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Probing robust Majorana signatures by crossed Andreev reflection with a quantum dot
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We propose a three-terminal structure to probe robust signatures of Majorana zero modes. This structure
consists of a quantum dot coupled to the normal-metal, s-wave superconducting, and Majorana Y-junction leads.
The zero-bias differential conductance at zero temperature of the normal-metal lead peaks at 2e2/h, which will
be deflected after Majorana braiding. This quantized conductance can entirely arise from the Majorana-induced
crossed Andreev reflection, protected by the energy gap of the superconducting lead. We find that the effect of
thermal broadening is significantly suppressed when the dot is on resonance. In the case in which the energy
level of the quantum dot is much larger than the superconducting gap, tunneling processes are dominated by
Majorana-induced crossed Andreev reflection. Particularly, a novel kind of crossed Andreev reflection equivalent
to the splitting of charge quanta 3e occurs after Majorana braiding.
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I. INTRODUCTION

Majorana zero modes (MZMs) are zero-energy quasi-
particle excitations originating from coherent superpositions
of electrons and holes. Following theoretical suggestions,
MZMs are supported in 1D systems, such as InAs or InSb
wires with strong spin-orbit coupling and proximity-induced
superconductivity [1,2], and they show great potential in
decoherence-free quantum computation [3–6]. Verifying the
existence of MZMs and their non-Abelian braiding has been
attracting much attention in recent years [7–16].

Due to the property that an MZM can act as both an
electron lead and a hole lead in tunneling processes, one of the
most exciting theoretical predictions is a quantized zero-bias
conductance peak (ZBCP) of 2e2

h at zero temperature [17–19].
However, it is quite difficult to observe this quantization from
a direct junction between a normal-metal lead and MZMs
in a single-subband wire because of thermal broadening,
overlap of Majorana wave functions, disorder, and localized
Andreev bound states [8,20–25]. Although the observation
of ZBCPs has been reported in many experiments in recent
years [26–30], the observation of MZMs has not been fully
confirmed. Importantly, very recently it has been recognized
that one needs to be cautious about the interpretation of non-
quantized ZBCPs as the signature of MZMs in local tunneling
experiments since such experiments only measure one end
of the one-dimensional setup [31], while the most important
characteristics of MZMs are their nonlocal correlations. To
advance the pursuit of MZMs, new theoretical proposals and
new signatures which can reflect the nonlocal correlations of
MZMs are hence highly demanded. For example, shot noise
and the Fano factor in Majorana setups can carry interesting
information to identify MZMs [7,15,16,32–38].
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Here we propose a T-shaped hybrid structure to detect
MZMs, as illustrated in Fig. 1. The central quantum dot
(QD) acts as a transfer station of electrons and holes. Hence
tuning the energy level of the QD is equivalent to tuning
the transmission coefficients. The key to probe MZMs is the
Majorana-induced crossed Andreev reflection [18,32,39,40].
The ZBCP arising from the crossed Andreev reflection in this
T-shaped structure is strongly protected by the energy gap
of the superconducting lead because quasiparticle excitations
are exponentially suppressed ∼ exp(−�/T ). Such kinds of
multiterminal structures with a QD show excellent maneu-
verability in the studies of spin-dependent transport in strong
Coulomb-correlated systems [41–47].

At zero temperature, we find that the ZBCP of the normal-
metal lead is quantized to 2e2/h before braiding, which can
be completely induced by the crossed Andreev reflection. This
quantized ZBCP is found to be considerably robust against the
temperature when the QD is on resonance (εd = 0). We show
that the crossed Andreev reflection dominates over the con-
ventional Andreev reflection when εd � �. Importantly, we
find that the Majorana braiding shifts the ZBCPs and arouses
a novel kind of crossed Andreev reflection equivalent to the
splitting of 3e charge quanta, as shown in Fig. 5. Because
of the high controllability of QD and the robustness of the
predicted signatures, our findings suggest a promising new
way to identify MZMs.

It is worth noting that while the Kondo correlations are im-
portant in a strong-coupling and low-temperature regime, the
Kondo resonances are usually either unstable or unquantized
[48–50]. In sharp contrast, the Majorana-induced resonance
in this paper is always singly situated at zero bias and leads
to quantized conductance. In order to isolate and investigate
observable consequences of the Majorana-induced subgap
resonances, we neglect the Kondo correlations and focus on
the Majorana-induced crossed Andreev reflection.

This paper is organized as follows. In Sec. II, we intro-
duce the T-shaped hybrid model and explicitly write down its
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FIG. 1. Setup of the T-shaped QD-(N, S, Y) model with the
normal-metal lead (N), the superconducting lead (S), and the Ma-
jorana Y-junction lead (Y). Following Refs. [51,52], the Majorana
braiding can be implemented on the Y junction by tuning the cou-
plings between the MZMs.

Hamiltonians. In Sec. III, we discuss the electronic transport
of the system and provide the corresponding current and con-
ductance formulas, including the analytical expressions for
the ZBCPs. In Sec. IV, we present the formula for the shot
noise and the Fano factor in terms of appropriate Green’s
functions. The detailed derivations of the self-energy, the local
density of states, and the shot noise are given in Appendices
A, B, and C, respectively.

II. MODEL AND FORMULATION

We introduce the three-terminal setup shown in Fig. 1. The
three leads are coupled with a central QD and the supercon-
ducting lead ensures that the occurrence of crossed Andreev
reflection, which protects the ZBCP from quasiparticle exci-
tations. The tunnel-coupled structure can be described by an
effective low-energy Hamiltonian:

H = HL + HR + HQD + HY + HT. (1)

The first term in Eq. (1) is the Hamiltonian of the normal-
metal lead (N) in Fig. 1, which is characterized by

HL =
∑
kσ

εL,kσ a†
L,kσ

aL,kσ , (2)

where a†
L,kσ

(aL,kσ ) are creation (annihilation) operators with
wave vector k and spin σ = ↑,↓, and εL,kσ is the correspond-
ing electron energy. The second term, the Hamiltonian of the
superconducting lead (S) in Fig. 1, is given by the BCS theory,

HR =
∑
kσ

εR,kσ a†
R,kσ

aR,kσ +
∑

k

(�a†
R,k↑a†

R,−k↓ + H.c.). (3)

