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Orientational dependence of intrinsic orbital and spin Hall effects in hcp structure materials
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We investigate the orientation dependence of the intrinsic orbital Hall effect (OHE) and spin Hall effect (SHE)
in hexagonal close-packed (hcp) structure materials. The symmetry constraints of the hcp structure restrict
the orbital (spin) current to the orbital (spin) Hall current. It also shows that there exist three symmetry-wise
independent orientations in the hcp structure. We calculate the orbital Hall conductivity (OHC) and the spin Hall
conductivity (SHC) of three hcp materials (Sc, Y, and Zr). We find that all these materials have sizable OHC,
while the SHC is orders of magnitude smaller. Especially, the OHCs of Sc and Zr have significant orientation
dependence, which may be employed to experimentally probe the OHE.
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I. INTRODUCTION

The orbital Hall effect (OHE) is a phenomenon where a
transverse orbital angular momentum current is generated by
an external electric field [1–4]. The OHE was introduced as
an analogy of the spin Hall effect (SHE) [5,6] with replacing
spin current by orbital angular momentum current. Although
Bloch states include both spin and orbital degrees of freedom,
unlike spin, orbital angular momentum is usually expected not
to play a prominent dynamical role due to orbital quenching
[7]. In limited systems, it was argued that an Aharonov-Bohm
phase originated from orbitals is the origin of the SHE and
that the SHE is related to the OHE [2,8–10]. Orbital-texture-
based mechanism, suggested by Go et al. [1,11], demonstrated
that the OHE can arise in centrosymmetric systems through
momentum-space orbital texture and argued that the OHE
is responsible for the SHE. In general, the spin-orbit cou-
pling (SOC) is not necessary for the OHE [1,2,11], but it
is crucial to convert the OHE into the SHE [1,11]. Recent
studies demonstrate that the OHE is closely related also to the
valley Hall effect [12,13]. Despite its theoretical importance,
experimental detection of the OHE remains challenging since
distinguishing it from the SHE is difficult partly because very
little is known about properties of an orbital angular mo-
mentum current and also because simple symmetry analysis
cannot distinguish the OHE from the SHE since they share
identical symmetry transformation properties.

This paper investigates theoretically the orientation depen-
dence of the intrinsic OHE and SHE. If the dependence of
the OHE differs from the orientation dependence of the SHE,
the orientation dependence may be used to distinguish the
OHE from the SHE. In crystal structures with high symme-
try such as face-centered cubic (fcc) or body-centered cubic
(bcc), the orientation dependence is absent, however. We thus
examine a crystal structure with lower symmetry: hexagonal
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close-packed (hcp) structure (Fig. 1). The hcp structure is
common in nature, and about 30 elements crystallize in the
hcp structure. As we demonstrate below, the hcp structure has
different nonequivalent orientations. For instance, an electric
field along the x̂ direction may induce different responses to
what an electric field along the ẑ direction may do. This is
in contrast to bcc and fcc structures, where such orientation
dependence is forbidden due to rich geometric symmetries
of the two crystal structures. The orientation dependence in
the hcp structure should apply to the OHE and the SHE. If
the strength of the OHE differs significantly depending on the
orientation of the hcp crystal structure but the strength of the
SHE does not, the orientation dependence may be exploited
to experimentally probe the OHE.

In this paper, we analyze the orientation dependence of the
OHE and the SHE in Sc, Y, and Zr, all of which have the
hcp structure. First, we investigate the symmetry constraints
in the hcp structure and find that the longitudinal orbital (spin)
current is forbidden and only orbital (spin) Hall current is
allowed. The symmetry analysis also shows that there exist
three symmetry-wise independent orientations. We also verify
the symmetry constraints by explicitly calculating the orbital
Hall conductivities (OHC) and the spin Hall conductivities
(SHC) of the three real hcp structure materials (Sc, Y, and
Zr) numerically based on the first principle density functional
theory (DFT) calculation. All these materials have sizable
OHCs. In particular, the OHCs of Sc and Zr have significant
orientation dependence, which may be tested in experiments.
We also notice that the SHCs are orders of magnitude smaller
for these materials in all orientations. Thus, distinguishing the
OHC from the SHC should be viable.

