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The theory of composite fermion provides a simple and unified picture to understand a vast amount of
phenomenology in the quantum Hall regime. However it has remained challenging to formulate this concept
properly within a single Landau level, which provides the relevant degrees of freedom in the limit of strong
magnetic field. Recently a low-energy noncommutative field theory for bosons at Landau-level filling factor
ν = 1 has been formulated by Dong and Senthil [Z. Dong and T. Senthil, Phys. Rev. B 102, 205126 (2020)].
In the limit of long-wavelength and small-amplitude gauge fluctuation, they found it reduces to the celebrated
Halperin-Lee-Read theory of a composite fermion liquid. In this work we consider a Bose-Fermi mixture at total
filling factor ν = 1. Different from previous work, the number density of composite fermions in the mixture
and corresponding Fermi momentum can be tuned by changing the filling factor of bosons, νb = 1 − ν f . This
tunability enables us to study the dilute limit νb � 1, which allows for a controlled and asymptotically exact
calculation of the energy dispersion and effective mass of composite fermions. Furthermore, the approximation
of the low-energy description by a commutative field theory is manifestly justified. Most importantly, we
demonstrate that gauge fluctuations acquire a Higgs mass due to the presence of a composite boson condensate,
as a result of which the system behaves like a genuine Landau- Fermi liquid. Combined with the irrelevance of
four-fermion interaction in the dilute limit, we are able to obtain asymptotically exact properties of this composite
fermion Fermi liquid. In the opposite limit of ν f � 1, the Higgs mass goes to zero and we find crossover between
Fermi liquid and non-Fermi liquid as temperature increases. Observing these properties either experimentally or
numerically provides unambiguous evidence of not only the composite fermions and the Fermi surface they
form, but also the presence of emergent gauge fields and their fluctuations due to strong correlation.

DOI: 10.1103/PhysRevB.105.035132

I. INTRODUCTION

The discovery of the fractional quantum Hall effect
(FQHE) [1] ushered in the era of topological states of matter
[2]. Since the kinetic energy of electrons in flat Landau levels
is completely quenched, the physics of FQHE is dictated by
the Coulomb interaction. In studying this strongly correlated
state, traditional approaches such as perturbation theory and
Landau-Fermi-liquid theory are powerless. An important con-
ceptual advance was the composite fermions introduced by
Jain [3]. Each composite fermion (CF) is formed by attach-
ing an even number of magnetic flux quanta to an electron.
This flux attachment leads to a reduced effective magnetic
field for composite fermions. FQH states of electrons with
most odd-denominator filling factors originate from filling the
composite fermion Landau levels.

By incorporating the idea of flux attachment, a theory was
developed by Halperin, Lee, and Read (HLR) [4] to describe
both incompressible (or quantum Hall) and compressible
states formed by CFs. In particular, when the electronic
system has filling factor ν = 1/2, the composite fermions ex-
perience a zero effective magnetic field under the mean-field
approximation. They form a Fermi surface which couples to
a fluctuating U(1) gauge field with a Chern-Simons term [5].
Thus, the system is predicted to be gapless. The HLR theory
has successfully explained various features of the gapless

state. It also gave predictions that were verified in surface
acoustic wave experiment [6–8]. However, the HLR theory
is not restricted to the lowest Landau level (LLL). This re-
striction becomes relevant when the cyclotron gap h̄eB/m∗ is
much larger than the Coulomb interaction between electrons.
The above conceptual issue has motivated subsequent work
on formulating theories restricted to the LLL for the half-filled
Landau level problem [9–12].

Instead of studying the original problem of electrons at
ν = 1/2, Pasquier and Haldane proposed studying a closely
related but simpler problem, namely the system of bosons at
ν = 1 [13]. By attaching a single magnetic flux quantum to
each boson, the bosons become CFs which experience a zero
average effective magnetic field, just as electrons at ν = 1/2.
Then, the theory for bosons restricted to the LLL was con-
structed in an enlarged Hilbert space of composite fermions.
In addition, a set of constraints were posed so that the original
Hilbert space can be recovered. This approach was further
developed by Read, who used it to derive response functions
of the system [14].