The superconducting energy gap � is real here since a uni-
tary transformation has been performed on this Hamiltonian
[45,53]. In this work, we set the applied voltage of the
superconducting lead VR = 0. For simplicity, we use the non-
interacting Hamiltonian of the QD,

HQD =
∑

σ

εdd†
σ dσ , (4)

where the QD level εd = ε0 − eVg/2 is controlled by a gate
voltage Vg [9,47,48]. The Hamiltonian of the Majorana Y

junction (Y) in Fig. 1 is given by

HY = i
4∑

k=2

t1kγ1γk, (5)

where the Coulomb coupling constants are t12 = t13 = tmin

and t14 = tmax with tmin � tmax [51]. Using two fermionic op-
erators c1 = (γ1 − iγ4)/2 and c2 = (γ2 − iγ3)/2, the Hamil-
tonian HY can be represented in the four-dimensional
Nambu-spinor space spanned by c†

Y = (c†
1, c1, c†

2, c2).
The tunneling Hamiltonian consists of

HT = HT,L + HT,R + HT,Y, (6)

where

HT,L(R) =
∑
kσ

vL(R),kd†
σ aL(R),kσ + H.c., (7)

with vL,k and vR,k denoting the complex tunneling amplitudes
of the normal-metal and superconducting leads, respectively.
The coupling between the QD and the Majorana lead is spin
conserving; i.e., the MZM is always tunnel-coupled to elec-
trons in the QD with the same spin orientation [54]. Since we
have set the spin orientation of the Rashba spin-orbit coupling
along the z direction in Fig. 1, the spin of each MZM (except
γ1) is parallel to the axial direction of the corresponding
nanowire [2,55]. Defining that the spin-↑ direction is along
the y direction, the coupling between the QD and the Majorana
lead is given by

HT,Y = λd†
↑γ2 + H.c., (8)

where λ is the coupling amplitude. For simplicity, we assume
λ is real.

III. CURRENT AND CONDUCTANCE

The ZBCP arising from the crossed Andreev reflection in
this T-shaped structure is a remarkable signature of MZMs.
In this section, we first calculate the time-average current by
using the nonequilibrium Green’s function method [15,53,56–
59], and then derive the analytic expression of the ZBCP of
each lead.

The time-average current of the normal-metal lead is given
by

IL = −e〈ṄL(t )〉

= e

h

∫
dω Re Tr

{[
GR

QD(ω)�<
L (ω) + G<

QD(ω)�A
L (ω)

]
σ̃z
}
,

(9)

where NL(t ) = ∑
kσ a†

L,kσ
(t )aL,kσ (t ) is the total number

operator of the electrons in the normal-metal lead. The
4 × 4 Green’s functions G<

QD(t, t ′) ≡ −i〈d (t ′)d†(t )〉 and
GR

QD(t, t ′) ≡ −iθ (t − t ′)〈{d (t ), d†(t ′)}〉 are defined with

the Nambu spinors d† = (d†
↑, d↓, d†

↓, d↑). The retarded

self-energy �R
L (ω) = [�A

L (ω)]† = ∑
k H

†
T,LgR

L(ω)HT,L is

defined with the Nambu spinors a†
L(R) = (a†

L(R),k↑, aL(R),−k↓,

a†
L(R),−k↓, aL(R),k↑). Here gR

L(ω) = (ω − HL + i0+)−1 is
the corresponding unperturbed Keldysh contour Green’s
functions of the normal-metal lead. The lesser self-
energy is �<

L (ω) = FL(�A
L (ω) − �R

L (ω)), where FL =
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diag( fL, f̄L, fL f̄L) is the Fermi distribution function matrix
with fL = f (ω − eVL) and f̄L = f (ω + eVL). The matrix
σ̃z = diag(1,−1, 1,−1) describes the different charge of
electrons and holes.

The time-average current Eq. (9) is calculated in terms of
�R,A,<

L (ω) and GR,A,<
QD (ω). This expression can be generalized

to Iη by replacing the self-energies �R,A,<
L (ω) with �R,A,<

η (ω)
for η = L, R, and Y representing the normal-metal lead, the
superconducting lead, and the Majorana lead, respectively.
In the basis (d†, a†

L, a†
R, c†

Y), the Hamiltonian Eq. (1) can be
written in a block form as

H =

⎛⎜⎜⎜⎝
HQD HT,L HT,R HT,Y

H†
T,L HL 0 0

H†
T,R 0 HR 0

H†
T,Y 0 0 HY

⎞⎟⎟⎟⎠, (10)

where the submatrices are given by

HL =

⎛⎜⎜⎝
εL,k↑ 0 0 0

0 −εL,k↓ 0 0
0 0 εL,k↓ 0
0 0 0 −εL,k↑

⎞⎟⎟⎠, (11a)

HR =

⎛⎜⎜⎝
εR,k↑ � 0 0
� −εR,k↓ 0 0
0 0 εR,k↓ −�

0 0 −� −εR,k↑

⎞⎟⎟⎠, (11b)

HQD =

⎛⎜⎜⎝
εd 0 0 0
0 −εd 0 0
0 0 εd 0
0 0 0 −εd

⎞⎟⎟⎠, (11c)

HY =

⎛⎜⎜⎝
−2t14 0 it12 − t13 it12 + t13

0 2t14 it12 − t13 it12 + t13

−it12 − t13 − it12 − t13 0 0
−it12 + t13 − it12 + t13 0 0

⎞⎟⎟⎠,

(11d)

HT,L(R) =

⎛⎜⎜⎜⎝
vL(R),k 0 0 0

0 −v∗
L(R),k 0 0

0 0 vL(R),k 0
0 0 0 −v∗

L(R),k

⎞⎟⎟⎟⎠, (11e)

HT,Y =

⎛⎜⎜⎝
0 0 λ λ

0 0 0 0
0 0 0 0
0 0 −λ −λ

⎞⎟⎟⎠. (11f)

Assuming that the electron energies in Eqs. (2) and (3)
are independent of spins with εL(R),k↑ = εL(R),k↓ = εL(R),k , the
retarded self-energies from the couplings between the three
leads and the QD are given by

�R
L (ω) = − i

2
�L

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠, (12)

�R
R(ω) = − i

2
�Rβ(ω)

⎛⎜⎜⎜⎝
1 −�

ω
0 0

−�
ω

1 0 0

0 0 1 �
ω

0 0 �
ω

1

⎞⎟⎟⎟⎠, (13)

