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Fermion-exciton condensation in which both fermion-pair (i.e., superconductivity) and exciton condensations
occur simultaneously in a single coherent quantum state has recently been conjectured to exist. Here, we
capture the fermion-exciton condensation through a model Hamiltonian that can recreate the physics of this

new class of highly correlated condensation phenomena. We demonstrate that the Hamiltonian generates the
large-eigenvalue signatures of fermion-pair and exciton condensations for a series of states with increasing
particle numbers. The results confirm that the dual-condensate wave function arises from the entanglement
of fermion-pair and exciton wave functions, which we previously predicted in the thermodynamic limit. This
model Hamiltonian—generalizing well-known model Hamiltonians for either superconductivity or exciton
condensation—can explore a wide variety of condensation behavior. It provides significant insights into the
required forces for generating a fermion-exciton condensate, which will likely be invaluable for realizing such
condensations in realistic materials with applications from superconductors to excitonic materials.
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I. INTRODUCTION

Model Hamiltonians are theoretical tools that are often use-
ful in simulating the key physics associated with large-scale,
highly correlated systems. They are capable of modeling
an array of quantum phases and many-body phenomena
such as phase transitions [1-5], superconductivity [6—10],
quantum magnetism [11-14], exciton condensation [15-21],
latticelike systems [22,23], etc. Additionally, model Hamil-
tonians which encompass nontrivial physics are often useful
as benchmarks for theoretical tools such as many-body
approximations [6,24-26].

Condensation phenomena—which are inherently highly
correlated—have a long history of being computationally
studied through the lens of model Hamiltonians as
traditional band theory is inaccurate for such highly
entangled  materials [6,7,10,15,27-29]. Specifically,
superconductors—materials in  which fermion-fermion
(Cooper/electron-electron) pairs aggregate into a single
quantum state, resulting in the superfluidity of the
fermion-fermion pairs—are often explored through use of the
pairing-force (PF) Hamiltonian [6-9], which is additionally
referred to as the standard reduced Bardeen-Cooper-Schrieffer
(BCS) Hamiltonian [10,25,30]. This Hamiltonian is a simple
representation of superconductivity as it describes a system
with bound Cooper (or Cooper-like particle-particle) pairs
interacting in an attractive manner with the high-correlation
limit of this Hamiltonian resulting in well-known,
number-projected BCS wave functions [7,31]. Similarly,
exciton condensation—in which particle-hole (exciton)
pairs condense into a single quantum state resulting in
the superfluidity of the composite excitons [32]—can be
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modeled according to the Lipkin-Meshkov-Glick (LMG)
Hamiltonian, which is often simply referred to as the Lipkin
model [15-21,29,33]. This Hamiltonian is a highly degenerate
system in which partnered orbitals are inherently particle-hole
paired and whose strongly correlated form results in ground
states that demonstrate character of exciton condensation.
Here, we introduce a model Hamiltonian that is capa-
ble of capturing fermion-exciton condensation, a new class
of highly correlated condensation phenomena in which both
fermion-pair and exciton condensations coexist in a single
quantum state (see Fig. 1). We demonstrate such coexistent
condensate character by calculating the quantum signatures
of fermion-pair [34,35] and exciton [36,37] condensations
(see Sec. II and Appendix A) for systems of even particle
numbers ranging from N = 4 to 10 particles in » = 2N or-
bitals. These fermion-exciton condensates are shown to be
described by wave functions which are entanglements of wave
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FIG. 1. A figure of the condensate phase diagram in the phase
space of the signatures of particle-particle condensation, Ap, and
exciton condensation, Ag, is shown. See Ref. [38] for the original
figure.
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functions from BCS-like superconductivity and Lipkin-like
exciton condensation—consistent with our prior predictions
for the large-N thermodynamic limit [38] as well as those we
observed experimentally on a quantum device [39].

Our determination of a model Hamiltonian that supports
fermion-exciton condensation provides information regarding
the nature of the forces necessary to generate such systems—
an invaluable first step in the realization of real-world systems
that support such dual condensation of excitons and fermion-
fermion pairs, which may demonstrate some sort of hybrid
of the properties of superconductors and exciton condensates
and hence have applications in energy transport and electron-
ics. The extent of these different phases and the transitions
between these phases can also be studied. Moreover, our
Hamiltonian provides an important reference in order to de-
termine whether a given many-body approximation is capable
of measuring dual condensate character.

