp}, j, Mz〉(0).

(A16)

This allows us to get a clear picture. If we want to compare
each specific sector at perturbation theory, order by order, we
must write

〈
Sa

� (τ )Sb
�′ (τ ′)

〉 =∑
j

[ ∞∑
n=0

(−λ)n

n!

∑
|k|=n

(
n
k

)∫ ( n∏
i=0

dτi

)

× Ck
ψ [1] · Kk

�S, j

[
Sa

� (τ )Sb
�′ (τ ′)

]]
(A17)

≡
∑

j

〈
Sa

� (τ )Sb
�′ (τ ′)

〉
j, (A18)

where

Kk
�S, j

[
Sa

� (τ )Sb
�′ (τ ′)

] = 1

2M

∑
Mz,{sp,p�=�,�′}

〈{sp}, j, Mz|Tτ

× [Sa
� (τ )Sb

�′ (τ ′)
((

Sa1
1

)k1
...
(
SaM

M

)kM
)]∣∣

× {sp}, j, Mz〉(0). (A19)

We remark that this decomposition is unique to the compu-
tation of a 2-spin correlation function, where j is the total
angular momentum of exactly those two spins under study.
It provides a link between the thermal correlations and the
correlations computed in a given sector j that we consider
throughout this paper. One can go further: If full quantum
control is achieved over the impurity degrees of freedom, the
tensor Kk

�S, j
simplifies to a single piece and must be substituted

by

K̃k
�S, j

[
Sa

� (τ )Sb
�′ (τ ′)

] = 1

2 j + 1

∑
Mz

〈{sp}, j, Mz|Tτ

[
Sa

� (τ )Sb
�′

×(τ ′)
((

Sa1
1

)k1
...
(
SaM

M

)kM
)]|{sp}, j, Mz〉(0).

(A20)

A similar picture holds for the true anyonic case at finite k,
by exchanging the traces in the product space of fermions and
free spins (which is reasonable in the perturbative case), for a
calculation in the interacting ground state where the electronic
degrees of freedom decouple from the impurity.

APPENDIX B: 〈ψiαψ
†
qβ〉 - SINGLE IMPURITY

Given this Appendix is a review of previous results [1], we
refrain from deriving expressions that are already in the text
and instead refer to them. The Green’s function for a single
impurity, with spatial coordinates Im(w) < 0 and Im(z) > 0,
can be calculated to second-order perturbation theory in the
large-k limit

〈ψiα (z)ψ†
qβ (w)〉 = 〈ψiα (z)ψ†

qβ (w)〉
(0)

+ λ

2

∫
dτ ′〈ψiα (z)ψ†

qβ (w)ψ†
mγ (τ ′)ψmδ (τ ′)〉σ a

γ δ 〈Sa(τ ′)〉

+ λ2

8

∫
dτ ′dτ ′′〈ψiα (z)ψ†

qβ (w)ψ†
mγ (τ ′)ψmδ (τ ′)ψ†

nμ(τ ′′)ψnν (τ ′′)〉σ a
γ δσ

b
μν 〈Sa(τ ′)Sb(τ ′′)〉 . (B1)

The zeroth-order contribution is given by the free field Green’s
function of Eq. (15). The first-order contribution is null due to
the rotational invariance of the impurity spin 〈Sa〉 = 0. After
substituting the 2-spin correlator of Eq. (23), using

∑
a

σ a
γ δσ

a
μν = 2δγ νδδμ − δγ δδμν (B2)

and applying Wick’s theorem, followed by reordering the time
coordinates, we arrive at the second-order contribution

〈ψiα (z)ψ†
qβ (w)〉

(2)
= 3λ2

16

∫ ∞

−∞
dτ ′dτ ′′

× δiqδαβ

(τ ′ − τ ′′)(τ ′ − z)(w − τ ′′)
. (B3)
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After some shift of the time coordinates

〈ψiα (z)ψ†
qβ (w)〉

(2)
= −3λ2

16

∫ ∞

−∞
dT dτ

δiqδαβ

T
(
τ + 1

2	τ − T + ixz
)(

τ − 1
2	τ + ixw

) , (B4)

where 	τ = τz − τw, the integral τ can be performed to give∫ ∞

−∞
dτ

δiqδαβ(
τ + 1

2	τ − T + ixz
)(

τ − 1
2	τ + ixw

) = − 2π i

z − w − T
. (B5)

Putting this expression back into Eq. (B4) and integrating over T , the second-order contribution gives

〈ψiα (z)ψ†
qβ (w)〉

(2)
= −3π i

8
λ2
∫ ∞

−∞
dT

δiqδαβ

T (z − w − T )
= 3π i

16
λ2
∫ ∞

−∞
dT

δiqδαβ

(T + (z − w)/2)(T − (z − w)/2)
= −δiqδαβ

z − w

3π2λ2

8
.