�R
Y(ω) = κ� = κ

⎛⎜⎜⎝
1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎞⎟⎟⎠, (14)

where �L(R) = 2π |νL(R),k|2ρL(R) is the linewidth function
with ρL(R) being the density of normal states. In the wide-
band limit, �L(R) is a constant independent of the frequency
ω. Here β(ω) = |ω|�(|ω|−�)√

ω2−�2 + ω�(�−|ω|)
i
√

�2−ω2 is the dimensionless
BCS density of states. Neglecting the contribution of tmin, we

have κ ≈ −8λ2t2
max+2λ2(ω+ )2

−4t2
maxω

++(ω+ )3 with ω+ = ω + i0+.
The lesser Green’s function of the QD can be obtained via

the Keldysh equation G<
QD(ω) = GR

QD(ω)�<
TOT(ω)GA

QD(ω),
with �<

TOT = ∑
η �<

η . In the calculation of the time-average
current, we can take �<

Y = 0 (see Appendix A for de-
tails). In the case of |eVL| < |�|, analytical calculations for
the time-average current yield Iη = e

2h

∫
dω( fL − f̄L)Tη(ω),

which means that only Andreev reflection processes con-
tribute to the electronic transport of the system. Since the
system is in a stationary regime, the total current is conserved,
i.e.,

∑
η Iη = 0.

The differential conductances of the leads η at zero temper-
ature are obtained by Gη = dIη/dVL. Especially, the ZBCPs at
zero temperature are

lim
eVL→0

GL(eVL) =
⎧⎨⎩

2e2

h , λ �= 0,

e2

h
16�2

L�2
R

(�2
L+�2

R+4ε2
d )2 , λ = 0,

(15)

lim
eVL→0

GR(eVL) =
⎧⎨⎩− e2

h
4�2

R

�2
L+�2

R+4ε2
d
, λ �= 0,

− e2

h
16�2

L�2
R

(�2
L+�2

R+4ε2
d )2 , λ = 0,

(16)

lim
eVL→0

GY(eVL) =
{

− e2

h
2(�2

L−�2
R+4ε2

d )
�2

L+�2
R+4ε2

d
, λ �= 0,

0, λ = 0.
(17)

When λ = 0, the Majorana Y junction is disconnected with
the QD, and the remaining part is reduced to an N-QD-S
structure. The maximal ZBCP in Eq. (15) is equal to 4e2/h
when the QD is symmetrically coupled (�L = �R) and on
resonance (εd = 0), in accord with the previous results of
Ref. [43]. When λ �= 0, the ZBCP of the normal-metal lead in
this three-terminal structure equals a quantized value 2e2/h,
which is consistent with the famous conductance peak for
the normal metal–topological superconductor tunneling. As
depicted in Figs. 2(a)–2(c), the ZBCP is obviously broad for
εd = 0 and becomes sharp for large εd. The QD acts as a trans-
fer station of electrons and holes, which means that the energy
level of the QD is the tunnel barrier of the system. Hence
the broadening of the ZBCP arises from the junction trans-
parency effect and the height of the ZBCP is not affected. This
quantized ZBCP is caused by the perfect Majorana-induced
Andreev reflection. In the next section, we will show that the
local Andreev reflection can be completely suppressed by in-
creasing εd, and only the crossed Andreev reflection remains.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (a)–(c) Differential conductance spectra of the normal-metal lead as functions of eVL/� and εd/� at zero temperature. The
parameters are �L = �R = 0.8�, tmin = 0.001�, and tmax = �. (e)–(f) The LDOS of the superconducting lead with the same parameters
in (a)–(c). The LDOS is defined by the sum of the diagonal spectral function of the superconducting lead, i.e., ρ(ω) = −Im[Tr GR

R]/π .

We emphasize again that this ZBCP of 2e2/h can completely
arise from the crossed Andreev reflection, which is strongly
protected by the superconducting gap � [21]. Moreover, the
results of Eqs. (16) and (17) show that the ZBCPs of both the
superconducting and the Majorana leads are insensitive to the
nonzero coupling amplitude λ, but only dependent on �L, �R,
and εd.

The conductance peaks of the normal-metal lead are
closely related to the local density of states (LDOS) of the
superconducting lead in this T-shaped structure (the details
of the analytical derivation of the LDOS are provided in
Appendix B). As shown in Figs. 2(d)–2(f), there are three
subgap resonances in the superconducting lead; two are the
spin-induced resonances situated near the gap edge [48], and
one is the Majorana-induced resonance situated at ω = 0. The
conductance peaks are all situated at the subgap resonance
energy. As εd increases, all the resonances become sharper,
and the two near the gap edge merge with the dips even-
tually, whereas the one at ω = 0 remains. For large εd, the
Majorana-induced resonance situated at ω = 0 sharpens to
form a localized bound state, i.e., a Yu-Shiba-Rusinov (YSR)
state. The occurrence of the Majorana-induced YSR state will
lead to the domination of crossed Andreev reflection, which
will be discussed in the next section. The Majorana-induced

resonance in the superconducting lead is not quantized but
parameter dependent, consistent with the result in Eq. (16).
The Majorana-induced resonance leads to a quantized ZBCP
of the normal-metal lead since the electrons and holes are
transported through perfect Andreev reflection [60]. The spin-
induced conductance peaks are unstable and unquantized;
i.e., they are not robust as functions of parameters. When λ

increases, the Majorana induced resonance is enhanced and
the spin-induced conductance peaks become inconspicuous
in Figs. 2(b) and 2(c) due to the competition between the
spin-induced and the Majorana-induced resonances in the tun-
neling processes.

The discussion can easily extend to finite-temperature
regimes. As shown in Fig. 3, the ZBCP of the normal-metal
lead is no longer quantized to 2e2/h, since the Fermi distri-
bution is smoothly dependent on the temperature T , which is
called the thermal broadening. Nevertheless, we find that the
effect of the thermal broadening is significantly suppressed by
large junction transparency (εd = 0). In Fig. 3, the ZBCP is
pretty close to 2e2/h when kBT < �/20. Such a temperature
condition can be met in experiment; e.g., see Ref. [27], in
which the induced superconducting gap of the InSb nanowires
is � ≈ 250 μeV and the minimized temperature is kBT ≈
4.3 μeV.
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5 10 15 20 25 30 35 40
1

1.2

1.4

1.6

1.8

2

FIG. 3. ZBCP of the normal-metal lead as a function of finite
temperature. The parameters are �L = �R = 0.8�, λ = �, tmin =
10−3�, and tmax = �.