II. THEORY
A. Fermion-pair condensation

Superconductivity results from the condensation of
bosonic fermion-fermion pairs [10,40-42] into a single
geminal—a two-fermion function directly analogous to the
one-fermion orbital [34,35,43-46]—at temperatures below a
certain critical temperature. This condensation of fermion-
pairs results in the superfluidity (i.e., frictionless flow) of
the constituent particle-particle pairs [10,42,47,48]; if the
fermionic pairs are composed of electrons (i.e., Cooper pairs),
then these superfluid electron-electron pairs demonstrate
superconductivity.

As was first demonstrated by Yang [34] and Sasaki [35],
a computational signature of such superconducting states is a
large eigenvalue in the particle-particle reduced density matrix
(2-RDM), whose elements are given by

2Dy = (W] aa i v). ()

where |W) is an N-fermion wave function and where &}L and
a; are fermionic creation and annihilation operators for orbital
i, respectively. As eigenvalues of the 2-RDM can be inter-
preted as the occupations of the two-fermion geminals [49],
when the largest eigenvalue of the 2-RDM—the signature
of particle-particle condensation, represented by A p—exceeds
the Pauli-like limit of one (Ap > 1), multiple fermion-fermion
pairs occupy a single geminal and hence superconducting
character is observed. This signature is known to directly
probe the presence and extent of nonclassical (off-diagonal)
long-range order [44]. (See the Appendix for more details on
how the signature of superconductivity, Ap, is computed.)

The Pairing-Force (PF) model [6-9]—also called
the standard reduced Bardeen-Cooper-Schrieffer (BCS)
model [10,25,30]—is known to exhibit superconducting
character in the strong correlation limit and hence achieve
a large Ap. The Hamiltonian for the PF model is given in
second quantization by
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where p is a quantum number that represents a pair of or-
bitals denoted as p, 1 and p, | with the same energy, where
the energies (¢,) are considered to be known, and where
the parameter G is a constant that tunes the strength of the
pairwise interactions. Note that in the limit of strong corre-
lation (G > €,,), maximal superconducting character—Ap =

81 — ¥=2) [43,49]—is observed.

B. Exciton condensation

Directly analogous to superconductivity resulting from
bosonic particle-particle pairs condensing into a single
particle-particle function, exciton condensation results from
the condensation of particle-hole pairs (i.e., excitons) into a
single particle-hole function below a certain critical tempera-
ture, which results in the superfluidity of the excitons [32,50].
Exciton condensates, while difficult to realize experimen-
tally, have been observed in systems composed of polaritons
(excitons coupled to photons) [51-53] and in two-dimensional
structures such as semiconductors [54], graphene bilay-
ers [55-57], and van der Waals heterostructures [58—61].

The signature of exciton condensation—denoted as Ag—is
similarly analogous to that for fermion-pair condensation; the
presence and extent of exciton condensate character can be
measured from the largest eigenvalue of a modified particle-
hole reduced density matrix given by [36,37,62]
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where !'D is the one-fermion reduced density matrix (1-
RDM). Note that this modification removes the extraneous
large eigenvalue from a ground-state-to-ground-state transi-
tion such that a signature above one (Ag > 1) is indicative of
exciton condensation. (See the Appendix for more details on
how the signature of exciton condensation, A is computed.)
This computational signature has been utilized to study when
exciton condensation is possible in quantum and molecular
systems [29,37-39,63].

One model known to achieve a large A value and hence
exhibit exciton condensate character in the limit of a large
correlation is the Lipkin quasispin model [15-21]. The N-
fermion Lipkin quasispin model consists of two energy levels
{—5. 5}, each containing N energetically degenerate states.
The second-quantized Hamiltonian can be expressed as [18]
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where 0 = +1 and p=1,2,..., N are quantum numbers
that completely characterize the system in which p describes
the site number labeling the N states in a given level and o
represents the upper (4-1) or lower (—1) energy levels, respec-
tively. Note that in this model, the A term allows for double
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FIG. 2. A pictorial representation of the model Hamiltonian we
introduce in which there are two N-degenerate energy levels—with
energies —5 and 5—with double excitations and de-excitations,
scattering in which one particle is de-excited while another is si-
multaneously excited, and a pairwise interaction term between sites
2j —1and2jfor j € {1,2,...,N} (yellow circles) is shown. Note
that the Lipkin-like excitations must occur within a site (p <> p+ N,

blue arrow).