Motivated by subsequent developments of noncommuta-
tive field theory in high-energy and in particular, string theory
[15–17], Dong and Senthil reinitiated the studies of the ν = 1
boson problem after two decades [18]. They have success-
fully formulated a description of the system in terms of a
noncommutative field theory. Furthermore, they apply the
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Seiberg-Witten map [15] to the resultant theory, and showed
it maps onto the HLR theory in the lowest order approxi-
mation. In making this approximation, the parameter |�| in
the commutator, [Rx, Ry] = i� = −i�2

B, where Rx and Ry are
guiding center coordinates, plays the important role of expan-
sion parameter. Here, �B = √

1/eB is the magnetic length of
the system in units of h̄ = c = 1. Since � is dimensionful,
it needs to combine with other physical quantities to form
dimensionless parameters. Hence, the approximation by the
HLR theory is justified in the long-wavelength regime and
the fluctuation in gauge field has a small amplitude. The
above approach has been applied in a series of recent work
in studying quantum Hall physics and related topics [19–22].

Despite the success and continuous progress in previous
work, it remains difficult to study properties of the CFs quan-
titatively, like their effective mass. Furthermore the presence
of strong gauge fluctuations renders the properties of the CF
liquids hard to access reliably, even in a qualitative manner.
To address and provide deeper insights into the above con-
ceptual challenges, we study a different variant of the original
problem of electrons at ν = 1/2, namely Bose-Fermi mixtures
at total filling factor ν = ν f + νb = 1, where ν f and νb are
the fermion and boson filling factors, respectively. Among
other things we obtain an asymptotically exact solution in
the limit νb → 0, where the system behaves as a gas of free
CFs. Importantly, Bose-Fermi mixtures have been realized in
cold atom systems [23–30]. Different from two-dimensional
electronic systems, the formation of Landau levels and real-
ization of quantum Hall physics in cold atoms would require
a rapid rotation [31–34] or a synthetic gauge field [35,36] in
the system. Although reaching the quantum Hall regime in
cold atom systems still remains a great challenge, the contin-
uous progress in fabricating synthetic gauge field in optical
lattices makes the direction increasingly promising. Thus, the
system we consider here is as experimentally accessible (al-
beit challenging) as the system of bosons at ν = 1, and can
be tested experimentally, in principle. In the following, we
first demonstrate the unique properties of the system using a
simple argument based on flux attachment.

By attaching a single magnetic flux quantum to every
particle in the mixture, the original bosons and fermions are
turned into composite fermions and composite bosons (CBs),
respectively, both experiencing zero effective magnetic field.
In contrast to previous work, the number density of composite
fermions and the corresponding size of the Fermi surface
can be tuned by modifying the filling factor of bosons νb

(and that of fermions, ν f accordingly). The existence of CBs
significantly modifies the effect of gauge field fluctuation in
the mixture. Due to the Bose-Einstein condensation (BEC) of
CBs, the gauge field acquires a Higgs mass, rendering their
effects on the Fermi surface of CFs weak; as a result the
CFs survive as genuine Landau quasiparticles at low energy.
Furthermore small νb suppresses the momentum of the gauge
bosons that couples to CFs near the Fermi surface due to
the small CF Fermi surface, which justifies the application
of Seiberg-Witten map to the lowest order of kF �B where
kF is the Fermi momentum. Another advantage of this limit
is the CF dispersion can be obtained exactly in this limit,
and the interaction between composite fermions are irrelevant.
The combination of these allow for an asymptotically exact

FIG. 1. A generic illustration of the crossover from Landau-
Fermi liquid to non-Fermi liquid for composite fermions in the
Bose-Fermi mixture at total filling factor ν = 1. See Sec. V D for
a discussion of the energy scales EF and EM .

solution in this limit, including the exact coefficient of the
linear T specific heat.