IV. SHOT NOISE AND FANO FACTOR

In addition to the time-average current, the shot noise can
reveal the fluctuation of the current and provide useful infor-
mation about MZMs [7,32,35,61]. The shot noise, defined as
the correlation function of the current fluctuations between
leads η and η′, takes the form Sηη′ (t, t ′) = 〈{δIη(t ), δIη′ (t ′)}〉,
where δIη(t ) = Îη(t ) − Iη, and Îη(t ) = −eṄη(t ). The time-
average current Iη has been obtained by Eq. (9). With the use
of the Wick’s theorem and the S-matrix expansion [15,47], we
can reduce the expression of the shot noise in terms of Green’s
functions. After Fourier transform, we obtain the expression
of shot noise in the frequency space Sηη′ (ω′). The calculation
of the shot noise is shown explicitly in Appendix C.

Following Ref. [62], in multiterminal systems, the shot
noise Sηη′ (ω′) with η = η′ must be positive; conversely, that
with η �= η′ must be negative. This property can be verified by
the numerical calculation of Sηη(0) in the following. The zero-
frequency Fano factor, defined by the ratio Fη = Sηη(0)/2eIη,
can gain insight into the nature of charge quanta transferred to
lead η [35,63,64]. Beyond the linear regime in this paper, the
Majorana-induced nonlinear effective charge has been studied
in detail [38], which gives rise to fractional effective charge
quanta.

The discussion will focus on the case of small transparency
(εd � �) since we find that the Fano factors are quantized
in this regime. In Fig. 4, we present the Fano factors at zero
temperature as functions of εd/� for a specific realization. In
the case of λ = 0, the remaining N-QD-S junction shows a
doubled shot noise in Fano factors FL(εd � �) = −FR(εd �
�) = 2 due to the transport of Cooper pairs through conven-
tional Andreev reflection [65]. When the Majorana Y junction
is connected to the QD with λ �= 0, we find FL(εd � �) =
−FY(εd � �) = 1 and |FR(εd � �)| = 2. The results denote
that the unit of charge transferred between the QD and the
normal-metal lead is e as well as the Majorana lead, while
the unit of charge transferred between the QD and the super-
conducting lead is 2e. This is the process of the first kind
of crossed Andreev reflection. A hole from the left lead is
reflected as an electron into the Majorana lead, while a Cooper
pair from the superconducting lead is reflected as a hole into
the Majorana lead and an electron into the normal-metal lead
[32], as shown in Fig. 5. The holes transferred through crossed

0 1 2 3 4 5 6 7 8 9 10

d
/

-6

-5

-4

-3

-2

-1

0

1

2

=0

=0.6

=1.2

FIG. 4. Fano factors at zero temperature of the left lead (solid
lines), right lead (dashed lines), and Majorana lead (dotted lines) as
functions of εd. The parameters are eVL = 0.5�, �L = �R = 0.8�,
tmin = 0.001�, and tmax = �.

Andreev reflection act as facilitators to propel the splitting of
Cooper pairs, and do not contribute to the transferred charge.
In this regime, local Andreev reflection is fully suppressed,
and the first kind of crossed Andreev reflection dominates.

The quantized Fano factors result from the occurrence of
the YSR state below the gap. As shown in Fig. 2(d), a very
sharp Majorana-induced midgap resonance at ω = 0 when
εd � � is regarded as a YSR bound state. The occurrence of
the YSR state means that the Cooper pairing is “softened” so
that the free electrons from the superconducting lead screen
the spins of the QD [66,67]. The state-screened process leads
to the splitting of Cooper pairs. In this way, crossed Andreev
reflection dominates the tunneling processes, which gives rise
to the quantized Fano factor.

V. SIGNATURES OF THE MAJORANA BRAIDING

Now we braid the MZMs by taking γ2 → −γ3 and γ3 →
γ2. Since the spin orientations of the MZMs γ2 and γ3

FIG. 5. When the Majorana lead is disconnected to the QD
(λ = 0), electrons in the S lead are transferred to the N lead through
conventional Andreev reflection; when the Majorana lead is con-
nected to the QD (λ �= 0), the MZM γ2 is the coherent superposition
of electrons and holes with only spin ↑, which leads to the first
kind of crossed Andreev reflection. After braiding, the MZM γ3 is
coupled to the QD. Since γ3 is the coherent superposition of electrons
and holes with spins ↑ and ↓, the second kind of crossed Andreev
reflection occurs, which is equivalent to the splitting of charge quanta
3e. We stress that both kinds of crossed Andreev reflection exist
simultaneously after braiding.
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(a) (b) (c)

FIG. 6. Differential conductance spectra of the normal-metal lead as a function of eVL/� and εd/� after braiding at zero temperature. The
parameters are the same as in Fig. 2.

belonging to the same complex fermion c2 are different, ob-
servable consequences can be obtained with the connection
to the QD. The QD is connected to the Majorana Y junction
through γ3. Using the Nambu spinors and Eq. (5), we can
easily obtain the Hamiltonian of the Majorana Y junction
H̃Y after braiding. Given that the angle of spin orientations
between γ2 and γ3 is θ , the spin-conserving coupling is
then given by H̃T,Y = −λd̃↑γ3 + H.c., where d̃↑ (d̃↓) are the
electron operators of the QD with the same (opposite) spin
orientation described by γ3 with(

d̃↑
d̃↓

)
=
(

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

)(
d↑
d↓

)
. (18)

For the Majorana Y junction sketched in Fig. 1, the spin
orientation angle is θ = 2

3π . Such a braiding process is equiv-
alent to involving spin-flip tunneling between the QD and
Majorana lead. After braiding, we can obtain the ZBCPs by

lim
eVL→0

G̃L(eVL) =

⎧⎪⎨⎪⎩
e2

h
8�2

L[(�2
L+�2

R+4ε2
d )2+�4

R+�2
L�2

R]
(4�2

L+�2
R )(�2

L+�2
R+4ε2

d )2 , λ �= 0,

e2

h
16�2

L�2
R

(�2
L+�2

R+ε2
d )2 , λ = 0,

(19)

lim
eVL→0

G̃R(eVL) =

⎧⎪⎨⎪⎩
− e2

h
4�2

L�2
R (5�2

L+5�2
R+12ε2

d )

(4�2
L+�2

R)(�2
L+�2

R+4ε2
d )

2 , λ �= 0,

− e2

h
16�2

L�2
R

(�2
L+�2

R+ε2
d )2 , λ = 0,

(20)

lim
eVL→0

G̃Y(eVL) =
⎧⎨⎩− e2

h
4�2

L (2�2
L−�2

R+8ε2
d )

(4�2
L+�2

R)(�2
L+�2

R+4ε2
d )

, λ �= 0,

0, λ = 0.