II. SYMMETRY ANALYSIS

The orbital angular momentum and the spin angular
momentum share the identical symmetry transformation prop-
erties. Thus, the symmetry analyses of the OHE and the SHE
are identical. To avoid redundancy, we present below the sym-
metry analysis of the OHE only. To investigate the orientation
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FIG. 1. Illustration of a conventional unit cell of the hcp structure
and chosen Cartesian coordinate system. The hcp structure can be
described as a hexagonal Bravais lattice with a two-atom basis [14].
The primitive lattice vector in a Cartesian coordinate system can be
chosen as a1 = ( 1

2 a,
√

3
2 a, 0), a2 = ( 1

2 a, −
√

3
2 a, 0), a3 = (0, 0, c).

Then, the basis atoms are given by b1 = (0,0,0), b2 = (0,
√

3
3 a, c

2 ).

Here, a and c are the lattice constants and c =
√

8
3 a for ideal hcp

structure. The green dotted line presents the π -rotation symmetry
axis which is parallel to the x̂ axis and passes through the midpoint
of b1 and b2. Since the symmetry axis is orthogonal to the b2 vector,
the π -rotation maps (0,0,0) and (0,

√
3

3 a, c
2 ) to each other.

dependence of the orbital conductivity in the hcp structure, we
consider a situation in which the orbital current flows along
the α direction with orbital angular momentum (L) in the β

direction due to the electric field (E) in the γ direction. We
define the orbital current jαβ as

jαβ = 〈Lβvα + vαLβ〉
2

(1a)

and examine its linear response to E,

jαβ = σαβγ Eγ . (1b)

Here Lβ is the β component of the orbital angular momen-
tum, vα is the α component of the velocity operator, and σαβγ

is the orbital conductivity for this situation. We set each di-
rection to follow one of the Cartesian coordinate system basis
x̂, ŷ, ẑ, defined in Fig. 1. Any other directions can be expressed
as their linear combination. Then, we get 27 (α, β, γ ) combi-
nations for the orbital conductivity σαβγ . A large portion of
them is forced to vanish by the symmetry of the hcp structure.
Moreover, nonvanishing combinations are mutually related to
each other so that there exist a small number of independent
nonvanishing combinations, as demonstrated below.

The space group of the hcp structure is P63/mmc. It has
one horizontal mirror plane, one sixfold rotation axis (63),

six vertical mirror planes, one inversion center, one threefold
rotation axis, and six twofold rotation axes. The important
symmetries to identify the possible (α, β, γ ) combinations are
the mirror symmetry about the xy plane, the mirror symmetry
about the yz plane, and the π -rotation symmetry about the
axis which is parallel to the x̂ axis and passes through the
midpoint of b1 and b2 (green dotted line in Fig. 1). Due to
these symmetries, σαβγ = 0 if any two indices of (α, β, γ )
combination are the same. Thus, all three indices should
be different, implying that the longitudinal orbital current is
forbidden and only the orbital Hall current is allowed. This
constraint can be understood as follows. For example, suppose
that (ŷ, x̂, x̂) combination is physically possible, which means
that there exists a nonzero orbital current flowing along the
ŷ direction with L in the x̂ direction due to the E in the x̂
direction. The mirror symmetry about the xy plane implies
that the lattice structure is invariant under the transformation
of ẑ → ẑ′ = −ẑ. This mirror transforms (ŷ, x̂, x̂) to (ŷ,−x̂, x̂),
which means that there exists nonzero current flowing along
the ŷ direction with L in the −x̂ direction due to the E in the x̂
direction. However, it is contradiction to the initial assump-
tion. Therefore, (ŷ, x̂, x̂) combination should be physically
impossible. In a similar way, all other combinations with any
indices identical are forbidden by the symmetries of the hcp
structure.

The symmetries of the hcp structure not only restrict the
number of the possible (α, β, γ ) combinations, but also relate
the nonvanishing combinations with each other. For example,
consider σyzx. Equation (1) implies that σyzx is determined by
〈Lzvy + vyLz〉/2. Since the hcp structure has threefold rotation
axis parallel to the ẑ axis, the lattice structure is invariant
under the 2π/3 rotation and the 4π/3 rotation around this
axis. Invariance under the 2π/3 rotation means that σyzx is in-
variant under the rotation transformation of x̂ → x̂′ = − 1