(B6)

Setting λ to k/2 and inserting the zeroth- and second-order results into Eq. (B1), we arrive at a correct correspondence to the
fusion ansatz of Eq. (8)

〈ψiα (z)ψ†
qβ (w)〉 = δiqδαβ

z − w

[
1 − 3

2

π2

k2
+ · · ·

]

≈ δiqδαβ

z − w

S1/2
1/2/S0

1/2

S1/2
0 /S0

0

. (B7)

APPENDIX C: 〈ψiαψ
†
qβ〉(2)

- MULTIPLE IMPURITIES

We demonstrate that the second-order contribution to the
asymptotic correlator correctly results in Eq. (19). In account-
ing for the identity Eq. (B2), and the 2-spin correlator of
Eq. (18), the second-order contribution of Eq. (17) can be
written as

〈ψiα (z)ψ†
qβ (w)〉

(2)
= λ2 jtot ( jtot + 1)

1

4a2

∫ a/2

−a/2
dx′dx′′

∫ ∞

−∞
dτ ′
∫ ∞

−∞
dτ ′′ δiqδαβ

(z − τ ′)[τ ′ − τ ′′ − i(x′ − x′′)](τ ′′ − w)

= −λ2 jtot ( jtot + 1)
2π i

4a2

∫ a/2

−a/2
dx′dx′′θ (x′′ − x′)

∫ ∞

−∞
dτ ′ δiqδαβ

(τ ′ − w)(τ ′ − z)

= λ2

4

δiqδαβ

z − w
jtot ( jtot + 1)

(2π i)2

a2

∫ a/2

−a/2
dx′
∫ a/2

x′
dx′′ = (2π i)2 λ2

8

δiqδαβ

z − w
jtot ( jtot + 1). (C1)

In setting λ to 2/k in the large-k limit, we have

〈ψiα (z)ψ†
qβ (w)〉

(2)
= −2

π2

k2

δiqδαβ

z − w
jtot ( jtot + 1). (C2)

This concludes our integral evaluation.

APPENDIX D: 〈SaSb〉(2) - SINGLE IMPURITY

We demonstrate that the second-order contribution to the
impurity-spin correlator correctly results in Eq. (28). To sim-
plify the integration process, we recognize that a factor of
3/16 can be subtracted from all six orderings in Eq. (27). The
subtracted integral, which is constant over all time, clearly
vanishes by the residue theorem when substituted into Eq. (24)

− 3

16

∫ ∞

−∞
dτ ′
∫ ∞

−∞
dτ ′′ 1

(τ ′ − τ ′′ − iε)2
= 0, (D1)

leaving only two regimes of equal contribution with integral
expressions of Eq. (27), each containing a factor of −1/16 −
3/16 = −1/4. In further accounting for τ ′ < τ ′′ and exchang-
ing its time coordinates τ ′ ↔ τ ′′, the integral expression for

all contributing regions, i.e. (2) and (5) in Fig. 5(a) and their
mirror images, can be expressed as

I = I− + I+ = −1

2

∫ τn

τm

dτ ′
∫ ∞

τn

dτ ′′ 1

(τ ′ − τ ′′ − iε)2

− 1

2

∫ τn

τm

dτ ′
∫ ∞

τn

dτ ′′ 1

(τ ′ − τ ′′ + iε)2
(D2)

Each of the integrals on the right-hand side can be evaluated
independently

I± = −1

2

[∫ τn

−∞
dτ ′
∫ ∞

τn

dτ ′′ 1

(τ ′ − τ ′′ ± iε)2

−
∫ τm

−∞
dτ ′
∫ ∞

τn

dτ ′′ 1

(τ ′ − τ ′′ ± iε)2

]
(D3)

= −1

2

[
log(τn − τm) − log(ε) ∓ iπ

2

]
. (D4)

The additive constant above cancels out and the diver-
gence can be renormalized, resulting in I ≈ − log(τn − τm).
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FIG. 4. All possible impurity-spin configurations of the 4-spin
correlator Eq. (31). Configurations that are nonzero, but do not con-
tribute, are marked with an “×”. Configurations that are null are
marked with a “0”. The boxed set of configurations have a finite
contribution.