(21)

When λ = 0, the result is the same as that before braid-
ing; when λ �= 0, the occurrence of spin-flip tunneling shifts
the ZBCP. We plot the differential conductance of the
normal-metal lead after the Majorana braiding in Fig. 6 for
comparison to Fig. 2. Particularly, if the QD is symmetri-
cally coupled (�L = �R = �), the ZBCP of the normal-metal
lead maximally shifts to 2.4e2/h for εd = 0 and 1.6e2/h for
εd � �, which can act a robust hint of Majorana braiding.
With the increasing of εd, the ZBCP gets broadened and its

height gets lower concurrently. As shown in Fig. 7, the thermal
broadening effect can also be suppressed by taking εd = 0 and
each solid line is closed to the corresponding zero-temperature
limit when kBT < �/20. Consequently, it is appropriate to
observe the ZBCP with large junction transparency.

The Fano factors after braiding are also quantized, but 2 <

|F̃R(εd � �)| < 3; i.e., the unit of charge transferred between
the QD and the superconducting lead is larger than that of
a Cooper pair, as shown Fig. 8. This result is induced by
involving both spins ↑ and ↓ in the coupling between the
QD and the MZM γ3. As illustrated in Fig. 5, the second
kind of crossed Andreev reflection occurs after the Majorana
braiding.

Specifically, a Cooper pair transferred between the QD
and the superconducting lead is accompanied by an extra
electron and a hole, which leads to the 3e charge quanta. One
electron of the 3e charge quanta is reflected as an electron
into the normal-metal lead, while the other two are reflected
as holes into the Majorana lead. Such a process of charge
transmission is equivalent to the splitting of the 3e charge
quanta.

Given that the electrons coupled to the MZM γ3 are com-
posed of spin-↑ and spin-↓ electrons with a certain weight

5 10 15 20 25 30 35 40
1

1.5

2

2.4

FIG. 7. ZBCP of the normal-metal lead after braiding as a func-
tion of the finite temperature. The parameters are the same as in
Fig. 3.
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FIG. 8. Fano factors after braiding at zero temperature of the left
lead (solid lines), right lead (dashed lines), and Majorana lead (dotted
lines) as functions of εd. The parameters are the same as in Fig. 4.

depending on the angle θ [see Eq. (18)], both kinds of crossed
Andreev reflection exist simultaneously, which leads to 2 <

|F̃R(εd � �)| < 3. As shown in Fig. 8, the second kind of
crossed Andreev reflection gains the dominance of the tun-
neling processes [corresponding to |F̃R(εd � �)| → 3] with
increasing λ. As for the Majorana lead, the acceptance of
spin-↑ and spin-↓ electrons with a certain weight is equivalent
to the acceptance of an electron with spin polarization angle
θ in each current pulse, which gives rise to |F̃Y(εd � �)| =
1. The units of the charge transferred between the normal-
metal lead and the QD for both kinds of crossed Andreev
reflection are identical, so the Fano factor of the normal-
metal lead stays at |F̃L(εd � �)| = 1, the same as that before
braiding.

VI. CONCLUSION

We have studied the ZBCPs and the Fano factors of
the T-shaped structure. We have shown that the ZBCP of
the normal-metal lead is always quantized to 2e2/h at zero
temperature before braiding, which is quite robust at finite
temperature when the QD is on-resonance. This quantized
conductance can entirely arise from the Majorana-induced
crossed Andreev reflection, which is protected by the energy
gap of the superconducting lead. After Majorana braiding,
the quantized ZBCP shifts and becomes dependent on the
linewidths �L, �R and the QD level εd. This variation is
owing to the introduction of spin-flip tunneling between the
Majorana lead and the QD after braiding. By analyzing the
quantized Fano factors, we have found that the crossed An-
dreev reflection dominates over the conventional Andreev
reflection when εd � �. We have also found a novel kind
of crossed Andreev reflection equivalent to the splitting of
the 3e charge quanta. The quantized ZBCPs and Fano factors
induced by the nonlocal crossed Andreev reflection provide a
strong fingerprint for MZMs.
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APPENDIX A: CALCULATION OF �<
Y

In this section, we present the details of the analytical
calculation of the terms containing �<

Y in Eq. (9). The lesser
self-energy from the Majorana lead is given by

�<
Y = FY

(
�A

Y − �R
Y

) = −i2FYIm�R
Y, (A1)

where �R
Y is determined by

κ ≈ −8λ2t2
max

−4t2
maxω

+ + (ω+)3
+ 2λ2(ω+)2

−4t2
maxω

+ + (ω+)3
, (A2)

with ω+ = ω + i0+, as we mentioned in the main text [κ here
is the same as that appearing in Eq. (14)]. We use the notation
κ1and κ2 to denote the first term and the second term of κ ,
respectively. Neglecting the high-order terms of (i0+)n�2, we
can obtain the following expressions:

κ1 = −8λ2t2
max(−4t2

maxω + ω3
) − (

4t2
max − 3ω2

)
(i0+)

, (A3)

κ2 = 2λ2ω2

ω
( − 4t2

max + ω2
) + (

4t2
max + ω2

)
(i0+)

. (A4)

Using the formula

lim
η→0+

1

x ± iη
= P 1

x
∓ iπδ(x), (A5)

we can obtain

iIm(κ1) = iπ
−8λ2t2

max

4t2
max − 3ω2

δ

(−4t2
maxω + ω3

4t2
max − 3ω2

)
, (A6)

iIm(κ2) = −iπ
2λ2ω2

4t2
max + ω2

δ

(−4t2
maxω + ω3

4t2
max + ω2

)
. (A7)