2 x̂ +√
3

2 ŷ, ŷ → ŷ′ = −
√

3
2 x̂ − 1

2 ŷ, and ẑ → ẑ′ = ẑ. By applying this
to Eq. (1), the orbital current jy′z′ , corresponding to σy′z′x′ ,
satisfies that jy′z′ = σyzxEx′ . The orbital current jy′z′ can be

represented as jy′z′ = −
√

3
2 jxz − 1

2 jyz, and the electric field Ex′

can be represented as Ex′ = − 1
2 Ex +

√
3

2 Ey. Thus, considering
that σxzx = σyzy = 0 and jxz = σxzyEy, jyz = σyzxEx, we obtain
σxzy = −σyzx. In a similar way, by considering the 2π/3 ro-
tation and the 4π/3 rotation, the relations σxyz = −σyxz and
σzyx = −σzxy are obtained. That is, the interchange of x and
y indices reverses the sign of the OHC. However, we empha-
size that the interchange of z and x, and the interchange of
z and y do not result in symmetry-enforced relations. Thus,
the hcp structure has three independent OHCs: σxyz = −σyxz,
σyzx = −σxzy and σzxy = −σzyx.

III. CALCULATION

A. Computational details

The full-potential DFT calculation proceeds as follows.
In the first step, we obtained the electronic structures
of all materials using the full-potential linearization aug-
mented plane wave method [15] from the code FLEUR
[16]. The band structures of the materials (Sc, Y, and Zr)
are presented in Fig. 2. We used Perdew-Burke-Ernzerhof
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FIG. 2. Band structures of hcp (a) Sc, (b) Y, and (c) Zr ob-
tained from the full-potential DFT calculation. Horizontal dotted
lines present the Fermi energy.

exchange-correlation functional within the generalized gra-
dient approximation [17]. For the lattice constants of each
structure, values in Refs. [18,19] were used. The muffin-tin
radii of each atom and the plane wave cutoffs were commonly
set to 2.3 a0 and 5.0 a−1

0 , respectively, where a0 is the Bohr
radius. For the Brillouin zone samplings, the 16 × 16 × 16
Monkhorst-Pack k mesh was used [20]. The second variation
scheme was used to include the SOC.

In the second step, the maximally localized Wannier func-
tions (MLWFs) were obtained from the Bloch states with the
code WANNIER90 [21]. For the Brillouin zone samplings,
the equidistant 8 × 8 × 8 k-mesh which includes the gamma
point was used. The initial projections of the Bloch states were
chosen as s, px, py, pz, dxy, dyz, dzx, dx2−y2 , and dz2 . For each
structure, we obtained a total of 36 MLWFs, 18 per atom out
of 72 bands. The frozen windows were set to include a region
8 eV higher than the Fermi energy. Also, the Hamiltonian
spin, orbital angular momentum and position operators were
transformed in the basis of MLWFs to construct the tight-
binding model.

B. Kubo formula

To evaluate OHC (σOH) and SHC (σSH), we employ the
Kubo formula within the linear response theory:

σOH(SH) = e

h̄

∑
n �=m

∫
d3k

(2π )3
( fmk − fnk )�Xβ

nmk, (2a)

�
Xβ

nmk = h̄2Im

(〈
unk

∣∣ jXβ

α

∣∣umk
〉〈umk|vγ |unk〉

(Enk − Emk + iη)2

)
, (2b)

where fnk is the Fermi-Dirac distribution function, vγ is γ

component of the velocity operator, jXβ

α = (Xβvα + vαXβ)/2 is
the conventional orbital(spin) current operator corresponding
to the orbital (spin) current flowing along the α direction with
β component of the orbital (spin) angular momentum Xβ =
Lβ (Sβ ), |un,k〉 is a periodic part of the Bloch state of the
Hamiltonian, and Enk is the corresponding energy eigenvalue.
It is natural that the orbital angular momentum is defined
around the atomic center when the Kubo formula [Eq. (2)] is
employed to calculate the OHC for a structure with one atom
in a unit cell. The k-space integration in Eq. (2a) was made
on a uniform 120 × 120 × 120 k mesh. We set η in Eq. (2b)
to 25 meV. The resultant OHCs and SHCs in Figs. 2–4 were
calculated by increasing the Fermi energy (EF ) from −1.0 eV
to 1.0 eV with 0.04 eV steps (the actual Fermi energy is 0 eV
in Figs. 3, 4, 5).

