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Ground states of Heisenberg spin clusters from projected Hartree-Fock theory
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We apply the projected Hartree-Fock theory (PHF) for approximating ground states of Heisenberg spin
clusters. Spin-rotational, point-group, and complex-conjugation symmetry are variationally restored from a
broken-symmetry mean-field reference, where the latter corresponds to a product of local spin states. A fermionic
formulation of the Heisenberg model furnishes a conceptual connection to PHF applications in quantum chem-
istry and detailed equations for a self-consistent field optimization of the reference state are provided. Different
PHF variants are benchmarked for ground-state energies and spin-pair correlation functions of antiferromagnetic
spin rings and three different polyhedra, with various values of the local spin-quantum number s. Although
PHF is not suitable to study the thermodynamic limit (where it reduces to the conventional HF results), the
low computational cost and the compact wave-function representation make PHF a promising complement to
existing approaches for ground states of finite spin clusters, particularly for large local spin s and a moderately
large number of sites N . The present work may also motivate future explorations of more accurate post-PHF
methods for Heisenberg spin clusters.
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I. INTRODUCTION

The theoretical modeling of exchange-coupled spin clus-
ters, as realized in a growing number of magnetic molecules,
is based on spin Hamiltonians [1]. Isotropic coupling of
Heisenberg type, Ĥ = ∑

i< j Ji j ŝi · ŝ j , is usually the dominant
term. Numerically exact calculations of spectroscopic or ther-
modynamic properties are limited to small systems, due to the
quick growth of the Hilbert space with the number of spin
centers. When exact diagonalization (ED) is not feasible, the
choice of a suitable approximation technique is determined
by the system specifics (size, coupling topology, etc.) and
by the magnetic properties of interest [2]. For ground states
of one-dimensional (1D) systems, density matrix renormal-
ization group (DMRG) [3] is the most important variational
method. For 2D systems (see, e.g., the family of Keplerate
molecules with icosidodecahedral magnetic cores [4–6] V30,
Cr30, or Fe30), convergence is much slower [7,8], and depends
on the formal ordering of sites. Dynamical DMRG (DDMRG)
[9,10] can be used to predict transition probabilities. As an
example, DDMRG was used for the modeling of inelastic neu-
tron scattering (INS) on an Fe18 spin ring [11]. Very accurate
thermal averages for relatively large systems are accessible
by the finite-temperature Lanczos method (FTLM) [12–14],
but some of the largest magnetic molecules are out of reach
of this method. In contrast to FTLM, quantum Monte Carlo
methods [15] are basically limited to systems lacking frus-
tration [16]. The Fe30 molecule represents a suitable example
to list a few additional methods. ED is impossible, because
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Fe30 hosts thirty s = 5
2 centers, leading to a Hilbert-space

dimension of N = 630 ≈ 2 × 1023. To a first approximation,
the rotational-band model (RBM) [17], which uses a sim-
plified Hamiltonian, correctly describes the low-temperature
magnetization staircase [18]. Some features of the INS spectra
are captured by molecular spin-wave theory [19,20]. Even a
classical treatment explains certain experimental data of Fe30

[21]. Compared to one specific correlated product-state ap-
proach [22], DMRG yields lower ground-state energies in the
different Sz sectors, if a sufficient number of density-matrix
eigenstates is kept [8]. However, convergence with respect to
this number could not be reached [8].

The perspective on approximation methods is further
broadened by regarding a fermionic formulation of the
Heisenberg model, which motivates the adoption or modifi-
cation of static-correlation methods from electronic-structure
theory or other fields of many-body physics. The most intu-
itive fermionization for s = 1

2 converts the spin Hamiltonian
into the covalent-space Pauling-Wheland valence-bond model
[23] (“canonical VB”, see Theory section). The VB for-
mulation mimics the original far more complex ab initio
electronic-structure problem from which the effective Heisen-
berg model emerges. Configuration-interaction (CI) [24,25],
variational Monte Carlo (VMC) [26,27], resonating valence-
bond theory (RVB) [28], or variants of coupled-cluster theory
(CC) [29] invoke the VB formulation, and thereby formally
extend the Hilbert space of the spin model. In mean-field
(Hartree-Fock, HF) solutions for extended systems, the physi-
cal constraint of one fermion occupying each site is generally
fulfilled on average only [30]. The VMC method optimizes
a mean-field wave function in the presence of an operator
that projects out unphysical (ionic) contributions [31]. Other
methods for finite systems involve only covalent states, which
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have exactly one fermion per site. For example, CI, RVB or
CC work exclusively on covalent configurations; in this sense,
fermionization is not essential, but conceptually helpful from
a quantum chemist’s perspective.

Here, we approximate ground states of Heisenberg spin
clusters by projected Hartree-Fock theory (PHF) [32]. PHF
restores all or a subset of symmetries from a mean-field ref-
erence in a variation-after-projection (VAP) fashion. We are
mostly concerned with the optimization of a general unen-
tangled spin-product state in the presence of a combined spin
and point-group projection operator. This allows us to target
the ground state in each symmetry sector, where the latter is
defined by spin and point-group quantum numbers. We can
also explicitly restore the antiunitary complex-conjugation
symmetry, which is not associated with any quantum-number
or a projection-operator in the usual sense. By formulating the
Heisenberg model in the spirit of canonical VB, we establish
an intuitively useful connection to PHF applications in quan-
tum chemistry. PHF is a black-box method with a compact
representation of the wave function and comes at a mean-field
computational cost (with a prefactor that depends on the num-
ber of points in the symmetry-projection grid). In our present
diagonalization strategy for optimization, the formation of the
effective Fock matrix, see the Supplemental Material (SM)
[33], scales linearly with the number of spin sites (the scaling
becomes quadratic when working with a projector for cyclic
symmetry in spin rings). In conjunction with the promising
benchmark results presented below, these appealing features
could make PHF a useful complementary method for studying
ground states and, to some extent, low-temperature properties
of certain types of spin clusters. We however emphasize that
the method is not capable of describing properties in the
thermodynamic limit, such as spin-gapped phases.

The following Theory section briefly recapitulates PHF
theory and provides a few computational details. The Results
and Discussion section describes applications of different
variants of PHF to the antiferromagnetic Heisenberg model
(AFH) for spin rings and three different polyhedra. Rather
than aiming for new insights into any specific system, the em-
phasis is on providing benchmark results. We offer a detailed
self-consistent field (SCF) diagonalization-based optimization
algorithm in the SM.

II. THEORY

PHF theory. The simple idea behind PHF originated
in quantum chemistry [34,35]: find a broken-symmetry
mean-field state |�〉 which is energetically optimal for the
application of a symmetry-projection operator P̂. Invoking the
concept of self-consistent symmetry [36–38], the optimal PHF
reference |�〉 will generally break all those symmetries1 that
one chooses to restore [32]. Recent ab initio studies [39–43]
were based on a formalism that expresses the energy of the
projected state as a function of the single-particle density

1The usual nonrelativistic Hamiltonians, including the Heisenberg
spin model, are invariant under the product group SU (2) × T × PG,
where SU (2) corresponds to spin-rotational symmetry, T is the time-
reversal group, and PG is the point group [37,96].

matrix [32]. The PHF equations [32] assume a general second-
quantized Hamiltonian with single-particle (quadratic) and
two-particle (quartic) terms, see Eq. (1). VB formulations
of the Heisenberg model comply with this form (see next
section).