N |,

excitations and de-excitations, and the y term allows for a sin-
gle particle to be scattered up while another is simultaneously
scattered down; as a result, in the Lipkin model, only even
excitations are allowed, and only one particle may occupy a
given site (i.e., have a specific quantum number p) such that
each site in the lower level is particle-hole paired with the
corresponding site in the upper level. By having the terms
correlating orbitals in the Hamiltonian (X, y) be sufficiently
larger than the energy term (i.e., in the limit of high correla-
tion), the maximal exciton condensation—Ag = % [36]—can
be obtained for A = y.

C. Fermion-exciton condensation

A fermion-exciton condensate is a single quantum state
that simultaneously demonstrates character of superconduc-
tivity and exciton condensation, i.e., both signatures of
condensation—the largest eigenvalue of the particle-particle
RDM [Eq. (1)] and the largest eigenvalue of the modi-
fied particle-hole RDM [Eq. (3)]—are simultaneously large
()\.D, )‘-G > 1) [38]

To gain insight into such fermion-exciton condensates,
here we propose a model system that is capable of demon-
strating simultaneous fermion-pair and exciton condensate
character. In this model, we introduce the pairwise interac-
tion from the pairing-force model into the scaffolding of the
Lipkin model; thus, the model keeps the structure of the
Lipkin model in which N particles occupy two N-degenerate
energy levels (—5 and 5) with allowed double excitations
on two sites (A) and simultaneous scattering of a particle
up on one site and down on another (y)—where Lipkin-like
sites are now given as orbitals p and p + N; however, we
additionally pair adjacent orbitals—orbitals 2j — 1 and 2 for
je{l,2,..., N}—via the PF parameter G. (See Fig. 2.) The
Hamiltonian for this model is thus given by
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in second quantization, with a given set of parameters
(e, A, vy, G) directly determining the extent of fermion-pair
and exciton condensation (Ap and Ag, respectively) of the
ground state corresponding to this model Hamiltonian.

While this model Hamiltonian is not the first to com-
bine the pairwise interaction from the Pairing-Force model
with the Lipkin model, the model Hamiltonian introduced
by Plastino and coworkers causes direct competition be-
tween particle-particle and particle-hole correlations and
hence proves incapable of demonstrating a fermion-exciton
condensate phase (see Appendix B) [64—66]. Conversely, due
to our introduction of the pairing-force interactions between
adjacent orbitals instead of orbitals in the same Lipkin-like
site, particle-particle and particle-hole pairing can coexist and
hence fermion-pair-exciton (FEC) states can be achieved as is
shown in the results that follow.

III. RESULTS
A. N = 4, the minimal FEC

As the authors have previously demonstrated [38], a system
with as few as N = 4 particles in » = 8 orbitals can support
formation of a fermion-exciton condensate. As such, we first
fully explore such a minimalistic FEC system. The ground
state of the FEC Hamiltonian that we have introduced—
Eq. (5§)—for four particles has contributions from only ten of
the seventy (r choose N) possible configurations. Of these ten
basis states, there are only five distinct classes composed of
degenerate orientations—see Fig. 3—that allow for the direct
computation of a matrix-form of the Hamiltonian in a minimal
basis state. The five basis states are defined by three quantum
numbers, x, y, bool, where the first indicates the number of
particles excited to the upper energy level (x), the second
indicates the number of BCS-like pairs (number of times both
2j —1 and 2j are occupied, y), and the third is a boolean
that indicates whether the configuration is “Lipkin”-like in
the regard that no two orbitals representing a “Lipkin” site
(denoted as p and p + N, see the blue arrow in Fig. 3) are
dually occupied or dually unoccupied.

Utilizing  the  basis shown in  Fig. 3—
0,2,T), 12,2,F), 12,2,T), |12,0,T), and |4, 2, T)—the
Hamiltonian from Eq. (5) can be represented by

2¢-26  -Gv2 2 0
G2 -2G+2y -2G 0 —-GV2
2,-2G 242G
2A 0 2yV2 2y 2\
2,26
0 —-Gv2 6 2 26-2G

(6)

where each term—corresponding to the interaction between
two classes of basis states, |i) and |j)—is obtained from
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FIG. 3. Configurations representing each of the five classes of
nonzero basis states for the FEC Hamiltonian for N, r = 4, 8 are
shown where each label x, y, bool represents the number of particles
excited to the upper N-degenerate energy level (x), the number of
BCS-like pairs (y), and whether the configuration is consistent with
the Lipkin model (bool), where the degeneracy of each class of states
is given in parenthesis, and where green, yellow, and blue configura-
tions represent that the corresponding states are consistent with only
the Lipkin Hamiltonian, only the pairing-force Hamiltonian, or both
Lipkin and PF Hamiltonians, respectively.