We can use the Kubo formula in Eq. (2) to confirm
the relation between OHCs in different orientations pre-
dicted above. In Eq. (2), only the numerator of �

Xβ

nmk,

〈unk| jXβ

α |umk〉〈umk|vγ |unk〉, depends on the orientation. So,
we can test the relation between OHCs in different orienta-
tions by analyzing the numerator. For example, we can verify
σxzy = −σyzx from Eq. (2) by considering the 2π/3-rotation
and 4π/3-rotation symmetry about the threefold rotation axis
parallel to the ẑ axis. The numerator of �

Xz

nmk for σyzx, is
〈unk| jXz

y |umk〉〈umk|vx|unk〉. From the invariance of the hcp
lattice structure under the 2π/3-rotation transformation, we
obtain 〈

unk
∣∣ jXz

y

∣∣umk
〉〈umk|vx|unk〉

= 〈
unk

∣∣ j
Xz′
y′

∣∣umk
〉〈umk|vx′ |unk〉. (3)

Together with the relations x̂′ = − 1
2 x̂ +

√
3

2 ŷ, ŷ′ = −
√

3
2 x̂ −

1
2 ŷ, and ẑ′ = ẑ, we obtain from Eq. (3) the relation

σyzx =
√

3

4
σxzx − 3

4
σxzy −

√
3

4
σyzy + 1

4
σyzx. (4)

From the invariance of the hcp lattice structure under the
4π/3-rotation transformation, we obtain〈

unk
∣∣ jXz

y

∣∣umk
〉〈umk|vx|unk〉

= 〈
unk

∣∣ j
Xz′′
y′′

∣∣umk
〉〈umk|vx′′ |unk〉. (5)

Together with the relations x̂′ = − 1
2 x̂ −

√
3

2 ŷ, ŷ′ =
√

3
2 x̂ − 1

2 ŷ,
and ẑ′ = ẑ, we obtain from Eq. (5) the relation

σyzx = −
√

3

4
σxzx − 3

4
σxzy +

√
3

4
σyzy + 1

4
σyzx. (6)
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FIG. 3. The Fermi energy (EF ) dependence of OHC (σOH) (blue
line) and SHC (σSH) (red line) calculated by the full-potential DFT
calculation in Sc. The directions of the orbital(spin) flow (v), or-
bital(spin) angular momentum (L or S), and the electric field (E) are
set to be along the (a) ŷ, x̂, ẑ, (b) x̂, ẑ, ŷ, (c) ẑ, ŷ, x̂ axis, respectively.

By combining Eq. (4) with Eq. (6), we can verify σxzy =
−σyzx. In a similar way, we can also verify σxyz = −σyxz

and σzyx = −σzxy by checking 〈unk| j
Xy
x |umk〉〈umk|vz|unk〉 and

〈unk| j
Xy
z |umk〉〈umk|vx|unk〉, respectively.

The orientation dependence of the OHC of the hcp struc-
ture, resulting from its symmetry, is confirmed from the
explicit calculation results of the Kubo formula. We present
the calculated OHC (blue line) for real hcp structure materials
(Sc, Y and Zr) in Figs. 3, 4, 5. The results of SHC (red
line), calculated by Eq. (2), are presented together with the
OHC results. Horizontal dotted lines present the real Fermi
energy (EF = 0 in Figs. 3, 4, 5). We have verified that our
prediction about the orientation dependence of the OHC of
the hcp structure is valid for the real hcp structure materials
from the results exactly. Thus, we only present the results of
the three independent OHCs and SHCs: σyxz, σxzy and σzyx in
Figs. 3, 4, 5.

FIG. 4. The Fermi energy (EF ) dependence of OHC (σOH) (blue
line) and SHC (σSH) (red line) calculated by the full-potential DFT
calculation in Y. The directions of the orbital(spin) flow (v), or-
bital(spin) angular momentum (L or S), and the electric field (E) are
set to be along the (a) ŷ, x̂, ẑ, (b) x̂, ẑ, ŷ, (c) ẑ, ŷ, x̂ axis, respectively.