Using the relationship

δ(φ(x)) =
∑

j

1

|φ′(x)|δ(x − x j ), (A8)

with φ(x j ) = 0, the imaginary parts of κ1and κ2 reduce to

iIm(κ1) = Q1(ω)[δ(ω) + δ(ω − 2tmax) + δ(ω + 2tmax)], (A9)

iIm(κ2) = Q2(ω)[δ(ω) + δ(ω − 2tmax) + δ(ω + 2tmax)], (A10)
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where

Q1(ω) = iπ
−8λ2t2

max

4t2
max − 3ω2

∣∣∣∣∣
(
4t2

max − 3ω2
)2

−(
4t2

max − 3ω2
)2 − 6ω2

(
4t2

max − ω2
)
∣∣∣∣∣, (A11)

Q2(ω) = −iπ
2λ2ω2

4t2
max + ω2

∣∣∣∣∣
(
4t2

max + ω2
)2( − 4t2

max + 3ω2
)(

4t2
max + ω2

) − 2ω2
( − 4t2

max + ω2
) ∣∣∣∣∣. (A12)

It is obvious that Q1(0) = −2iπλ2, Q1(±2tmax) = iπλ2, Q2(0) = 0, and Q2(±2tmax) = −iπλ2. Since the electron-hole
symmetry gives GR

QD(−ω) = −[GR
QD(ω)]∗, i.e., GR

QD(0) is a purely imaginary function. Note that the imaginary part of GR
QD(0)

is tiny; we can obtain GR
QD(0) ≈ 0. For example, the terms containing �<

Y in Eq. (9) are calculated by∫
dωGR

QD(ω)�<
Y (ω) ∝

∫
dωGR

QD(ω)[iIm(κ1 + κ2)] = −2iπλ2GR
QD(0) = 0 (A13)

and ∫
dωGR

QD(ω)�<
Y (ω)GA

QD(ω)�A
η (ω) = iπλ2

[
GR

QD(0)�GA
QD(0)�A

η (0)
] = 0. (A14)

Hence we can take �<
Y = 0 in the calculation of the time-average current and the shot noise.

APPENDIX B: CALCULATION OF THE LDOS OF THE SUPERCONDUCTING LEAD

For convenience, the whole system is divided into two subsystems, one is “quantum dot + Majorana Y junction + normal-
metal lead”; the other is the superconducting lead. The Hamiltonian of the superconducting lead is given by Eq. (3) in the main
text,

HR =
∑
kσ

εR,kσ a†
R,kσ

aR,kσ +
∑

k

(�a†
R,k↑a†

R,−k↓ + H.c.).

In the Nambu space (a†
R,k↑, aR,−k↓, a†

R,−k↓, aR,k↑), the unperturbed Green’s function of the BCS superconductor evaluated at the
origin (r = 0) is represented as

gR
R(ω) =

∫
d3k

eik·r

ω2+ − ξ 2
k − �2

⎛⎜⎜⎜⎝
ω+ + ξk �

� ω+ − ξk

ω+ + ξk �

� ω+ − ξk

⎞⎟⎟⎟⎠

= −ρR

∫
dξk

1

(ξk −
√

ω2+ − �2)(ξk +
√

ω2+ − �2)

⎛⎜⎜⎜⎝
ω+ + ξk �

� ω+ − ξk

ω+ + ξk −�

−� ω+ − ξk

⎞⎟⎟⎟⎠,

where ρR is the density of states and ω+ = ω + iη with η = 0+. We reduce the expression above by taking√
ω2+ − �2 =

√
ω2 + iωη − �2 ≈

√
ω2 − �2 + isgn(ω)η.

When |�| > |ω|, the pole (imaginary part > 0) is ξk = i
√

�2 − ω2; when |�| < |ω|, the pole (imaginary part > 0) is ξk =
iη + sgn(ω)

√
ω2 − �2. Using the theorem of residues, we obtain the unperturbed Green’s function of the BCS superconductor

as

gR
R(ω) =

[
−θ (|�| − |ω|)πρR

1√
�2 − ω2

− iθ (|ω| − |�|)πρR
sgn(ω)√
ω2 − �2

]⎛⎜⎜⎝
ω �

� ω

ω −�

−� ω

⎞⎟⎟⎠

= −iπρRβ

⎛⎜⎜⎜⎝
1 �

ω
�
ω

1
1 −�

ω

−�
ω

1

⎞⎟⎟⎟⎠,
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where β(ω) = θ (|�| − |ω|) ω

i
√

�2−ω2 + θ (|ω| − |�|) |ω|√
ω2−�2 .

The spectral function of the superconducting lead is given by

AR(ω) = i
[
GR

R(ω) − GA
R(ω)

] = −2ImGR
R(ω)

with

GR
R(ω) = {[

gR
R(ω)

]−1 − �R
QD(ω)

}−1
.

The self-energy at the origin (r = 0) can be calculated as

�R
QD(ω) =

∑
k

H†
T,RGR

QD(ω)HT,R

=
∑

k

|νR,k|2GR
QD(ω)

= 2πρR|νR,r=0|2GR
QD(ω)

= �RGR
QD(ω),

where we have used Fourier transform |νR,r|2 =
1

2π

∑
k eikr |νR,k|2. The density of states ρR around the Fermi

surface is approximately regarded as a constant. The effective
Green’s function of the QD in the subsystem “quantum dot +
Majorana Y junction + normal-metal lead” is given by

GR
QD(ω) = {[

gR
QD(ω)

]−1 − �R
L (ω) − �R

Y(ω)
}−1

.

Hence the LDOS of the superconducting lead is

ρ(ω) = Tr[AR(ω)]/2π.

APPENDIX C: CALCULATION OF
THE SHOT NOISE Sηη′ (ω′ )

In this section, we review the formalism for the shot noise
which will be used in the main text [15,47]. We consider the
Hamiltonian of a multiterminal system with a noninteracting

central QD,

H =
∑

η

Hη + HQD + HT , (C1)

where Hη = ∑
kσ εη,kσ a†

η,kσ
aη,kσ and HQD = ∑

σ εdd†
σ dσ .