Ĥ =
∑
lm

tlmĉ†
l ĉm + 1

2

∑
klmn

ĉ†
k ĉ†

l ĉmĉn[kn|lm]. (1)

In quantum-chemical terminology, a Slater determinant
|�〉 that completely breaks spin symmetry is of general-
ized HF (GHF) type. PHF variants that restore spin (S),
complex-conjugation (K), or point-group (PG) symmetry, or
combinations of these, from a GHF-type reference, are called
SGHF, KSGHF, PGKSGHF [32,44], etc. The lowest varia-
tional energy is afforded by PGKSGHF, because it works with
the largest symmetry group. We leave the somewhat more
complicated issue of K-symmetry restoration aside in this
section, but see Ref. [43] and Sec. 2 of the SM for details. Note
that KGHF is equivalent to the complex molecular-orbital
method (CMO) of Hendeković [45,46].

The energy E , Eq. (2), of the projected state, |�〉 = P̂|�〉,
must be minimized with respect to |�〉.

E = 〈�|ĤP̂|�〉
〈�|P̂|�〉 . (2)

For PG projection, we are only concerned with 1D ir-
reducible representations �. The respective projector is P̂� ,
Eq. (3), where h is the order of the group, χ� (g) is the
character of group element g, and Ĝ(g) is the corresponding
operation [47]:

P̂� = 1

h

h∑
g=1

χ∗
� (g)Ĝ(g). (3)

Multidimensional irreducible representations become rele-
vant for spin projection onto S > 0 sectors. The projector P̂S

M
for spin S and magnetic quantum number M is expanded in
terms of transfer operators,∣∣�S

M

〉 = P̂S
M |�〉 =

∑
K

fK P̂S
MK |�〉, (4)

which are conveniently parameterized by Euler angles, Eq. (5)
[48],

P̂S
MK = 2S + 1

8π2

∫∫∫
dαdβdγ sin(β )

× DS∗
MK (α, β, γ )e−iαŜz e−iβŜy e−iγ Ŝz . (5)

Optimization of |�〉 is coupled to optimization of the fK

expansion coefficients [32,49,50]. For a given |�〉, the optimal
fK constitute the lowest-energy solution to the generalized
eigenvalue problem for the Hamiltonian Ĥ in the nonorthog-
onal basis spanned by {P̂S

MK |�〉}, K = −S,−S + 1, ...,+S
[32,50]. For combined S and PG projection, the projector
is a product, P̂ = P̂S

MP̂� (spin rotations commute with PG
operations). When working with the trivial group that contains
only the identity operation, P̂ = 1̂, PHF becomes equivalent
to HF.

For the optimization with respect to |�〉, we adopted an
SCF approach based on successively building and diago-
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nalizing an effective Fock matrix [32,50]. An efficient SCF
algorithm was recently developed for SGHF [50], and sub-
sequently extended to KSGHF or PGKSGHF [43]. For the
present spin problem, the density matrix is block diagonal in
the local spin basis, with each block describing a pure state of
a specific site spin. It is crucial to exploit this block structure,
as explained in the detailed PGSGHF and PGKSGHF algo-
rithms given in the SM.

In one previous very brief application of PHF to Heisen-
berg systems [51], SGHF spin-pair correlation functions for
the s = 1

2 AFH spin ring with N = 24 sites were reported,
but the AFH represented only a side aspect of that work.
The lack of size extensivity [32,35] (PHF recovers zero cor-
relation energy per spin site in the thermodynamic limit,
N → ∞) becomes problematic for large systems. Post-PHF
methods can ameliorate this problem, but such methods
were not yet considered for spin Hamiltonians. Symmetry-
projected configuration-mixing schemes [52] allow one to
systematically approach exact ground and excited states and
were applied to the 1D and 2D single-band Hubbard model
[49,52–56]. Additional post-PHF methods are cited in
Ref. [57]. We believe that the present paper could stimulate
explorations of some of these more advanced techniques for
the Heisenberg model.

VB formulation. The s = 1
2 Heisenberg model is converted

to the canonical-VB form by writing site-spin operators ŝi

in terms of fermionic creation and annihilation operators
(Abrikosov representation)

ŝi = 1

2

∑
αβ

ĉ†
iα (σ)αβ ĉiβ, (6)

where α =↑,↓ and β =↑,↓ (α and β are usually called flavor
indices), and σ is the set of Pauli matrices, σ = (σx, σy, σz )T .
When written in terms of Eq. (6), the Hamiltonian, Eq. (7),
is defined on the much larger state-space of the single-band
Hubbard model.

Ĥ = 1

2

∑
i< j

Ji j (ĉ
†
i↑ĉ†

j↓ĉ j↑ĉi↓ + H.c.)

+ 1

4

∑
i< j

Ji j (ĉ
†
i↑ĉi↑ − ĉ†

i↓ĉi↓)(ĉ†
j↑ĉ j↑ − ĉ†

j↓ĉ j↓). (7)

The physical constraint that every site hosts exactly one
fermion can be formally enforced through the Gutzwiller
projector, P̂G = ∏

i (1̂−ĉ†
i↑ĉi↑ĉ†

i↓ĉi↓). In HF solutions for
extended 2D or 3D systems, single occupancy generally
holds on average only,

∑
α 〈ĉ†

iα ĉiα〉 = 1, meaning that ionic
states contribute some weight. In PHF, we can completely
avoid ionic states by exploiting the block structure of the
single-particle density matrix, see the SM. This also makes
calculations far more efficient compared to working in the
full state space of the corresponding Hubbard model. A Slater
determinant |�〉 with exact single occupation obviously rep-
resents a 3D spin configuration of the s = 1

2 system.
For s > 1

2 we introduce a single fermion (SF) per site, with
flavor multiplicity 2s + 1, by generalizing Eq. (6) to Eq. (8)

[58–60],

ŝi =
∑
αβ

ĉ†
iα (τ)αβ ĉiβ, (8)

where τ = (τx, τy, τz )T are the spin matrices (for s = 1
2 ,

τ = 1
2σ). In the respective itinerant-fermion model, every site

could, in principle, host up to 2s + 1 fermions. However, as
noted, the single-occupancy constraint is straightforwardly
built into the PHF algorithm. Independent of the coupling
topology or the local spin-quantum number s, the zero-field
Hamiltonian contains only quartic interaction terms and no
quadratic (hopping) contributions [tlm = 0 in Eq. (1)]. Most
interaction integrals [kn|lm] are zero, where k, l , m, n are
compound site and flavor indices. The total number of non-
vanishing integrals increases with s.

In a closely related second option for fermionization, we
introduce multiple fermions (MFs) per site, instead of just a
single fermion (SF). In the MF approach, every site spin is
formally decomposed into a number of 2s copies of spin-1/2
degrees of freedom,

ŝi →
2s∑

κ=1

ŝiκ . (9)

In common terminology [61], nc = 2s is the color number,
and κ is a color index. When written in terms of spin-1/2
couplings (cf. Eq. (19) in Ref. [61]),

Ĥ =
∑
i< j

Ji j ŝi · ŝ j →
∑
i< j

Ji j

(∑
κ

ŝiκ

)
·
(∑

κ ′
ŝ jκ ′

)
, (10)

the Hamiltonian extends the Hilbert space, because the spin-
1/2 sites can couple to different values of the local spin.
However, this does not pose a practical problem in PHF,
because each site can be easily enforced to have its maximal
spin s (see the SM). Fermionization of Eq. (10) according to
Eq. (6) yields the MF representation. Defining an orbital in
terms of a combination iκ of a site and a color index, MF
is the strong-coupling limit of the half-filled Hubbard model
with nc = 2s orbitals per site [62].

There is a qualitative difference between SF and MF. In
MF, a mean-field state |�〉 which fulfills the physical con-
straint of maximal local spin s corresponds to a spin-coherent
product state. In other words, |�〉 is a spin configuration. A

FIG. 1. RBM corresponds to projecting the Néel configuration
(the HF solution, with blue/red spins pointing up/down) onto the
different spin sectors, 0 � S � Ns. The Néel configuration is not
optimal for spin projection (except for S = Ns), cf. Fig. 2.