programmatically generating all sets of second-quantization
creation and annihilation operators in Eq. (5), taking the
expectation value for each combination of pairs of config-
urations in classes |i) and |j), summing the results, and
normalizing by dividing by the square root of the num-
ber of configurations for both |i) and |j). For example,
if i) =12,2,F)=(]1,2,5,6) + [3,4,7,8))/+/2 and |j) =
12,2,T) = (]1,2,7,8) + 13,4, 5,6))/+/2, the Hamiltonian
term would be given by

((1,2,5,614+(3,4,7,8)), (11,2,7,8) +13,4,5,6))
V2 V2

1
= 5[(1, 2,5,6|H|1,2,7,8) +(1,2,5,6[H[3,4,5,6)

+(3,4,7,8/H|1,2,7,8) + (3,4,7,8H|3, 4,5, 6)].
@)

Figure 4(a) scans over the signatures of condensation—Ap
and Ag—for the ground state of the Hamiltonian in Eq. (6) by
systematically varying the parameters €, X, y, and G where
the yellow BCS x’s represent ground states in which the
PF Hamiltonian is implemented (i.e., A = y = 0), the blue
Lipkin x’s represent states in which the Lipkin Hamiltonian
is implemented (i.e., G = 0), and where the green FEC x’s
represent states with character of both PF and Lipkin Hamil-
tonians. As this figure demonstrates, the largest degree of
superconducting character (the largest 1p) is indeed observed

in the BCS limit of the FEC Hamiltonian (when G > €, A =
y ~ 0), and the largest degree of exciton condensate character
(the largest Ag) is observed in the Lipkin limit of the FEC
Hamiltonian (A &~ y > €, G = 0). However, neither the BCS
nor Lipkin limit of the Hamiltonian is capable of demonstrat-
ing a dual fermion-exciton condensate as Ap and Ag only
simultaneously exceed the Pauli-like limit of one when the
full FEC Hamiltonian from Eq. (5) is implemented including
both BCS-like (G) and Lipkin-like (A, y) terms.

Our model FEC Hamiltonian, however, is capable of
demonstrating a wide variety of dual condensate character as a
variety of input parameters lead to ground-state configurations
in which both Ag and Ap simultaneously exceed one. Addi-
tionally, the Ap and A values obtained by scanning over the
Hamiltonian parameters [in Fig. 4(a)] demonstrate an elliptic
nature consistent with the convex nature of 2-RDMs projected
onto a two-dimensional space [67-69] that matches predic-
tions for a FEC that these authors first presented in Ref. [38].
This elliptic boundary as well as the density of points in the
zone corresponding to fermion-exciton condensate character
indicate that the FEC model Hamiltonian introduced here is
capable of spanning the entirety of the FEC region of Ap
versus Ag space (i.e., Ap, Ag > 1).

In Ref. [38], these authors theoretically establish that in the
thermodynamic limit, a possible wave function demonstrating
fermion-exciton condensation can be obtained by entangling
wave functions that separately demonstrate superconducting
character (|Wp) with large Ap) and exciton condensate char-
acter (|]W) with large L) according to

1

[Wree) = m(WD) sgn(A)|Ye)), (®)
where A =2(Wp|Ws). In Fig. 5, occupation probabilities
for each of the five classes of basis states consistent with
the N, r = 4,8 FEC Hamiltonian that contribute to a BCS
wave function (yellow, €, A,y,G =0,0,0,0.7, Ap = 1.50,
Ag = 0.67), a Lipkin wave function (blue, €, A, y,G =
0,-0.5,-0.5,0, Ap = 0.50, A = 2.00), and a FEC wave
function (green, €, A, y, G =0, —0.5, —0.5,0.7, Ap = 1.31,
Ag = 1.32) are given. From this data, it can be observed that
the FEC wave function does indeed appear to be an entangle-
ment of the individual BCS and Lipkin wave functions for the
case of N = 4; this is consistent with the theoretical result in
the thermodynamic limit.