As we will show later, the mass term of the gauge field
is controlled by the condensate density of BEC, which is
proportional to the filling factor of composite bosons (or
equivalently, original fermions). This points to a crossover
between a Landau-Fermi liquid and non-Fermi-liquid regimes
in the system. The crossover can be probed by the change
in temperature dependence of specific heat capacity at low
temperature. Our results are summarized in Fig. 1. Observing
the behavior of Fig. 1 provides unambiguous evidence of
not only the composite fermions and the Fermi surface they
form, but also the presence of emergent gauge fields and their
fluctuations due to strong correlation.

II. THE PASQUIER-HALDANE-READ CONSTRUCTION

Now, we describe the two-dimensional Bose-Fermi mix-
ture in more detail. The system consists of Nb bosons and Nf

fermions, which is placed under a transverse magnetic field
(either real or artificial depending on the actual system). We
assume the boson and fermion have the same charge. The
lowest Landau level has a degeneracy N = Nb + Nf , so that
the system has a total filling factor ν = 1. The corresponding
filling factors for bosons and fermions are νb = Nb/N and
ν f = Nf /N = 1 − νb.

The physical Hilbert space of the system is spanned by the
following set of unnormalized N-particle states:

|�Nb,Nf 〉 = a†
m1

· · · a†
mNb

f †
s1

· · · f †
sN f

|vac〉. (1)

Here, |vac〉 denotes the vacuum state with no particles. The
operators a†

m and f †
m create a boson and a fermion in the mth

orbital in the LLL, respectively. Both indices mi and si can
take value from 1 to N . As a result, there are

(Nb+N−1
Nb

) × ( N
Nf

)
linearly independent basis states in the Hilbert space.

To formulate an effective theory restricted to the low-
est Landau level, various density operators in the system
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should be projected to the LLL. Each of the projected density
operators in the momentum space ρ(q) satisfies the Girvin-
MacDonald-Platzman (GMP) algebra [37],

[ρ(q), ρ(p)] = 2i sin
(q × p

2
�2

B

)
ρ(q + p). (2)

Hence, it is necessary to find a representation of density oper-
ators which satisfy the GMP algebra. A possible solution was
proposed by Pasquier and Haldane [13] and further developed
by Read [14], as we review below.

A. A brief review of bosons at ν = 1

To be comprehensive, we first summarize briefly the con-
struction for bosons at ν = 1 by Pasquier and Haldane [13].
This review will turn out useful in our later construction for
the Bose-Fermi mixture. Our following discussion follows
closely the presentation in Ref. [14]. The physical Hilbert
space of N bosons is spanned by the basis states

|�b〉 = a†
m1

· · · a†
mN

|vac〉. (3)

Instead of formulating the theory in the original Hilbert
space of bosons, the Pasquier-Haldane construction employs
the enlarged Hilbert space of composite fermions to represent
the GMP algebra. Each CF can be viewed as a bound state of
a physical boson and a fermionic vortex. The corresponding
CF operators cmn and c†

nm have two indices. These operators
satisfy the following anticommutation relations:

{cmn, c†
n′m′ } = δmm′δnn′ , (4)

{cmn, cm′n′ } = 0, (5)

{c†
nm, c†

n′m′ } = 0. (6)

Following the convention in Refs. [14,18], we call m the left
index and n as the right index. The indices m and n label the
single particle states of physical bosons and vortices, respec-
tively. Both indices take value from 1 to N , where N is the
degeneracy of the Landau level. From the CF operators, one
defines the left density operator ρF,L

mm′ and the right density
operator ρF,R

nn′ as

ρF,L
mm′ =

∑
n

c†
nm′cmn, (7)

ρF,R
nn′ =

∑
m

c†
n′mcmn. (8)

It is important to note that we have added a superscript F to
state clearly the density operators are for composite fermions.
This notation will be particularly useful in later discussion.
Mathematically, ρF,L

mm′ and ρF,R
nn′ are the N2 generators of U(N )

groups in the left and right indices, respectively. These are
symmetry operations originating from the freedom in the
change of basis in the Landau orbitals for the physical bosons
and vortices.