035147-3



GHASSEMI TABRIZI AND JIMÉNEZ-HOYOS PHYSICAL REVIEW B 105, 035147 (2022)

FIG. 2. The SGHF (S = 0) reference state |�〉 adopts a three-
dimensional Möbius-type configuration for N = 6, s = 1

2 , see
vectors attached to spin sites (marked by spheres). A Möbius band
with six twists is illustrated in terms of a set of vectors around
the circle (thin arrows are drawn for illustration only), seen from
the positive z axis. Blue/red vectors point in the positive/negative z
direction. |�〉 is symmetric under �̂ × exp(−i 2π

6 Ŝz ) × Ĉ6, where the
time-reversal operation �̂ flips all spins.

noncoplanar (3D) spin configuration completely breaks S and
K symmetry and is defined by 2N real parameters, where a
pair of polar angles (ϑ, ϕ) specifies the orientation of each
maximally polarized site spin. On the other hand, in SF, |�〉 is
a general product state of local spin-wave functions, which has
4sN independent degrees of freedom. [A state of a single spin
is specified by (2s + 1) complex numbers, but normalization
and factoring out a phase reduce this to 4s real parameters.]
In summary, SF does not constrain |�〉 to be a spin-coherent
product state. Therefore, SF grants more variational free-
dom than MF, and PHF based on SF generally affords lower
energies. Unless noted otherwise, all our PHF results refer
to the SF representation. The Jordan-Wigner (JW) transfor-
mation may come to mind as an alternative fermionization
scheme. However, it is basically limited to s = 1

2 systems,
and couplings must not reach beyond next-nearest neighbors,
because the existing PHF equations permit only quadratic and
quartic terms in the Hamiltonian; longer-range interactions
would introduce sextic or higher-order terms in JW. Besides,
PHF based on the JW representation must work in a definite
Sz sector. That is, the number of JW fermions is fixed, and

FIG. 3. Energies of the lowest levels with total spin S = 0
(black), S = 1 (blue), and S = 2 (red), in different k sectors of the
N = 12, s = 1

2 AFH ring, calculated exactly (O symbols) or by
C12SGHF (+ symbols). Numerical values are collected in Table I.
Three levels belonging to the lowest rotational band are highlighted
(green boxes).

restoration of spin-symmetry is not straightforward. In these
respects, the SF and MF representations are far more flexible,
because they are not constrained with respect to coupling
topology, spin-quantum number s, or symmetries. We indeed
implemented PHF with PG and K restoration based on the JW
transformation, but no results shall be presented.

Point-group (PG) symmetry. The high symmetry of many
molecular spin clusters manifests as PG symmetry of the
spin Hamiltonian [63–65]. For isotropic Hamiltonians, which
are our only concern here, PG symmetry is associated with
invariance under site permutations, which is sometimes called
spin-permutational symmetry (SPS) [63]. Block diagonaliza-
tion with respect to the PG species and the Ŝz eigenvalue is
technically simple and facilitates ED [63,66,67]. Combining
PG with full spin symmetry (Ŝ2 and Ŝz) is more involved
[63,68,69]. Conversely, simultaneous PG and spin adapta-
tion is very simple in PHF. A high molecular symmetry is
indeed favorable for PHF, because breaking and restoring
PG symmetry improves energies, and a larger number of
states can be targeted. When aiming for excited states in
the respective symmetry sectors, one should look towards

TABLE I. Exact (ED) and C12SGHF energies for the lowest S = 0, S = 1 and S = 2 states in the different k sectors of the AFH N = 12,
s = 1

2 spin ring.a

S k 0 1 2 3 4 5 6

0 ED –5.3874 –2.7682 –3.8742 –3.4949 –3.5389 –4.0006 –4.7774
C12SGHF –5.3831 –2.7682b –3.8648 –3.4949b –3.5129 –4.0006b –4.7539

1 ED –3.5457 –4.5694 –3.9443 –3.6608 –3.7914 –4.2977 –5.0315
C12SGHF –3.4463 –4.5222 –3.8972 –3.5661 –3.7453 –4.2395 –5.0287

2 ED –4.0705 –3.4577 –3.1349 –3.1989 –3.6374 –3.0097 –2.4983
C12SGHF –4.0595 –3.4358 –3.0746 –3.1770 –3.6138 –2.9561 –2.4345

aExcept for k = 0 and k = 6, pairs of k values are degenerate, k = (1, 11), k = (2, 9), etc. Only one k component of each pair is listed.
bC12SGHF and ED agree within numerical double precision.
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FIG. 4. Energy level diagrams for s = 1
2 AFH rings with N = 16

(a) and N = 24 (b). Different variants of PHF are compared to exact
energies for the lowest S = 0 and S = 1 levels.

multi-configuration post-PHF methods, which are beyond the
scope of this paper.

Spin and fermionic representations generally do not agree
on the attribution of PG-symmetry labels to specific states.
All PG labels in the Results section refer to the spin repre-
sentation. See Sec. 3 of the SM for further comments on this
technical issue.

Computations. Calculations were carried out with an inde-
pendently written program that essentially follows an efficient
SGHF algorithm [50], which was recently extended to KS-
GHF [43]. For applications to the Heisenberg model, it is
crucial to exploit the block structure of the single-particle
density matrix, as explained in Secs. 1 and 2 of the SM. SCF
convergence requires a significant damping factor, applied
at the level of effective Fock matrices. We generally found
the commutator direct-inversion in the iterative subspace (c-
DIIS) technique [70] to accelerate convergence in the later
iteration stages. Several results were checked against an inde-

pendent program that employs gradient-based optimization of
the Thouless parameters that define the mean-field reference
[71]. However, K-symmetry restoration or the MF option are
not supported by the latter program. Transfer operators for
spin projection [Eq. (5)] were discretized with a combined
Lebedev-Laikov [72] and trapezoid integration grid [50]. The
remaining error in 〈Ŝ2〉 was <10−6, where 〈Ŝ2〉 is obtained by
summing up spin-correlation functions 〈ŝi · ŝ j〉(SPCFs),

〈Ŝ2〉 = Ns(s + 1) + 2
∑
i< j

〈ŝi · ŝ j〉. (11)

Compared to ab initio calculations on systems with a
similar number of single-particle basis functions, larger inte-
gration grids are needed for the Heisenberg model, because
all particles (spins) are part of the static-correlation problem,
whereas in molecular HF wave functions, most electrons are
approximately singlet paired. In our experience, the size of
the spin-projection grid required for comparable accuracy
across different systems grows only weakly (sublinearly) with
system size. Note that a computational parallelization of the
summation over the grid is trivial [50]. The calculation of
SPCFs is analogous to the evaluation of the energy of the
projected state [cf. Eq. (2)]. A double integration over the
spin-projection grid can be trivially avoided, because ŝi · ŝ j

is a spin scalar which commutes with the (Hermitian and
idempotent) spin-projection operator, see Eq. (13) below. For
PG projection, we consider only 1D representations �. Then
only the totally symmetric part (ŝi · ŝ j )�1 , Eq. (12),

(ŝi · ŝ j )�1 = 1

h

h∑
g=1

Ĝ†(g)(ŝi · ŝ j )Ĝ(g), (12)

contributes to 〈�|P̂†
� (ŝi · ŝ j )P̂�|�〉. Overall, a single summa-

tion/integration is required to evaluate SPCFs for PGSGHF
wave functions,

〈�|P̂†
S P̂†

� (ŝi · ŝ j )P̂SP̂�|�〉 = 〈�|(ŝi · ŝ j )�1 P̂SP̂�|�〉. (13)

In a slightly more complicated way, a double integration
can also be avoided for spin densities 〈ŝi〉, that is, expectation
values of rank-1 operators [43,71], but spin densities are of no
explicit concern here.