B. Higher-particle FECs

In order to observe trends related to system size, we employ
the methodologies used to explore the N,r =4, 8 model
system and extrapolate to systems composed of N = 6, 8, 10
particles in r = 12, 16, 20 orbitals. Figures summarizing
the signatures of superconducting character (1p) and exciton
condensate character (Ag) obtained for the ground-state wave
functions of these larger model Hamiltonians can be seen in
Figs. 4(b)—4(d). Similar to the results from the N = 4 data,
elliptic fits span the range from the maximal signature of su-
perconducting character observed for the BCS wave function
to the maximal signature of exciton condensate character for
the Lipkin wave function, with a large variety of parameters
supporting dual fermion-exciton condensation. Note that as
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FIG. 4. Plots of A vs Ap where parameters in the FEC Hamiltonian are systematically varied are shown for systems involving (a) N = 4,

(b) 6, (c) 8, and (d) 10 particles in r = 2N orbitals.

the size of the system increases from N =6 to N =8 to
N = 10, the number of classes of degenerate, nonzero basis
states as well as the number of basis states composing each

T T T T T

05 | FEC mmm |
) BCS 0=
Lipkin
> 0.4 | .
o 0.3
S
2 1
Q!: 0
0.1} .
0

0,2,T 2,2,F 2,2, T 2,0,T

Basis Classification

42T

FIG. 5. The probabilities corresponding to each of the five
classes of basis states (see Fig. 3) consistent with the FEC Hamil-
tonian for NV, r = 4, 8 are shown where green, yellow, and blue bars
correspond to the lowest eigenstate of the Lipkin Hamiltonian, the
pairing-force Hamiltonian, and FEC Hamiltonian, respectively.

class increase from 8§ classes with a total of 44 nonzero basis
states to 14 classes with a total of 230 nonzero basis states to
20 classes with a total of 1212 nonzero basis states. As such,
the relative sparsity of the computations in Ap versus Ag with
increasing system size is due to fewer computations being run
with larger increments between each of the parameters as they
are varied.

To demonstrate how the classes of nonzero basis states
vary as system size is increased, Fig. 6—which shows
the occupation probabilities for each of the fourteen
classes of basis states consistent with the N,r =8, 16
FEC Hamiltonian that contribute to a BCS wave function
(yellow, €,A,y,G=0,0,0,09, 1p =2.50, Ag =0.57), a
Lipkin wave function (blue, €, A,y,G =0, —0.5,-0.5,0,
Ap = 0.50, Ag =4.00), and a FEC wave function (green,
€, ry,G=0,-05,-05,09, Ap =2.06, Ac = 1.87)—is
included. Note that due to an increase in the possible com-
plexity, two more quantum numbers are added to describe a
few of the classes of basis states; specifically, { and t are
added to x, y, and bool where ¢ corresponds to the number of
times BCS-like pairs are “stacked” into the same site such that
orbitals 2j — 1,2j,2j — 1+ N, and 2j + N are all occupied
and where 1 corresponds to the number of diagonal configu-
rations in which either 2j — 1/2j 4+ N or2j — 1 + N/2j are
both occupied where 2j — 1 and 2 are adjacent, BCS-paired
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FIG. 6. The probabilities corresponding to each of the fourteen
classes of basis states consistent with the FEC Hamiltonian for
N,r =8,16 are shown where green, yellow, and blue bars cor-
respond to the lowest eigenstate of the Lipkin Hamiltonian, the
pairing-force Hamiltonian, and FEC Hamiltonian, respectively. Each
label x, y, bool, ¢, and T represents the number of particles excited
to the upper N-degenerate energy level (x), the number of BCS-like
pairs (y), whether the configuration is consistent with the Lipkin
model (bool), the number of times BCS-like pairs are “stacked” into
the same site (¢), and the number of times a diagonal configuration
occur in which either 2j — 1/2j + N or2j — 1 + N/2j are simulta-
neously occupied where 2j — 1 and 2 are adjacent, paired orbitals
(7). These values act as quantum numbers that define the degenerate
classes of nonzero basis functions composing the ground state to the
FEC Hamiltonian.

orbitals. A few configurations with the necessary quantum
numbers specified for N = 8 are included in Fig. 7.

As can be seen from Fig. 6, the ground-state wave function
for the N = 8 FEC Hamiltonian no longer simply contains
elements of the BCS wave function and the Lipkin wave
function naively entangled together. Specifically, while the
|4,4, F, 1,2) class of basis states does include BCS-paired
particles (see Fig. 7), it does not include the maximal number

4,4,F 1

stat &
ﬂ ApAg+NAqPp+N

f T 4,4,F, 1,2

2,4,F

FIG. 7. Configurations representing how the Lipkin-like double
excitation term (1) and scattering term () in the FEC Hamiltonian
relate the |4, 4, F, 1, 2) basis state for N, r = 8, 16 to BCS-like basis
states.