Inserting this result into Eq. (24) gives the second-order con-
tribution expressed in Eq. (28).

APPENDIX E: 〈Sa
nSb

m〉(2) - MULTIPLE IMPURITIES

We demonstrate that the second-order contribution to the
impurity-spin correlator correctly results in Eq. (32). Figure 4
compactly summarizes the different possible configuration of
the 4-spin correlator in Eq. (31).

By symmetry of the function we are integrating, it is quite
trivial to recognize that the scenario n �= � �= �′ �= m does not
differentiate between the different time orderings and is hence
zero.

The next of these scenarios is one of the four off diagonal
terms in the last row and last column, marked by an × in
Fig. 4, in which only a single pair of impurities is identical.
Their individual contributions are not zero, but the sum of
their contributions is indeed zero. To see this, we exemplify
the different time orderings numbered (1)–(6) in Fig. 5(a) for

the case {n �= m; � = n; �′ �= m, n},

(1) = 〈Sa
nSa

mSc
nSc

�′
〉 = 1

4
δac
〈
Sa

mSc
�′
〉− i

2
εcab
〈
Sb

nSa
mSc

�′
〉
,

(2) = 〈Sa
nSc

nSa
mSc

�′
〉 = 1

4
δac
〈
Sa

mSc
�′
〉− i

2
εcab
〈
Sb

nSa
mSc

�′
〉
,

(3) = 〈Sa
nSc

nSc
�′Sa

m

〉 = 1

4
δac
〈
Sa

mSc
�′
〉− i

2
εcab
〈
Sb

nSa
mSc

�′
〉
,

(4) = 〈Sc
nSa

nSa
mSc

�′
〉 = 1

4
δac
〈
Sa

mSc
�′
〉+ i

2
εcab
〈
Sb

nSa
mSc

�′
〉
,

(5) = 〈Sc
nSa

nSc
�′Sa

m

〉 = 1

4
δac
〈
Sa

mSc
�′
〉+ i

2
εcab
〈
Sb

nSa
mSc

�′
〉
,

(6) = 〈Sc
nSc

�′Sa
nSa

m

〉 = 1

4
δac
〈
Sa

mSc
�′
〉+ i

2
εcab
〈
Sb

nSa
mSc

�′
〉
. (E1)

The first term in each region gives a constant of τ ′, τ ′′, which
does not contribute to the integral in Eq. (31). Now consider
the second term with the Levi-Civita symbol, in a specific
region, say (1). Combining the 4 possibilities marked by ×
in Fig. 4 in region (1), namely n �= m and (i): {� = n; �′ �=
m, n}, (ii): {� = m; �′ �= m, n}, (iii): {�′ = n; � �= m, n}, (iv):
{�′ = m; � �= m, n}, gives

〈
Sa

nSa
mSc

nSc
�′
〉 = 1

4
δac
〈
Sa

mSc
�′
〉− i

2
εcab
〈
Sb

nSa
mSc

�′
〉
,

〈
Sa

nSa
mSc

mSc
�′
〉 = 1

4
δac
〈
Sa

nSc
�′
〉− i

2
εcab
〈
Sa

nSb
mSc

�′
〉
,

〈
Sa

nSa
mSc

�′Sc
n

〉 = 1

4
δac
〈
Sa

mSc
�′
〉− i

2
εcab
〈
Sb

nSa
mSc

�′
〉
,

〈
Sa

nSa
mSc

�′Sc
m

〉 = 1

4
δac
〈
Sa

nSc
�′
〉− i

2
εcab
〈
Sa

nSb
mSc

�′
〉
, (E2)

Putting these configurations together, we see that all equally
contribute, giving a relative factor of −4, depicted schemati-
cally in Fig. 5(b). This procedure can be repeated for regions
(2)–(6) to arrive at the remaining factors indicated in Fig. 5(b).
We can then conclude, by symmetry of the integral under
consideration, that the 4-spin correlator for a single pair of
identical impurities must be null.

FIG. 5. Time plot (a) indicates the different regions expressed in Eq. (E1). Time plot (b) specifies the factor accumulated in each regime
for one pair of identical impurity-spins. By symmetry of the integral in Eq. (31), the configurations marked by × in Fig. 4 do not contribute.
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FIG. 6. Time plots indicate the factors accumulated in each regime for configurations of (a) two pairs of identical impurity-spins
and (b) three identical impurity-spins. These configurations are marked by a bold square in Fig. 4, with its cross-diagonal and diagonal
configurations corresponding to (a) and (b), respectively. Time plot (c) is the accumulative sum of factors within configurations (a) and (b).