FIG. 5. Ground state (S = 0) SPCFs with respect to site 1 in s = 1
2 AFH rings, for N = 16 (a) and N = 24 (b). HF, SGHF and DN SGHF

are compared to exact results. HF corresponds to the trivial Néel state, where SPCFs alternate between ± 1
2 .
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FIG. 6. Antiferromagnetic correlations ξi j [Eq. (16)] in the reference mean-field states for SGHF and KSGHF (S = 0), for the N = 16,
s = 1

2 ring. Each site is successively given the number i = 1 and ξ1 j is plotted for j = 2, ..., 16 (data points are connected by lines to guide the
eye). Many points coincide in SGHF. Due to the Möbius structure (see Fig. 7) of the KSGHF solution |�〉, the KSGHF curves are independent
of the choice of the reference site. We optimized 〈�|Ĥ |�〉 with respect to the allowed gauge transformations, see main text.

The relative correlation energy 0 � p � 1 for PHF is de-
fined in Eq. (14),

p = EPHF − EHF

Eex − EHF
, (14)

where Eex is the exact energy (Eex − EHF is the correlation
energy). HF is equivalent to finding the optimal classical
spin configuration and always yields a multispin coherent
state. That is, SF is equivalent to MF for HF. (However, if
biquadratic exchange or single-ion anisotropy terms were in-
cluded in the spin Hamiltonian, SF could yield a lower-energy
HF solution than MF.) Where no references for (Lanczos)
ED results are given in the text, calculations were carried out
with our own program which block factorizes the Hamilto-
nian with respect to the Ŝz eigenvalue and the SPS symmetry
species. Unless noted otherwise, our benchmark systems have
a nondegenerate S = 0 ground state. We denote the numer-
ically exact ground-state energy by E0. All energies are
reported in units of the uniform nearest-neighbor coupling
constant J .

III. RESULTS AND DISCUSSION

We consider the AFH for spin rings with a vari-
able number N of centers, mainly for even N , with
1
2 � s � 7

2 , and for three polyhedra: truncated tetrahedron,
icosahedron, and dodecahedron. The main objective is to
provide PHF benchmark results for ground-state energies
and SPCFs, where we compare against ED or DMRG
results.

Spin rings. Early numerical studies of spin chains or rings
were largely motivated by extrapolating singlet-triplet gaps,
SPCFs, and other properties to the thermodynamic limit,
see, e.g., Refs. [73–76]. More recent synthetic realizations
of diverse ring-shaped spin clusters, followed by detailed in-
vestigations of their magnetic properties have added to the
relevance of the Heisenberg model for rings of finite size (see
Ref. [77] for a review).

Classically, AFH rings adopt a Néel configuration for even
N , and coplanar helical configurations for odd N [78]. For
even N , spin-projected PHF is closely related to the RBM,
where we refer to the lowest rotational band only. In the

RBM Hamiltonian, ĤRBM = jŜA · ŜB, two composite spins
ŜA = ∑

i=odd ŝi and ŜB = ∑
i=even ŝi (SA = SB = Ns/2) inter-

act through an effective coupling constant j [17,79]. The
RBM eigenstates are projections of the Néel configuration
|MA = SA, MB = −SB〉 onto the different spin sectors, 0 �
S � SA + SB [80]; a Néel configuration is illustrated in Fig. 1.
RBM is thus equivalent to PAV-SGHF, where PAV stands
for projection-after-variation. (The Néel state conserves Ŝz

symmetry, so PAV-SGHF could be specialized to PAV-SUHF.)
When j = 4J/N is chosen to match the exact energy of the
ferromagnetic S = SA + SB state, then RBM and PAV-SGHF
energies agree for all S, Eq. (15):

ERBM = j

2

[
S(S + 1) − 2

sN

2

(
sN

2
+ 1

)]
. (15)

For three-colorable lattices [81], RBM and PAV-SGHF
remain equivalent, see, e.g., the icosidodecahedron [17,18],
and models for the triangular or Kagomé spin lattices [80].
However, PHF is a VAP approach. The classical (HF) so-
lution is usually not optimal for spin projection, meaning
that VAP will yield lower energies than PAV. An example
is shown in Fig. 2: the optimal SGHF (S = 0) reference
configuration for N = 6, s = 1

2 is a 3D Möbius structure
(ERBM = −2.5, ESGHF = −2.7073). Note that this regular

FIG. 7. Gauge-optimized spin configuration |�〉 for combined K
and S projection (KSGHF, S = 0) in an N = 16, s = 1

2 ring. For more
details, see caption to Fig. 2 and main text. |�〉 is symmetric under
�̂ × exp(−i 2π

16 Ŝz ) × Ĉ16.
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TABLE II. Symmetry labels for DN SGHF projection for the low-
est S = 0 and S = 1 levels (Table III and Table IV) of AFH spin rings
with N = 4n or N = 4n + 2 sites, with 1

2 � s � 7
2 .

N = 4n + 2 N = 4n

S = 0 S = 1 S = 0 S = 1

1/2 B2 A1 A1 B2

1 A1 B2 A1 B2

3/2 B2 A1 A1 B2

2 A1 B2 A1 B2

5/2 B2 A1 A1 B2

3 A1 B2 A1 B2

7/2 B2 A1 A1 B2

structure was revealed through a global minimization of the
energy expectation value 〈�|Ĥ |�〉 with respect to the allowed
gauge transformations (local spin rotations). Specifically, due
to a nontrivial redundancy with respect to nonunitary gauge
transformations of |�〉, a continuum of nondegenerate mean-
field states yields the same state upon S projection [82].
C6SGHF yields the exact (S = 0, k = 3) ground state (E0 =
−2.8028) within numerical double precision (k specifies the
eigenvalue eik2π/N of the cyclic spin-permutation operator
ĈN ). The C6SGHF solution |�〉 is different from the SGHF
solution.

The polyhedra discussed below have 3D (noncoplanar) HF
solutions (GHF). We found a number of cases where the
GHF solution also constituted an SGHF or KSGHF solution.
However, in all cases considered, a VAP scheme yields lower
energies than PAV when PG projection is introduced.

We resume our discussion of s = 1
2 rings by briefly noting

that KGHF offers little advantage over HF. Spin configura-
tions which are not xz coplanar, break K symmetry [37,83],

TABLE IV. Singlet-triplet gaps �EST in AFH rings with variable
N and s. DN SGHF energies are compared to exact or DMRG ener-
gies.a

N

s 6 12 18 24 30 Method

1/2 0.685 0.356 0.241 0.183 0.147 Exact
0.685 0.355 0.331 0.286 0.212 PHF

1 0.721 0.484 0.432 0.417 0.413 Exact/DMRG
0.721 0.455 0.298 0.213 0.165 PHF

3/2 0.705 0.407 0.300 0.242 0.205 Exact/DMRG
0.705 0.412 0.269 0.195 0.152 PHF

2 0.697 0.391 0.284 0.229 0.195 Exact/DMRG
0.697 0.381 0.256 0.188 0.147 PHF

5/2 0.692 0.378 0.268 0.211 0.176 Exact/DMRG
0.692 0.381 0.286 0.184 0.145 PHF

3 0.688 0.370 0.259 0.202 0.167 Exact/DMRG
0.688 0.374 0.245 0.181 0.143 PHF

7/2 0.685 0.364 0.253 0.196 0.161 Exact/DMRG
0.685 0.369 0.242 0.179 0.142 PHF

aSee footnote to Table III on exact/DMRG data.