of BCS-paired particles, which appears to be a necessary
condition for nonzero occupation of the ground state for
the BCS Hamiltonian. However, this class of basis states
can interact with other BCS-like and Lipkin-like classes of
basis states. Explicitly, |4,4, F, 1, 2) interacts with |2, 4, F)
via ;a;aqaqﬂva‘nﬂv, 14,4, F, 1) via 5 ;AﬁNaanN, 16,4, F)
via ’;a;+N&;+Naqa,,; and [2,2,T) via —Gazj_lazjaZk&Zk_l,
which does further entangle the Lipkin-like configurations
and BCS-like configurations in a nontrivial manner. As such,
while the interaction between the BCS-like classes of basis
states and Lipkin-like classes of basis states in the formation
of the FEC ground state wave function is not as clear-cut or
simple as in the N = 4 case, the N = 8 FEC wave function is
still an entanglement of BCS-like and Lipkin-like terms.

A representative configuration as well as the relevant quan-
tum numbers for all classes of basis states for the N = 6, 8,
and 10 FEC Hamiltonians is given in Ref. [70].

IV. DISCUSSION AND CONCLUSIONS

In this study, we introduce a model Hamiltonian that
successfully demonstrates the physics associated with both
fermion-pair condensation and exciton condensation, as well
as encompassing the phase space consisting of systems in
which fermion-pair condensation and exciton condensation
are simultaneously realized—a phenomenon which we term
fermion-exciton condensation (FEC). Applying this model to
systems composed of N = 4, 6, 8, 10 particles in r = 2N or-
bitals, we confirm this fermion-exciton condensate character
for a wide variety of ground-state wave functions correspond-
ing to a diverse range of input parameters in the model
Hamiltonian, additionally verifying the prediction made in a
prior investigation [38] that the wave function of a fermion-
exciton condensate is an entanglement of wave functions of
exciton condensates and fermion-pair condensates.

The introduction of our model Hamiltonian that supports
fermion-exciton condensation advances our understanding of
the forces and orbital correlations necessary for the experi-
mental construction of FEC states in real-world materials—
important insights in the search for real-world materials
exhibiting fermion-exciton condensate character. Depending
on the interpretation of the Hamiltonian elements, this could
have ramifications for fields such as traditional and molecu-
larly scaled electronics, spin systems, and nuclear physics.

Specifically, if the orbitals in the Hamiltonian are in-
terpreted as spin orbitals, fermion-exciton condensates si-
multaneously demonstrate the condensation of Cooper pairs
into a single particle-particle quantum state and the con-
densation of electron-hole pairs into a single particle-hole
quantum state; thus, superfluid Cooper pairs—tesulting in
superconductivity—and superfluid excitons—which are asso-
ciated with the dissipationless flow of energy [32,50]—should
both be present to a certain extent in FEC systems, maybe
demonstrating some hybridization of the properties of super-
conductors and exciton condensates, which may be relevant to
the fields of energy transport and electronics in both macro-
scopic materials and molecular-scaled systems.

Alternatively, the two Lipkin-like N-degenerate levels can
be interpreted as being representative of specific spin states
such that the upper level is spin up and the lower level is
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spin down or vice versa. This interpretation is most-consistent
with € = 0—which does demonstrate FEC states for a wide
variety of input parameters—, although in a magnetic field
the different spin states could be separated by some nonzero
energy. In this framework, the Lipkin-like terms could repre-
sent simultaneous double spin flips that are either aligned (1)
or misaligned (y), and the pairwise pairing-force term could
be seen as a favorable interaction between adjacent particles
demonstrating the same spin.

Moreover, as both particle-particle (consistent with the
pairing-force Hamiltonian) and particle-hole (consistent with
the Lipkin Hamiltonian) are utilized in the field of nuclear
physics to display the essential properties of the nuclear inter-
action [71-73], we can interpret our FEC Hamiltonian in this
framework. In this interpretation, the particles being created
and annihilated are nucleons such that the Lipkin terms are as-
sociated with the interaction of nucleons within a valence shell
(y), the mixing of particle-hole excitations with the valence
configurations, and excitations of a nucleon from one va-
lence shell to another having an energetic penalty (¢) [71,73].
Additionally, in this interpretation, the PF pairwise interac-
tion is associated with the short-range portion of the nuclear
interaction [71,72].

Overall, this model Hamiltonian is capable of demon-
strating a wider array of collective behavior than either the
Lipkin or the pairing-force models. Such a Hamiltonian will
have a vast degree of applications and will be beneficial
for the exploration—and for benchmarking computational

methodologies for the treatment of—the nontrivial physics of
real-world material and chemical systems.