The tunneling Hamiltonian is given by

HT =
∑
ηkσ

(tkσ a†
η,kσ

dσ + t∗d†
σ aη,kσ ), (C2)

where tkσ is the tunneling amplitude between the leads η and
the QD. The definition of the shot noise is given by

Sηη′ (t, t ′) = h̄〈{δÎη(t ), δÎη′ (t ′)}〉
= h̄〈{Îη(t ), Îη′ (t ′)}〉 − 2h̄〈Iη(t )〉〈Iη′ (t ′)〉

= −e2

h̄

∑
kk′σσ ′

{tkσ tk′σ ′ 〈a†
ηkσ

(t )dσ (t )a†
′η′k′σ (t ′)dσ ′ (t ′)〉

− tkσ t∗
k′σ ′ 〈a†

ηkσ
(t )dσ (t )d†

σ ′ (t ′)aη′k′σ ′ (t ′)〉
− t∗

kσ tk′σ ′ 〈d†
σ (t )aηkσ (t )a†

η′k′σ ′ (t ′)dσ ′ (t ′)〉
+ t∗

kσ t∗
k′σ ′ 〈d†

σ (t )aηkσ (t )d†
σ ′ (t ′)aη′k′σ ′ (t ′)〉}

+ H.c. − 2h̄〈Iη(t )〉〈Iη′ (t ′)〉. (C3)

Using the notation for four types of the two-particle Green’s
functions,

G(2)
1 (τ, τ ′) = i2〈TCa†

ηkσ
(τ )dσ (τ )a†

η′k′σ ′ (τ ′)dσ ′ (τ ′)〉, (C4)

G(2)
2 (τ, τ ′) = i2〈TCa†

ηkσ
(τ )dσ (τ )d†

σ ′ (τ ′)aη′k′σ ′ (τ ′)〉, (C5)

G(2)
3 (τ, τ ′) = i2〈TCd†

σ (τ )aηkσ (τ )a†
η′k′σ ′ (τ ′)dσ ′ (τ ′)〉, (C6)

G(2)
4 (τ, τ ′) = i2〈TCd†

σ (τ )aηkσ (τ )d†
σ ′ (τ ′)aη′k′σ ′ (τ ′)〉, (C7)

the shot noise can be expressed as

Sηη′ (t, t ′) = e2

h̄

∑
kk′,σσ ′

{
tkσ tk′σ ′G(2)>

1 (t, t ′)−tkσ t∗
k′σ ′G(2)>

2 (t, t ′) − t∗
kσ tk′σ ′G(2)>

3 (t, t ′)+t∗
kσ t∗

k′σ ′G(2)>
4 (t, t ′)

} + H.c.−2h̄〈Iη(t )〉〈Iη′ (t ′)〉,

(C8)

where G(2)>
i (t, t ′) can be obtained from G(2)

i (τ, τ ′) via analytical continuation. The expression of G(2)
i (τ, τ ′) can be reduced by

using the S-matrix expansion and Wick’s theorem, and more details can be found in Ref. [47]. After the reduction of G(2)
i , we

can obtain

G(2)
1 (τ, τ ′) = t∗

kσ t∗
k′σ ′

∫∫
dτ1dτ2Gη,kσσ (τ1, τ )Gη′,k′σ ′σ ′ (τ2, τ

′)

× [GQD,σσ (τ, τ1)GQD,σ ′σ ′ (τ ′, τ2) − GQD,σσ ′ (τ, τ2)GQD,σ ′σ (τ ′, τ1)], (C9)

G(2)
2 (τ, τ ′) = −δkk′σ ′σ ′ηη′Gη,kσ ′σ (τ ′, τ )GQD,σσ ′ (τ, τ ′) + t∗

kσ tk′σ ′

∫∫
dτ1dτ2Gη,kσσ (τ1, τ )Gη′,k′σ ′σ ′ (τ ′, τ2)

× [GQD,σσ (τ, τ1)GQD,σ ′σ ′ (τ2, τ
′) − GQD,σσ ′ (τ, τ ′)GQD,σ ′σ (τ2, τ1)], (C10)

G(2)
3 (τ, τ ′) = [

G(2)
2 (τ, τ ′)

]∗
, (C11)

G(2)
4 (τ, τ ′) = [

G(2)
1 (τ, τ ′)

]∗
, (C12)
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where Gη,kσσ (τ1, τ ) = −i〈TCaηkσ (τ1)a†
ηkσ

(τ )〉 and GQD,σσ ′ (τ, τ2) = −i〈TCdσ (τ )d†
σ ′ (τ2)〉. The two-particle Green’s functions

above can be decomposed into the connected and disconnected terms, i.e., G(2)
i (τ, τ ′) = G(2)

i,disc(τ, τ ′) + G(2)
i,conn(τ, τ ′). The

disconnected terms are given by

G(2)
1,disc(τ, τ ′) = t∗

kσ t∗
k′σ ′

∫
dτ1GQD,σσ (τ, τ1)Gη,kσσ (τ1, τ

+)
∫

dτ2GQD,σ ′σ ′ (τ ′, τ2)Gη′,k′σ ′ (τ2, τ
′+), (C13)

G(2)
2,disc(τ, τ ′) = t∗

kσ tk′σ ′

∫
dτ1GQD,σσ (τ, τ1)Gη,kσσ (τ1, τ

+)
∫

dτ2Gη′,k′σ ′σ ′ (τ ′, τ2)GQD,σ ′σ ′ (τ2, τ
′+), (C14)

G(2)
3,disc(τ, τ ′) = [

G(2)
2,disc(τ, τ ′)

]∗
, (C15)

G(2)
4,disc(τ, τ ′) = [

G(2)
1,disc(τ, τ ′)

]
.∗ (C16)

The analytic continuation rules give

G(2)>
1,disc(t, t ′) = t∗

kσ t∗
k′σ ′Fη,kσ (t, t )Fη′,k′σ ′ (t ′, t ′), (C17)

G(2)>
2,disc(t, t ′) = −t∗

kσ tk′σ ′Fη,kσ (t, t )F ∗
η′,k′σ ′ (t ′, t ′), (C18)

G(2)>
3,disc(t, t ′) = −tkσ t∗

k′σ ′F ∗
η,kσ (t, t )Fη′,k′σ ′ (t ′, t ′), (C19)

G(2)>
4,disc(t, t ′) = tkσ tk′σ ′F ∗

η,kσ (t, t )F ∗
η′,k′σ ′ (t ′, t ′), (C20)

where

Fη,kσ (t, t ) =
∫

dt1GR
QD,σσ (t, t1)G<

η,kσσ (t1, t ) + G<
QD,σσ (t, t1)GA

η,kσσ (t1, t ). (C21)

The total contribution of the disconnected terms is

〈{Îη(t ), Îη′ (t ′)}〉disc = e2

h̄2

∑
kk′σσ ′

{
tkσ tk′σ ′G(2)>

1,disc(t, t ′) − tkσ t∗
k′σ ′G(2)>

2,disc(t, t ′) − t∗
kσ tk′σ ′G(2)>

3,disc(t, t ′) + t∗
kσ t∗

k′σ ′G(2)>
4,disc(t, t ′)

} + H.c.