where K̂0 = �̂ × exp(−iπ Ŝy) is the operator of complex con-
jugation, and �̂ is the time-reversal operator (however, to
break K symmetry irrespective of angular-momentum phase
conventions or the orientation of the coordinate system,
the spin configuration must not be confined to any plane).
Restoration of K symmetry in KGHF yields an xz-coplanar
state, which is a superposition of |�〉 and |�∗〉, where com-
plex conjugation refers to the local spin basis, cf. the CMO
method [45]. For an N = 3 spin ring, KGHF is exact for the
S = 1

2 ground state, yielding E0 = − 3
4 . In the KGHF wave

function, ŝ1 and ŝ2 are coupled to zero spin, S12 = 0, leaving
a free (unentangled) ŝ3, whose orientation in the xz plane is

TABLE III. Energies of the S = 0 ground state of AFH rings with variable N and s. DN SGHF energies are compared to exact or DMRG
energies.a

N

s 6 12 18 24 30 Method

1/2 –2.803 –5.387 –8.023 –10.670 –13.322 exact
–2.803 –5.387 –7.851 –9.970 –11.814 PHF

1 –8.617 –16.870 –25.242 –33.641 –42.046 Exact/DMRG
–8.617 –16.738 –24.252 –31.172 –37.833 PHF

3/2 –17.393 –34.131 –51.031 –67.968 –84.919 Exact/DMRG
–17.393 –33.935 –49.580 –64.442 –78.934 PHF

2 –29.165 –57.408 –85.873 –114.390 –142.927 Exact/DMRG
–29.165 –57.128 –83.919 –109.726 –135.048 PHF

5/2 –43.935 –86.679 –129.703 –172.793 –215.909 Exact/DMRG
–43.934 –86.321 –127.263 –167.014 –206.166 PHF

3 –61.704 –121.948 –182.532 –243.197 –303.893 Exact/DMRG
–61.704 –121.515 –179.610 –236.305 –292.286 PHF

7/2 –82.473 –163.217 –244.361 –325.601 –406.877 Exact/DMRG
–82.473 –162.708 –240.957 –317.596 –393.407 PHF

aWhere possible, we directly calculated exact (ED) energies or took them from the literature (Ref. [76]). Otherwise, DMRG energies were
taken from Table V.1 in Ref. [86]. All the present ED/DMRG entries agree with the latter table. For the largest systems, the DMRG energies
may not be accurate to all digits [86], but we expect such errors to be small compared to the errors in PHF.
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FIG. 8. Relative correlation energies p, with respect to HF (a)
and RBM (b) captured by DN SGHF in AFH rings with variable
N and s. Data points are connected by lines to guide the eye.
The ground-state energies from ED or DMRG (E0) and DN SGHF
(EPHF ) are collected in Table III; EHF = −NJs2 and ERBM is given in
Eq. (15).

arbitrary. The lack of size consistency of PHF [32] can be
illustrated for two noninteracting N = 3 rings where, obvi-
ously, E0 = − 6

4 . KGHF yields a pure S = 0 state with a higher
energy of E = − 5

4 . For N = 4, the KGHF solution is spin
contaminated, 〈Ŝ2〉 ≈ 1.172, with E = −√

2 (within numer-
ical precision), compared to the exact E0 = −2. The KGHF
spin density shows Néel order for even N , |〈�|ŝi|�〉| =
(−1)ig(N ). The magnitude g(N ) < 1

2 of the sublattice magne-
tization is accessible from a simple formula given in Ref. [84];
g(N ) is the same for all sites for a given N . For large N , the
KGHF correlation energy converges quickly onto a constant,
EKGHF − EHF ≈ −0.366 (for even N). A similar observation
was made earlier in the Hubbard model [85].

On a qualitative note, in the molecular electronic-structure
problem, K and S projection account mainly for dynamical
and static correlation, respectively [32]. Our results below
indeed show that S and PG symmetry are far more important
than K symmetry. This is not surprising, because we are
dealing with a prototypical static-correlation problem. The
inclusion of K projection sometimes captures a significant
fraction of the correlation energy missing from PGSGHF (see
results below), but PGKSGHF was generally more difficult to
converge, and most of our results refer to PGSGHF.

We discuss an N = 12, s = 1
2 ring in some detail as an

illustrative example. In Table I, C12SGHF energies are com-
pared to exact energies for S = 0, S = 1, and S = 2, in all k
sectors. Energies are plotted in Fig. 3. We observe C12SGHF
to be numerically exact (with the double precision used in the
calculations) for S = 0 in sectors k = 1, 3, 5. [It is worth not-
ing in this context that it is somewhat nontrivial to predict in
which (S, k) sectors C12SGHF should converge onto the exact
solution, see Sec. 4 of the SM.] Errors for the other S = 0
states are small. Although errors tend to be somewhat larger
for S = 1 and S = 2, the levels (S = 0, k = 0), (S = 1, k = 6)
and (S = 2, k = 0) that belong to the lowest rotational band,
are described with high precision by C12SGHF.

For the global (S = 0, k = 0) ground state, K projec-
tion fully captures the missing correlation energy, that is,
C12KSGHF is exact. The rather large errors of SGHF (E =
−4.5568) and KSGHF (E = −5.0208) with respect to the
exact S = 0 ground-state energy (E0 = −5.3874) confirm the
importance of combined S and PG projection. SGHF breaks

FIG. 9. Energies of the lowest levels with total spin S = 0 (black), S = 1 (blue), and S = 2 (red), in different k sectors of the N = 12 AFH
ring with s = 1 (a), s = 3

2 (b), and s = 2 (c), calculated exactly (O symbols) or by C12SGHF (+ symbols). Three levels belonging to the lowest
rotational band are highlighted in green boxes.
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TABLE V. SPCFs in the S = 0 ground state of the N = 12 ring
with 1 � s � 2. DN SGHF is compared to ED.a

s = 1 s = 3
2 s = 2

ED PHF ED PHF ED PHF

〈ŝ1 · ŝ2〉 –1.406 –1.395 –2.844 –2.828 –4.784 –4.761
〈ŝ1 · ŝ3〉 0.778 0.820 1.913 1.976 3.535 3.634
〈ŝ1 · ŝ4〉 –0.632 –0.722 –1.693 –1.828 –3.228 –3.438
〈ŝ1 · ŝ5〉 0.504 0.597 1.490 1.615 2.940 3.142
〈ŝ1 · ŝ6〉 –0.462 –0.574 –1.432 –1.570 –2.858 –3.078
〈ŝ1 · ŝ7〉 0.436 0.544 1.384 1.518 2.788 3.003

aED results from Ref. [75].

C12 symmetry, but k = 0 still dominates in the SGHF wave
function, with a weight of wk=0 = 0.85.

The lack of size extensivity of PHF [32,35] means that
the fractional correlation energy [Eq. (14)] tends to zero in
the limit N → ∞. For s = 1

2 systems, this problem becomes
apparent for ring sizes which are still straightforward for ED.
As an illustration, we plot S = 0 and S = 1 energy levels for
N = 16 and N = 24 in Fig. 4. D16SGHF is still reasonably ac-
curate (the singlet-triplet gap �EST is overestimated, though),
but errors are significant for D24SGHF.

As a measure of the quality of the wave functions, it is not
surprising that SPCF predictions also deteriorate with increas-
ing N . For N = 16 and N = 24, SPCFs from HF, SGHF and
DN SGHF are plotted against the exact results in Fig. 5. For
N = 16, DN SGHF is still reasonably accurate, but for N = 24
the magnitude of SPCFs is significantly overestimated. SPCFs
from PHF approach long-range order for N → ∞.

Although SGHF breaks cyclic symmetry, the correct
representation of CN contributes a dominant weight of
wk=0 = 82.8% for N = 16 and wk=0 = 79.7% for N = 24.
The broken C24-symmetry in SGHF renders our present SPCF
plot in Fig. 5 different from the respective plot in Fig. 15 of
Ref. [51], due to a different choice of the j = 1 reference
site. The choice of the reference site becomes irrelevant when
cyclic symmetry is restored.