Data for this work will be made available upon reasonable
request. The code used for this work is available on a public
Github repository [74].
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APPENDIX A: DETERMINATION OF SIGNATURES
OF CONDENSATION

To determine the largest eigenvalue of the particle-particle
RDM (’D), see Eq. (1)—i.e., Ap, the signature of supercon-
ducting character—only the following N x N subblock of the
full 2-RDM containing the large eigenvalue must be computed
and diagonalized [49,75,76]

Go a3 T Y7 .
AT AT ~TATA A ATATA A ~ATATA
agdg dga dodg aga,axas aga dr—20ar—1
At at Atata o Atata o At ata
a,as a,d;dod| a,a;aras a,a;a,_2dr—| (Al)
a,al | al,al o  a LAl way - @ ,al 4,00
r—=2%r—1 r—2%r—16¢0¢1 r—28r—16263 r=28r—16r=20r-1

where, again, &;r and @; are the creation and annihilation
operators corresponding to the orbital with index i. Each
element of this subblock of the 2-RDM is the expectation
value (\IJ|[1; i 1&; jazkazk_] |W) obtained by programmatically
applying the appropriate creation and annihilation opera-
tors to each pair of nonzero basis states composing the
previously obtained ground state wave function of the Hamil-
tonian. As an example, for the N, r = 4 computations, there
are ten nonzero basis elements composing five distinct
classes (|0,2,T),|2,2,F),|2,2,T),|2,0,T), |4,2,T)) that
are used to construct the Hamiltonian (see the Result section).
The ground-state wave function is obtained in terms of these
classes with a structure given by

W) =v92,710,2,T) +v25F12,2, F) +v22712,2,T)
+v20,712,0,T) +v42714,2,T) (A2)

where each of the classes is a weighted linear combination of
the basis states composing it, i.e.,

11,3,6,8)+]1,4,6,7)+[2,3,5,8) +[2,4,5,7)

2,0, T
| )= 7

(A3)

(

Thus (\If|&£ j_lag jazkazk,l |W) is a sum of all expectation val-
ues of the form

Ve, Vg, {C1 |&;]‘_1&;]’&2k&2k71 [c2), (A4)

where ¢ and ¢, refer to each of the distinct classes of nonzero
basis states and where these expectation values are sums over

Ub] sz
N (cp, )N (cp,)

where b, and b, are the basis states composing each class,
where N(cp, ) refers to the size of the class to which basis b;
belongs, and where all possible combinations of basis states
are analyzed.

Note that only € = 0 calculations are run for the N, r =
10,20 scan such that site symmetry allows the entire
matrix to be constructed from three distinct types of ele-
ments, which lowers computational expense; these element
types are as follows: a,; lagjazjazj 1s a;j laéjazkazk 1, and

(bilal,_ a5 aokan1lby),  (AS5)

a;j,la;jaz_,iNazj—liN.
The signature of superconductivity (1p) is then computed
from the N x N subblock of the 2-RDM according to the
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eigenvalue equation

with the signature corresponding the largest eigenvalue (the
maximum €j,).
The portion of the particle-hole RDM (*G) associated with

2y i i . . .
Dvp = €pvp (A6) 4 large eigenvalue is composed of submatrices of the form
|
AT A AT A AT A AT A~
aya, g naq ayag+N Ay nOg+N
PN AT A AT A AT A A ~ AT A AT A ~TA AT A
a,ap, a,apala, a,apa,  Nag a,a,aag N paply  nOg N
ala alta, ya'a ala,na a ata, yata ata,va, va (A7)
p¥p+N pYp+N&gtq pYUP+NCg i NYq pYp+N&qtiq+N pUr+NY g NYq+N
al,a al ayala al, ayal a al, ayala al, ayal
p+N©p p+NYPYg%q p+NYPYg+N“q p+NYpegYq+N p+N“PY g NYg+N
al v a vapnala, A, apnal va, a, yayyata a yapnal a
p+NYp+N p+NYP+NCGlq p+NYP+NE G NGg p+NYP+NEGLg+N p+NYP+NC G NYg+N -
tiled in the following manner:
p=0,4=0 p=0,g=1 p=0,g=5-1
p=1,4=0 p=lg=1 p=lg=5-1
: . (A8)
p=5-14=0 | p=5-lg=1 r=5-14=5-1