This leaves the set of 4-spin correlators containing three
and a double pair of identical impurities, as depicted in the
boxed region of Fig. 4. In following the previously outlined
procedure, the double pair of identical impurities results in
a finite contribution, as depicted in Fig. 6(a). One needs to
be careful in considering all possible configurations and their
respective regions within the 4-spin correlator. For example,
configuration {� = n; �′ = m} in region (1) simplifies as∑

c

〈
Sa

nSa
mSc

nSc
m

〉 = 1

16
− 1

4

∑
c �=a

〈
Sc

nSc
m

〉
. (E3)

All other regions generate the same result up to a sign of the
second term. As in Eq. (E1), the first constant term cancels
out. Utilizing Eq. (13), and up to the factors specified in
Fig. 6(a) associated to the total polarity of the two contributing
configurations, the relevant second-order contribution within
each of these regions reduces from Eq. (31) to

〈
Sa

n (τn)Sb
m(τm)

〉
(2) = −k

8
λ2

(
1

6
jnm( jnm + 1) − 1

4

)

×
∫

R1

dτ ′dτ ′′ δab

(τ ′ − τ ′′ − i	x)2
, (E4)

where R1 refers to region (1) in Fig. 5(a).
Similarly, for the cases � = �′ = n �= m and � = �′ = m �=

n depicted in Fig. 6(b), the 4-spin correlator is also finite. For
� = �′ = n �= m in region (1), the 4-spin correlator reduces to∑

c

〈
Sa

nSa
mSc

nSc
n

〉 = 1

4

〈
Sa

nSa
m

〉+ 1

4

∑
c �=a

〈
Sc

nSc
m

〉
. (E5)

As before, only the second term contributes. Unlike the
nonzero 	x present in the previous configuration [i.e., see
Eq. (E4)], this integral contains an ultraviolet cutoff ε,〈

Sa
n (τn)Sb

m(τm)
〉
(2) = k

8
λ2
(1

6
jnm( jnm + 1) − 1

4

)

×
∫

R1

dτ ′dτ ′′ δab

(τ ′ − τ ′′ − iε)2
. (E6)

We can see the cancellation between Eq. (E4) and (E6) in
Fig. 6. Similarly, we find the same cancellation in all regions
but region (4).

After adding the regions specified in Figs. 6(a) and 6(b)
together, the nonzero domain τm < τ ′, τ ′′ < τn depicted in
Fig. 6(c) can be integrated to obtain a logarithmic trend, which
is independent of 	x so long as τn, τm 
 	x

I =
∫ τn

τm

dτ ′
∫ τ ′

τm

dτ ′′ 1

(τ ′ − τ ′′ − i	x)2

+
∫ τn

τm

dτ ′′
∫ τ ′′

τm

dτ ′ 1

(τ ′ − τ ′′ − i	x)2
. (E7)

In switching the time coordinates τ ′ ↔ τ ′′ in the second inte-
gral, we have

I = I− + I+ =
∫ τn

τm

dτ ′
∫ τ ′

τm

dτ ′′ 1

(τ ′ − τ ′′ − i	x)2

+
∫ τn

τm

dτ ′
∫ τ ′

τm

dτ ′′ 1

(τ ′ − τ ′′ + i	x)2
. (E8)

Evaluating each of these integrals gives

I± =
∫ τn

τm

dτ ′
∫ τ ′

τm

dτ ′′ 1

(τ ′ − τ ′′ ± i	x)2
(E9)

=
∫ τn

τm

dτ ′
[

∓ i

	x
− 1

τ ′ − τm ± i	x

]
(E10)

= − log(	τ ± i	x) + log(±i	x) ∓ i	τ

	x
. (E11)

Here, 	τ = τn − τm. Plugging this back into Eq. (E8), with
	τ 
 	x, we obtain

I = −2[log(τn − τm) − log(	x)], (E12)

where the logarithmic divergence for small 	x → 0 can
be renormalized, as in the one-impurity case. Furthermore,
whether we consider 	x or ε, the above results do not change.
We are left with a logarithmic dependence in time for the
second-order perturbation of a multi-impurity correlator.

Taking the result of Eq. (E12), accounting for the accu-
mulated factor of ×4 from the different configurations [i.e.,
see Fig. 6(c)], and letting λ trend as 2/k, the zeroth- and
second-order contributions in Eq. (32) are correctly obtained.
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