In applications of symmetry-projected quasiparticle meth-
ods to the single-band Hubbard model [54–56], the quantity
ξi j , defined in Eq. (16),

ξi j = (−1)i− j

s2
〈�|ŝi|�〉 · 〈�|ŝ j |�〉, (16)

has proven qualitatively useful to show how |�〉 differs from
|�〉HF. In Hubbard rings, |�〉 was found to display antifer-
romagnetic defects, where ξi j ≈ 0 and ξi j′ ≈ 0 (with a small
distance between j and j′) and ξi j′′ < 0 (for j′′ lying between
j and j′). Such defects, where the spin-density wave |�〉
changes phase, were interpreted as basic units of quantum
fluctuations [54].

In spin rings, correlations are perfectly antiferromagnetic
in the Néel state, that is, ξi j = 1 for all i �= j. For N = 16,
we plot ξi j for SGHF and KSGHF (S = 0) in Fig. 6. The ξi j

quantities are not uniquely determined, due to gauge freedom
[82] in defining |�〉. We thus performed a minimization of
〈�|Ĥ |�〉 with respect to the allowed gauge transformations.
In this way, a rather regular structure is revealed for SGHF
[Fig. 6(a)] and a very regular Möbius structure for KSGHF
[Figs. 6(b) and 7]. For KSGHF, ξi j depends only upon the dis-
tance |i− j|. SGHF and KSGHF are significantly in error with
respect to the exact ground state energy (see Fig. 4) and do not
display defects in their respective reference states, although
correlations ξi j are significantly less antiferromagnetic than in
HF. A number of ξi j ≈ 0 and ξi j < 0 pairs occur for the more
accurate methods C16SGHF and C16KSGHF (not shown).

Moving beyond s = 1
2 , we compare S = 0 ground-state en-

ergies from DN SGHF to ED or DMRG in Table III, for N = 6,
12, 18, 24, 30, with 1

2 � s � 7
2 . Singlet-triplet gaps �EST are

compared in Table IV. The DN labels for PG projection onto
the respective singlet and triplet states are collected in Table II.

For a given N , PHF captures larger fractions of E0 with
increasing s, but this is not a suitable accuracy measure, be-
cause even HF becomes exact in the classical limit s → ∞.
The relative correlation energy [Eq. (14)] measures the rela-
tive improvement over HF and remains roughly constant in
the range 1 � s � 7

2 , see Fig. 8(a). The same is true when
measuring the performance against RBM by replacing EHF in
Eq. (14) by ERBM, as shown in Fig. 8(b).

As a complement to Fig. 3 (s = 1
2 ), C12SGHF and ED

energies for S = 0, S = 1, and S = 2 in all k sectors are
compared for 1 � s � 2 in Fig. 9. C12SGHF and ED follow
the same qualitative trend, but the errors from C12SGHF are
significantly larger than for s = 1

2 . The lowest rotational-band
levels are again described with higher precision than other
levels.

For N = 12, with 1 � s � 2, SPCFs from D12SGHF are
compared to ED results in Table V and plotted in Fig. 10.
Relative errors in the SPCFs from D12SGHF decrease with

FIG. 10. Ground state (S = 0) SPCFs with respect to site 1, in the N = 12 AFH ring with s = 1 (a), s = 3
2 (b) and s = 2 (c). DN SGHF is

compared to exact results.
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FIG. 11. Truncated tetrahedron, icosahedron, and dodecahedron
(from left to right). Spheres represent spin sites. Connections be-
tween spheres mark antiferromagnetic interactions.

increasing s. SPCFs from PHF approach long-range order for
N → ∞.

The performance of PHF is put into perspective by regard-
ing the size of the matrices that occur in ED. As an example,
for N = 12, the full Hilbert space has a dimension of N =
512 ≈ 244 × 106 for s = 2 and N = 612 ≈ 2.2 × 109 for s =
5
2 . Although the subspaces with definite SPS and Ŝz symmetry
are smaller by ∼ two orders of magnitude and thereby accessi-
ble to Lanczos ED, they are still huge compared to the number
of variational parameters in PHF (Nv < 4sN , see comments
above). In the SCF algorithm, the effective Fock matrix con-
sists of N = 12 blocks. Each block is of dimension (2s + 1) ×
(2s + 1) in the SF representation, or 2 × 2 in the MF represen-
tation, see Sec. 1 of the SM. Thus, the formal cost of PHF has
a rather weak dependence on s (we, however, observed that
somewhat larger spin-projection grids are needed for larger s).
The fact that D12SGHF captures 99.5% and 99.3% of E0 for
s = 2 and s = 5

2 overall evidences a very effective state-space
reduction. For a subset of systems, we checked that the differ-
ence between SF and MF, and between CN or DN projection
is comparably small. For example, for N = 12, s = 2, we
obtain E = −56.860 with MF-D12SGHF and E = −57.128
with SF-D12SGHF, that is, 99.0% and 99.5% of E0 =
−57.408 (cf. Table III). On the other hand, MF-C12SGHF and
SF-C12SGHF yield E = −56.680 and E = −56.960, respec-
tively. PG projection is very important, as SF-SGHF predicts
a far higher energy of E = −53.898, which is still lower
than ERBM = −52. The difference between SGHF and RBM
proves that the classical Néel state is not optimal for S = 0
projection.

PHF can be fairly accurate even for systems that are too
large for ED. Specifically, for N = 18, s = 5

2 , which roughly
represents an experimentally studied Fe18 molecule [11],

FIG. 12. Classical (GHF) solution of the AFH in the truncated
tetrahedron (cf. Fig. 1 in Ref. [94]). Green arrows lie in the xy plane,
blue/red arrows point in the positive/negative z direction.

TABLE VI. Ground-state energy of the AFH on the trun-
cated tetrahedron with 1

2 � s � 2, from ED, HF and different PHF
variants.

S � Exact HF SGHF KSGHF Td SGHF Td KSGHF

1
2 A2 –5.7009 –3 –4.7069 –5.2803 –5.7009a –5.7009a

1 A1 –17.1955 –12 –15.3649 –15.6033 –16.9951 –17.1334
3
2 A2 –34.6402 –27 –32.0210 –32.0567 –34.1406 –34.4453

2 A1 –58.1140 –48 –54.6772 –54.6835 –57.4203 –57.6753

aPHF and ED agree within numerical precision.

D18SGHF affords 98.1% of E0 (from DMRG [11]). D18SGHF
predicts a reasonably accurate �EST (Table IV), which
belongs to a transition observed in INS experiments
[11]. Absolute errors in energies become rather large for
N � 24 (see Table III), even for s = 7

2 . We note that the
PHF singlet-triplet gaps are quite different from the exact
results, which is somewhat disappointing. Each state is op-
timized independently in PHF and some states are more
accurately described than others, that is, there is a limited
opportunity for beneficial error cancellation. �EST are over-
estimated for s = 1

2 , but generally underestimated for s >
1
2 . Additional DN SGHF calculations for s = 1

2 and s = 1
for singlet-triplet gaps up to N = 60 (data not shown) in-
dicate that PHF predicts �EST → 0 in the limit N → ∞,
that is, PHF does not develop the Haldane gap �E ≈ 0.41
for s = 1. It indeed appears that all states belonging to the
first rotational band become degenerate in PHF for N → ∞,
irrespective of s.

The good performance for large s suggests that PHF or
post-PHF methods could be significantly more effective for
the multiband Hubbard model than for the single-band Hub-
bard model, at least in the strong-coupling regime. Only the
single-band model was thus far investigated with projected
quasiparticle methods [49,53–56].