IV. DISCUSSION

Since the OHCs are sizable for any directions near the real
Fermi energy in Sc, Y, and Zr, the results we obtained may
be measured in experiment. Especially, the OHC of Zr has
significant orientation dependence (Fig. 5): σOH,yxz ≈ 6540,
σOH,xzy ≈ 2880, and σOH,zyx ≈ 4350 (h̄/e)(� cm)−1. Thus, we
expect that the differences between σOH,yxz, σOH,xzy and σOH,zyx

may be tested in experiments. The OHC of Sc also has orien-
tation dependence (Fig. 3): σOH,yxz ≈ 2660, σOH,xzy ≈ 3810,
and σOH,zyx ≈ 2880 (h̄/e)(� cm)−1. In the case of Sc, the
orientation dependence of the OHC is smaller than the case of
Zr, but the difference between σOH,xzy and σOH,yxz (or σOH,zyx)
is significant. Thus, we expect that the difference can be tested
in experiments. In the case of Y, the orientation dependence
of the OHC is weak (Fig. 4): σOH,yxz ≈ 1900, σOH,xzy ≈ 2060,
and σOH,zyx ≈ 2050 (h̄/e)(� cm)−1.

In Sc, Y and Zr, the SHCs are much smaller than the OHCs
in all orientations, which is natural since all these elements
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FIG. 5. The Fermi energy (EF ) dependence of OHC (σOH) (blue
line) and SHC (σSH) (red line) calculated by the full-potential DFT
calculation in Zr. The directions of the orbital(spin) flow (v), or-
bital(spin) angular momentum (L or S), and the electric field (E) are
set to be along the (a) ŷ, x̂, ẑ, (b) x̂, ẑ, ŷ, (c) ẑ, ŷ, x̂ axis, respectively.

have the weak SOC. Thus distinguishing the OHC from the
SHC should be viable in these materials.

Recently, as the dynamical role of the orbital current
has been refocused, a few experiments [22,23] attempted to
confirm the existence of the orbital current. For this, the
experiments resorted to the orbital torque, the phenomenon
in which the orbital current injected into a ferromagnet is
converted to spin through the SOC of the ferromagnet and
exerts torque to the magnetization of the ferromagnet [24].
The two experiments [25,26] attributed the measured torque
to the orbital torque. A recent experiment [27] reported a
sizable torque in Zr-based heterostructures and argued that
it may be due to the orbital torque. However, the orientation
dependence is not examined. We propose that an evidence for

the existence of the orbital current can be added by testing the
orientation dependence of the OHE and the SHE in these four
hcp materials.

The orientation dependence of the OHE and the SHE in
the hcp structure can be applied to other crystal structures,
whose symmetry properties contain the important symmetries
deriving the symmetry constraints on the OHE and the SHE
in the hcp structure. For example, the symmetries of the
double hcp structure produce the same constraints as the sym-
metries of the hcp structure. In the double hcp structure, the
mirror symmetry about the xy plane, the mirror symmetry
about the yz plane, and the π -rotation symmetry about the
x̂ axis forbid the longitudinal orbital current and allow only
the orbital Hall current. Furthermore, threefold rotation sym-
metry about the ẑ axis provides the relationship between the
OHCs for different orientations, which is the same as the hcp
structure.

Lastly we note that our calculation [Eq. (2)] of the OHCs
and SHCs takes into account only the Fermi sea contribution
and neglects the Fermi surface contribution. Our neglect of
the Fermi surface contribution is motivated by Ref. [9], which
reports that in the 4d and 5d transition metals, the Fermi sea
distribution to the SHC governs the total contribution to the
SHC in the weak disorder regime. We assume in this paper
that the situation is similar for the OHCs of the materials
examined in this paper. Further study on the Fermi surface
contribution to the OHCs is necessary, which however goes
beyond the scope of this paper.

V. CONCLUSION

To conclude, we have investigated the orientation depen-
dence of the intrinsic OHE and SHE in the hcp structure. We
first examined the symmetry constraints. The symmetries of
the hcp structure forbid the longitudinal orbital(spin) current
and only allow the OHC and SHC. They not only restrict
the types of possible orbital(spin) conductivity, but also relate
the possible combinations with each other. We have shown
that the hcp structure has three independent OHCs(SHCs):
σxzy = −σyzx, σxyz = −σyxz, and σzyx = −σzxy. We have also
calculated the OHCs and the SHCs in the three real hcp mate-
rials (Sc, Y, and Zr), and verified the symmetry constraints
explicitly. In Sc, Y, and Zr, the OHCs are sizable, while
the SHCs are orders of magnitude smaller than the OHCs
in all orientations. Thus, distinguishing the OHE from the
SHE should be viable in these three materials. In Sc and
Zr, especially, the orientation dependence of the OHCs are
sizable near the real Fermi energy. Therefore, the orientation
dependence of OHCs in these materials may measured in
experiment.
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