= 2
e2

h̄2

∑
kk′σσ ′

|tkσ |2|tk′σ ′ |2[Fη,kσ (t, t ) + F ∗
η,kσ (t, t )][Fη′,k′σ ′ (t ′, t ′) + F ∗

η′,k′σ ′ (t ′, t ′)]. (C22)

Note that �<
η,kσσ = |tkσ |2G<

η,kσσ (t1, t ); the time-average current can be written as

〈Îη(t )〉 = e

h̄

∑
kσ

∫
dt1

[
GR

QD,σσ (t, t1)�<
η,kσσ + G<

QD,σσ (t, t1)�A
η,kσσ

] + H.c.,

and hence,

〈Îη(t )〉〈Îη′ (t ′)〉 = 2
e2

h̄2

∑
kk′σσ ′

|tkσ |2|tk′σ ′ |2[Fη,kσ (t, t ) + F ∗
η,kσ (t, t )][Fη′,k′σ ′ (t ′, t ′) + F ∗

η′,k′σ ′ (t ′, t ′)]. (C23)

Therefore, the disconnected parts of the shot noise (C22) and (C23) are canceled out:

〈{Îη(t ), Îη′ (t ′)}〉disc − 2〈Îη(t )〉〈Îη′ (t ′)〉 = 0. (C24)

As a result, the remaining part in the shot noise is only expressed by the connected part by

Sηη′ (t, t ′) = h̄〈{Îη(t ), Îη′ (t ′)}〉conn

= e2

h̄

∑
kk′,σσ ′

{
tkσ tk′σ ′G(2)>

1,conn(t, t ′) − tkσ t∗
k′σ ′G(2)>

2,conn(t, t ′) − t∗
kσ tk′σ ′G(2)>

3,conn(t, t ′) + t∗
kσ t∗

k′σ ′G(2)>
4,conn(t, t ′)

}
+ H.c.

= e2

h̄

∑
k,σ

|tkσ |2δη,η′ [Gη,kσσ (t ′, t )GQD,σσ (t, t ′) + Gη,kσσ (t, t ′)GQD,σσ (t ′, t )]>

− e2

h̄

∑
kk′,σσ ′

|tkσ |2|tk′σ ′ |2
{[∫

dt1GQD,σ ′σ (t ′, t1)Gη,kσσ (t1, t )
∫

dt2GQD,σσ ′ (t, t2)Gη′,k′σ ′σ ′ (t2, t ′)
]>

−
[

GQD,σ ′σ (t, t ′)
∫∫

dt1dt2Gη,kσσ (t1, t )GQD,σσ ′ (t2, t1)Gη′,k′σ ′σ ′ (t ′, t2)

]>
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−
[

GQD,σ ′σ (t ′, t )
∫∫

dt1dt2Gη,kσσ (t, t1)GQD,σσ ′ (t1, t2, )Gη′,k′σ ′σ ′ (t2, t ′)
]>

+
[∫

dt1GQD,σ ′σ (t1, t ′)Gη,kσσ (t, t1)
∫

dτ2GQD,σσ ′ (t2, t )Gη′,k′σ ′σ ′ (t ′, t2)

]>
}

+ H.c.

= e2

h̄
Tr

{
δη,η′ (�>

η (t ′, t )σ̃zG
<
QD(t, t ′)σ̃z + G>

QD(t ′, t )σ̃z�
<
η (t, t ′)σ̃z )

−
[∫

dt1GQD(t ′, t1)�η(t1, t )

]>

σ̃z

[∫
dt2GQD(t, t2)�η′ (t2, t ′)

]<

σ̃z

+ [GQD(t, t ′)]>σ̃z

[∫∫
dt1dt2�η(t1, t )GQD(t2, t1, )�η′ (t ′, t2)

]<

σ̃z

+
[∫∫

dt1dt2�η(t, t1)GQD(t1, t2, )�η′ (t2, t ′)
]>

σ̃z[GQD(t ′, t )]<σ̃z

−
[∫

dt1GQD(t1, t ′)�η(t, t1)

]>

σ̃z

[∫
dt2GQD(t2, t )�η′ (t ′, t2)

]<

σ̃z, (C25)

where GQD is the 4 × 4 matrix form of the elements GQD,σ ′σ and �η is the 4 × 4 matrix form of the elements �η,σσ =∑
k |tkσ |2Gη,kσσ . The matrix σ̃z = diag(1,−1, 1,−1) describes the different charge of electrons and holes. Finally, we apply

the convolution property of Fourier transform
∫∞
−∞ d (t − t ′)eiω′(t−t ′ )x(t − t ′)y(t ′ − t ) = 1

2π

∫∞
−∞ dωF [x](ω)F [y](ω + ω′) to the

above shot noise and obtain

Sηη′ (ω′) =
∫ ∞

−∞
d (t − t ′)eiω′(t−t ′ )Sηη′ (t − t ′) = e2

h

∫ ∞

−∞
dωTr{δη,η′ (�>

η (ω)σ̃zG
<
QD(ω + ω′)σ̃z + G>

QD(ω)σ̃z�
<
η (ω + ω′)σ̃z )

− [GQD(ω)�η′ (ω)]>σ̃z[GQD(ω + ω′)�η(ω + ω′)]<σ̃z − [�η(ω)GQD(ω)]>σ̃z[�η′ (ω + ω′)GQD(ω + ω′)]<σ̃z

+ G>
QD(ω)σ̃z[�η′ (ω + ω′)GQD(ω + ω′)�η(ω + ω′)]<σ̃z + [�η(ω)GQD(ω)�η′ (ω)]>σ̃zG

<
QD(ω + ω′)σ̃z}. (C26)
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