Spin polyhedra. The AFH for spins on the vertices of
polyhedra has been discussed in the context of fullerenes
[87,88]. An increasing number of successful synthetic real-
izations of polyhedral spin clusters has added relevance to
such models, which are interesting from the perspective of
geometric spin frustration and display a number of remarkable
properties [89]. For example, field-dependent metastabilities
of classical states of the icosahedron [90], dodecahedron [87],

FIG. 13. Planar coupling graph of the truncated tetrahedron.
Sites forming inequivalent pairs with site 1 are numbered to define
SPCFs in Table VII.
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TABLE VII. SPCFs for the S = 0 ground state of the truncated
tetrahedron with 1 � s � 2. Results from Td SGHF are compared to
exact values. The site numbers are defined in Fig. 13.a

s = 1 s = 3
2 s = 2

Exact PHF Exact PHF Exact PHF

〈ŝ1 · ŝ2〉 –0.6464 –0.6301 –1.3920 –1.3928 –2.3937 –2.3706
〈ŝ1 · ŝ3〉 –1.5731 –1.5724 –2.9893 –2.9048 –4.8983 –4.8289
〈ŝ1 · ŝ4〉 0.4499 0.4642 1.0235 1.0440 1.8381 1.8902
〈ŝ1 · ŝ5〉 –0.4647 –0.5056 –1.0233 –1.0831 –1.8068 –1.9500
〈ŝ1 · ŝ6〉 –0.0022 –0.0065 –0.0120 –0.0348 –0.0266 –0.0454

aResults for s = 1
2 are not listed, because Td SGHF is exact.

or truncated icosahedron [87] hint at unusual magnetization
behavior in the respective quantum systems [87,91,92]. It
was also discovered that the existence of independent-magnon
states on certain spin polyhedra and the Kagomé lattice ex-
plain giant magnetization jumps towards saturation [93,94].
We here chose the truncated tetrahedron, the icosahedron, and
the dodecahedron (Fig. 11) in order to briefly investigate the
performance of PHF for systems with 2D coupling topolo-
gies. In each case, we consider only the S = 0 global ground
state.

(i) Truncated tetrahedron
The classical solution |�HF〉 for the AFH on the truncated

tetrahedron minimizes frustration, with angles of 120° be-
tween neighboring spins on the four triangles, and antiparallel
spins on intertriangle bonds [95] (see Fig. 12 below), yielding
EHF = −12s2. |�HF〉 breaks SPS, but certain combinations of
permutations and spin rotations leave |�HF〉 unchanged. (We
similarly found that |�HF〉 for the truncated icosahedron [87]
is invariant under combined permutations and spin rotations,
where the symmetry axes of permutations and rotations do
not coincide.) For 1

2 � s � 2, ground-state energies from dif-
ferent PHF variants are compared to ED in Table VI.

We first discuss the s = 1
2 system, with a 1A2 ground state

in the Td group. In Ref. [95], a trial state was constructed by
S = 0 projection of |�HF〉. This corresponds to PAV-SGHF,
which we found constitutes also a VAP-SGHF solution. In

other words, |�HF〉 is an SGHF solution for S = 0, and also
happens to be a KSGHF solution.

For all three polyhedra considered here, PAV-SGHF and
VAP-SGHF turned out to be equivalent with respect to S =
0 projection for 1

2 � s � 5
2 (we did not investigate larger s

values). One could thus suspect that |�HF〉 is optimal for
a larger class of spin polyhedra, independent of s. For the
icosahedron and dodecahedron this equivalence holds in rep-
resentations SF and MF, but in the truncated tetrahedron, it
is maintained only in MF, whereas SF yields lower energies.
As an example, for the s = 1 truncated tetrahedron, SGHF
predicts E = −15.2879 (MF) and E = −15.3649 (SF), and
KSGHF yields E = −15.5720 (MF) and E = −15.6033
(SF).

SGHF affords a pure 1A2 or 1A1 term for s = n
2 or s = n, re-

spectively, but it is not equivalent to Td SGHF. However, |�HF〉
must not constitute the initial guess for Td SGHF, because
it is apparently a local minimum (a rigorous classification
of stationary states would require the PHF stability matrix
[71], which is beyond the scope of this work). Td SGHF
yields the exact ground state for s = 1

2 , even when |�〉 is
constrained to be coplanar. For consistency, we also checked
that SPCFs from Td SGHF agreed with ED results. Td KGHF
does not implicitly restore spin symmetry, 〈Ŝ2〉 = 0.480
(E = −5.1447), which contrasts with the s = 1

2 icosahedron,
where IhKGHF converges onto the exact ground state (see
below).

Coffey and Trugman [95] constructed another s = 1
2

trial state by projecting a linear combination of |�HF〉
and its time-reversed counterpart �̂|�HF〉 onto the S = 0
sector, |�〉 = a1P̂S|�HF〉 + a2P̂S�̂|�HF〉, where a1 and a2

were chosen to maximize overlap with the exact ground
state (|a1|2 + |a2|2 = 1). This ansatz is similar to KS-
GHF, but yields a slightly lower energy. In a convention
where energies are larger by a factor of four [95], this
state has E = −21.128, while we obtain E = −21.121 with
KSGHF.

For s = 1, s = 3
2 and s = 2, Td SGHF recovers 98.8%,

98.6% and 98.8% of E0, respectively, which amounts to
fractional correlation energies of p = 96.1%, p = 93.5% and
p = 93.1%. K projection offers a further improvement, where
Td KSGHF yields p = 98.8%, p = 97.4% and, p = 95.7%,

FIG. 14. Neutron-scattering structure factor S(Q), Eq. (17), for the truncated tetrahedron. All edges are taken to have the same length R12.
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FIG. 15. Planar coupling graph for the icosahedron. Sites form-
ing inequivalent pairs with site 1 are numbered.

respectively. The errors in SPCFs are similarly small, except
for large relative errors for the most distant pair, 〈ŝ1 · ŝ6〉, see
Table VII. The site numbers are defined in Fig. 13.

Following Ref. [95], the quality of SPCF predictions
(Table VII) is illustrated by plotting the neutron-scattering
structure factor S(Q) for powder samples (ignoring form fac-
tors),

S(Q) = 1

N

∑
i, j

〈ŝi · ŝ j〉 j0(QRi j ), (17)

where j0(x) = sin(x)/x is a spherical Bessel function and Ri j

is the Cartesian distance between sites i and j. The exact and
Td SGHF curves S(Q) for the 1 � s � 2 systems are plotted in
Fig. 14 and are almost indistinguishable.

(ii) Icosahedron
For the AHF on the icosahedron, with 1

2 � s � 2, the
ground state alternates between 1Au and 1Ag (1Au for s = 1

2
[67], 1Ag for s = 1 [67], etc.). We note in passing that there are
only four states in the 1Au subspace for the s = 1

2 system. With
the help of symbolic computer algebra, we found an analytical
expression for E0 ≈ −6.1879:

E0 = −
√

61

3
[cos α +

√
3 sin α] − 13

6
, (18)

where

α = 1

3
tan−1

(
3
√

19545

226

)
. (19)

The classical (GHF) state also constitutes an SGHF (S =
0) solution in MF and SF representations. This implies that
the SPS symmetry I is automatically restored (we, however,
refrain from a detailed group-theoretical analysis). Conse-

FIG. 16. Planar coupling graph for the dodecahedron. Sites
forming inequivalent pairs with site 1 are numbered to define SPCFs
in Table XI.