The enlarged Hilbert space of N CFs is spanned by the
following

(N2

N

)
basis states:

|�CF〉 = c†
n1m1

· · · c†
nN mN

|vac〉. (9)

The physical Hilbert space of bosons is the subspace being
spanned by the states,

|�phys〉 =
∑

n1,··· ,nN

εn1···nN c†
n1m1

· · · c†
nN mN

|vac〉. (10)

Here, the symbol εn1···nN denotes the Levi-Civita tensor. It is
clear that |�phys〉 transforms as a singlet under the SU(N )R

group:

ρF,R
nn′ |�phys〉 = δnn′ |�phys〉. (11)

In addition, consider the U(1) generator given by

N̂ = Tr
(
ρF,L

mm′
) = Tr

(
ρF,R

nn′
)
. (12)

The physical state satisfies N̂ |�phys〉 = N |�phys〉, which fixes
the system to have N physical bosons and composite fermions.
From Eq. (6), one can show that |�phys〉 is symmetric under
the exchange in the index m. Therefore, there are

(2N−1
N

)
inde-

pendent states in the projected Hilbert space. Both symmetry
condition and dimension agree with the physical Hilbert space
of N bosons.

To verify the density operators defined in the enlarged
Hilbert space do satisfy the GMP algebra, it is necessary to
represent operators in the momentum space. The CF operators
in the momentum space representation cq is related to cmn by

cmn =
∫

d2q
(2π )3/2

〈m|eiq·R|n〉cq. (13)

Note that the symbol R = Rxx̂ + Ryŷ denotes the guiding
center coordinates of a particle in a magnetic field, and eiq·R
is proportional to a plane wave factor eiq·r projected to the
LLL. The number of independent q’s is precisely N2 in a
system with geometry of a torus (so that it is translationally
invariant), exactly matching the number of (mn) indices. In
addition, the normalization factor 1/(2π )3/2 follows the con-
vention in Ref. [14]. Based on this normalization, the operator
cq satisfies the anticommutation relation

{cq, c†
p} = (2π )2δ(q − p). (14)

The left density and right density operators in the momentum
space can be obtained from cq and c†

q as

ρF,L(q) =
∫

d2k
(2π )2

c†
k−qck ei(k×q)�2

B/2, (15)

ρF,R(q) =
∫

d2k
(2π )2

c†
k−qck e−i(k×q)�2

B/2. (16)

Using Eq. (14), it is straightforward to show that ρF,L(q)
indeed satisfies the GMP algebra in Eq. (2). One can also show

[ρF,L(q), ρF,R(p)] = 0, (17)

which implies the SU(N ) symmetries in the left and right
indices are separate. This fact will be important when we
couple the composite fermions to gauge fields. The constraint
to the right density operator [Eq. (11)] becomes

ρF,R(q) = (2π )2ρ̄δ(q), (18)

where ρ̄ = 1/(2π�2
B) is the average density of particles at

ν = 1.
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B. Bose-Fermi mixture at ν = 1

The above review has set the stage for us to apply the
Pasquier-Haldane construction in the Bose-Fermi mixture at
ν = 1. As suggested by the simple argument of flux attach-
ment in Sec. I, we need to include both CFs and CBs in
the enlarged Hilbert space. We use bmn and b†

nm to denote
the annihilation and creation operators for composite bosons,
respectively. These operators satisfy

[bmn, b†
n′m′ ] = δmm′δnn′ , (19)

[bmn, bm′n′ ] = 0, (20)

[b†
nm, b†

n′m′ ] = 0. (21)

For composite fermions, they are described by the same set
of operations in Sec. II A. Similar to Eqs. (7) and (8), the as-
sociated left and right density operators for composite bosons
are