In order to remove the ground-state-to-ground-state transition [to form the modified particle-hole RDM, %G, see Eq. (3)],

ala, a; oy alagen al yapin
ata, 'D,[0,01'D,[0,0] 'D,[0,01'D,[0,1] 'D,[0,0]'D,[1,0] 'D,[0,0]'D,[1, 1]
alapin | 'Dpl0,11'Dy[0,0]  'D,[0,11'Dy[0, 1] 'D,[0, 11'Dy[1,0]  'D,[0, 11'Dy[1, 1]
al yap | 'Dp[1,01'D4[0,0]  'D,[1,01'D4[0, 1] 'D,[1,01'D,[1,0] 'D,[1,01'D,[1,1]

al napin | 'Dyl1, 11'Dy[0,0]

is subtracted off from each segment defined by p and g where
the one-particle density matrix (' D) is given by

| ap Adp+N
~F ~T A ~T A
a, ayap, apdpyN (A9)
a al . va, al . .a
P+N p+Np p+NYp+N

The signature of exciton condensation (1) is then obtained
from the eigenvalue equation

2Gul; = el (A10)
with the signature corresponding the largest eigenvalue (the
maximum €;).

Again, for the N, r = 10, 20, € = 0 calculations, site sym-
metry is utilized to decrease computational expense. Only
submatrices corresponding to diagonal sub-matrices p = g,
sub-matrices for BCS-paired orbitals p=2j—1, g =2j,
and for unpaired orbitals p =2j — 1, g # p # 2j need to be
computed.

APPENDIX B: PLASTINO’S MODEL

In literature that dates back to the 1960s and continues
to this day, Plastino and coworkers [64—66] explore a model
Hamiltonian that adds a pairing-force term to the Lipkin
model in the context of nuclear physics. Introducing the
Plastino pairing-force term to the Lipkin Hamiltonian from
Eq. (4)—which allows for slightly more flexibility than the

'D,[1,1]'D,0, 1]

'Dy[1, 11'Dy[1,0]  'D,[1,1]'Dy[1, 1]

(

formulation given in the Plastino literature as that literature is
concerned only with the double excitation/de-excitation (A)
term and omits the scattering term (y )—yields the following
model Hamiltonian:

p=1 q=1 p=1 g=1
y N N y N N
14 At ATA ~ 14 AT AT
+ 5 E E ap+Naqaq+Nap+2 E E a,d,  NGqdprN
p=1 g=1 =1 g=1
N N
At At oA
-G E E Q. na,aq0q4N (B1)
p=1g=1

While the form of this Hamiltonian is similar to the one we
introduce in Eq. (5), the difference is the orbitals which the
pairing-force term (G) causes to be correlated in Cooper-like
pairs. Specifically, while our model Hamiltonian pairs adja-
cent qubits (see Fig. 2), the Plastino Hamiltonian pairs orbitals
on the same Lipkin-like site in different layers (i.e., stacked
orbitals p and p + N).

In order to determine whether the Plastino Hamiltonian is
capable of probing fermion-exciton condensate character—
where Ap and Ag simultaneously exceed the Pauli-like limit
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FIG. 8. A plot of Ag vs Ap where parameters in the Plastino
Hamiltonian are systematically varied for N = 4 particles in r = 8
orbitals is shown.

of one and hence character of both fermion-pair condensation
and exciton condensation are observed in a single quantum

state—a systematic scan over the input parameters of the
Hamiltonian (€, A, ¥, G) is conducted. As can in seen by
Fig. 8 where the blue pluses represent the Lipkin model
Hamiltonian, the yellow pluses represent the PF BCS-like
Hamiltonian, and the green x’s represent the Plastino Hamilto-
nian, while Plastino’s Hamiltonian is capable of reproducing
all Lipkin states accessible by the Lipkin model and states that
demonstrate fermion-pair condensation, no dual condensate
character is observed from the Plastino model as the region in
which both Ap and Ag exceed one is not probed within this
model.

In fact, as noted in Ref. [66], there is direct competi-
tion between the particle-hole and particle-particle pairing
between Lipkin-like sites which results in each type of pair-
ing “driving” the system toward radically different states
with the magnitudes of the coupling constants causing a
transition between the Lipkin-like and BCS-like states fa-
vored by the different interactions. Conversely, because the
particle-particle and particle-hole pairing in the model we
introduce do not occur between the same orbitals, they can
coexist, allowing for a much larger possible range of 1, ver-
sus A¢ including the region demonstrating a fermion-exciton
condensate.
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