TABLE VIII. Ground-state energy of the AFH on the icosahe-
dron with 1

2 � s � 2, from ED, HF, and different PHF variants.

s � Exact HFb SGHF KSGHF IhSGHF IhKSGHF

1
2 Au –6.1879 –3.3541 –5.2486 –5.8716 –6.1879a –6.1879a

1 Ag –18.5611 –13.4164 −17.2992 –17.3990 –18.5419 –18.5596
3
2 Au –37.7412 –30.1869 –36.0400 –36.0507 –37.7043 –37.7313
2 Ag –63.7104 –53.6656 –61.4853 –61.4862 –63.6713 –63.6915

aPHF is exact within numerical precision. bThe HF energy is E =
−6

√
5s2 [78].

quently, symmetry-equivalent pairs have the same 〈ŝi · ŝ j〉.
SGHF does not restore inversion symmetry Ci (Ih = I ⊗ Ci),
though. For s = 1

2 , the respective weights in the SGHF wave
function are wAg = 377

622 and wAu = 245
622 (wAg + wAu = 1; the

given fractions perfectly approximate the numerical values).
An equal weight of Ag and Au is quickly approached for larger
s. Although IhKGHF does not include explicit S projection,
it remarkably converges onto the exact E0 for s = 1

2 (within
double precision). IhSGHF also yields the exact E0, where, in
contrast to IhKGHF, |�〉 may be constrained to be coplanar.
We found an optimal coplanar |�〉 with a peculiar pattern,
where pairs of site spins are aligned antiparallel. Thus, one
could implicitly define the exact ground state of the s = 1

2
icosahedron by specifying 6−1 = 5 angles for the relative
orientation of the six spin-pairs in an arbitrary plane.

For the s = 1, s = 3
2 and s = 2 systems, IhSGHF

(IhKSGHF) recovers 99.90% (99.99%), 99.90% (99.97%),
and 99.94% (99.97%) of E0, respectively (cf. Table VIII),
with small errors in SPCFs (site numbers are defined in
Fig. 15), see Table IX.

(iii) Dodecahedron
The AFH ground state of the dodecahedron is 1Au or 1Ag for

s = 1
2 or s = 1, respectively [67]. The classical solution |�HF〉

[78,87] is invariant under combinations of permutations and
uniform spin rotations that comprise a group isomorphic to I .
[Ci must be combined with the time-reversal operation to leave
|�HF〉 unchanged, so the magnetic group [47] is Ih(I ).] We
found that GHF is also an SGHF solution for S = 0 projection,
in both SF and MF representations. SGHF implicitly restores
I spin-permutational symmetry, but not Ci. For s = 1

2 , we find
wAg ≈ 0.516 and wAu ≈ 0.484. Equal weights are approached
for larger s. For s = 1

2 and s = 1, IhSGHF (IhKSGHF) yields
98.5% (99.4%) and 96.4% (97.6%) of E0, respectively, see
Table X.

TABLE IX. SPCFs in the S = 0 ground state of the AFH on the
icosahedron with 1 � s � 2, from ED or IhSGHF. The site numbers
are defined in Fig. 15.a

s = 1 s = 3
2 s = 2

ED PHF ED PHF ED PHF

〈ŝ1 · ŝ2〉 –0.6187 –0.6181 –1.2580 –1.2568 –2.1237 –2.1224
〈ŝ1 · ŝ3〉 0.3680 0.3702 0.9060 0.9134 1.6616 1.6706
〈ŝ1 · ŝ4〉 –0.7463 –0.7608 –1.9899 –2.0331 –3.6897 –3.7411

aResults for s = 1
2 are not listed, because IhSGHF is exact.
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TABLE X. Ground-state energy of the AFH on the dodecahedron
with s = 1

2 or s = 1, from ED, HF [95], and different PHF variants.

s Exact HFa SGHF KSGHF IhSGHF IhKSGHF

1
2 –9.7222 –5.5902 –7.3666 –7.4929 –9.5763 –9.6684

1 –30.2455 –22.3607 –25.8512 –25.8537 –29.1529 –29.5248

aThe exact value is most likely E = −10
√

5s2 [78].

We did not find the SPCFs for the s = 1 dodecahedron in
the literature and the system is too large for our ED code.
Therefore, Table XI compares SPCFs from PHF to ED results
only for the s = 1

2 system. The relative error in the 〈ŝi · ŝ j〉
tends to increase with increasing distance (site numbers are
defined in Fig. 16), with an error of 28% for diametrically
opposite sites, 〈ŝ1 · ŝ6〉. All SPCFs from IhSGHF have the
correct sign.

IV. SUMMARY AND OUTLOOK

We have investigated PHF theory as a simple black-box
approximation for ground states of Heisenberg spin clusters.
PHF yields states with definite spin- and point-group symme-
try at a mean-field cost. Detailed equations for an SCF-type
optimization are provided in the Supplemental Material. A
fermionic formulation establishes a conceptual connection to
electronic-structure theory, but unphysical ionic states can be
excluded by construction, thereby substantially reducing the
computational effort compared to the Hubbard model. The
mean-field reference state can be chosen as either a spin-
coherent state or a general multispin product state. The latter
more flexible option affords lower variational energies. The
compact wave-function representation in terms of a projection
operator acting on a multispin product state is convenient and
conceptually appealing.

Antiferromagnetic spin rings and polyhedra were chosen
as suitable benchmark systems for comparing energies and
spin-pair correlations from PHF against exact (or DMRG)
results. With regard to capturing a large fraction of the
ground-state energy, PHF is most problematic for small s.
Combined S and PG projection produces exact eigenstates of
s = 1

2 spin rings with up to N ≈ 12 sites, but the accuracy
of PHF decreases sharply for larger N , signaling that the
method is not suitable for investigating the thermodynamic
limit.

PHF becomes far more accurate for larger s. For s � 1 the
relative improvement over a classical (HF) treatment is ap-
proximately constant (independent of s). For example, for an

TABLE XI. SPCFs in the S = 0 ground state of the AFH on
the s = 1

2 dodecahedron, from ED or IhSGHF. The site numbers are
defined in Fig. 16.

Exact PHF

〈ŝ1 · ŝ2〉 –0.3241 –0.3192
〈ŝ1 · ŝ3〉 0.0654 0.0676
〈ŝ1 · ŝ4〉 –0.0388 –0.0466
〈ŝ1 · ŝ5〉 0.0331 0.0429
〈ŝ1 · ŝ6〉 –0.0365 –0.0468

N = 18 ring with s = 5
2 , PHF recovers ∼98% of the DMRG

ground-state energy and predicts a reasonable singlet-triplet
gap. Thus, PHF could be of practical use, e.g., for the simula-
tion of INS excitations in molecular spin clusters. Our study
of three spin polyhedra additionally showed that PHF works
similarly well for 2D systems, which are less favorable for
DMRG. These results indicate that PHF could be a useful
complementary method for ground states of a wider class
of high-symmetry spin clusters, particularly for large s and
moderately large N .

A few aspects were not in the scope of this work. For
example, systems with nonuniform s do not pose a difficulty
but were not studied here. We also note that low-temperature
spectroscopic properties, e.g., from magnetic-resonance ex-
periments, could be modeled based on a first-order treatment
of local Zeeman, hyperfine or zero-field splitting tensors.
The required rank-1 or rank-2 spin-projection coefficients
[1], can be straightforwardly calculated from the PHF single-
particle or two-particle density matrices. For the calculation
of INS intensities, single-particle transition-density matrices
are needed.

Various post-PHF methods from other fields of many-body
physics have in recent years been transferred to electronic-
structure theory and are under active development. The
promising performance of PHF for Heisenberg spin clus-
ters should make the exploration of advanced post-PHF
methods worthwhile. Symmetry-projected multiconfiguration
approaches could ameliorate the size-extensivity problem and
give access to excited states, thus opening the way towards
more accurate and comprehensive studies of Heisenberg spin
clusters based on symmetry-projection methods.
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