ρB,L
mm′ =

∑
n

b†
nm′bmn, (22)

ρB,R
nn′ =

∑
m

b†
n′mbmn. (23)

For the Bose-Fermi mixture, the physical state |�Nb,Nf

Phys 〉 in
Eq. (1) can be obtained from∣∣�Nb,Nf

Phys

〉 =
∑

n1···nNb
j1··· jN f

ε
n1···nNb j1··· jN f [c†

n1m1
· · · c†

nNb mNb

× b†
j1s1

· · · b†
jN f sN f

]|0〉. (24)

Here, all indices ni, mi, ji, si take value from 1 to N . Clearly,
the state in Eq. (24) is symmetric under the exchange in
index m and antisymmetric under the exchange in index s.
Furthermore, it has no effect under the exchange between
the m and s indices. All these symmetries are consistent with
the many-body states in Eq. (1). Now, one may wonder why
the antisymmetrization is carried over both indices n and j,
but not antisymmetrizing each of them separately. There are
two reasons. First, it ensures that both c†

nm and b†
js are square

matrices, with the Levi-Civita tensor being well-defined. An-
other more physical reason is that both bosons and fermions
are coupled to the same set of vortices. Therefore, the SU(N )R

symmetry should remain the same as in the system of bosons
at ν = 1. Also, |�Nb,Nf

Phys 〉 should transform as a singlet under
the SU(N )R group.

The physical state in Eq. (24) satisfies the following
condition: (

ρF,R
nn′ + ρB,R

nn′
)∣∣�Nb,Nf

Phys

〉 = δnn′
∣∣�Nb,Nf

Phys

〉
. (25)

In addition, the state also satisfies the following global U(1)
conservation laws:

N̂F,L

∣∣�Nb,Nf

Phys

〉 =
N∑

m=1

ρF,L
mm

∣∣�Nb,Nf

Phys

〉 = Nb

∣∣�Nb,Nf

Phys

〉
, (26)

N̂F,R

∣∣�Nb,Nf

Phys

〉 =
N∑

n=1

ρF,R
nn

∣∣�Nb,Nf

Phys

〉 = Nb

∣∣�Nb,Nf

Phys

〉
, (27)

composite 

fermion

composite 

boson

FIG. 2. The Pasquier-Haldane construction in the bilayer sys-
tem at total filling factor ν = 1. Different types of interactions ubb,
uf f , and ub f are defined in Sec. III. Here, the blue solid dots, red
solid dots, and the yellow empty circles denote the physical bosons,
physical fermions, and the vortices, respectively. The dashed lines
illustrate composite particles. Each of them is formed between a
physical particle and a vortex.

N̂B,L

∣∣�Nb,Nf

Phys

〉 =
N∑

s=1

ρB,L
ss

∣∣�Nb,Nf

Phys

〉 = Nf

∣∣�Nb,Nf

Phys

〉
, (28)

N̂B,R

∣∣�Nb,Nf

Phys

〉 =
N∑

j=1

ρB,R
j j

∣∣�Nb,Nf

Phys

〉 = Nf

∣∣�Nb,Nf

Phys

〉
. (29)

The above conservation laws simply indicate that there are Nb

CFs and Nf CBs in the system. These numbers are equal to the
numbers of physical bosons and fermions, respectively. Thus,
the filling factor of CFs is νb, which can be tuned by changing
Nb and Nf accordingly! The above discussion is summarized
in Fig. 2.

In momentum space, the composite boson operators can be
constructed analogous to Eq. (13) and satisfy the commutation
relation

[bq, b†
p] = (2π )2δ(q − p), (30)

which is analogous to the anticommutation relation Eq. (14)
for CF operators. The density operators for composite
fermions are still given by Eqs. (15) and (16). For composite
bosons, the left and right density operators in momentum
space are

ρB,L (q) =
∫

d2k
(2π )2

b†
k−qbk ei(k×q)�2

B/2, (31)

ρB,R(q) =
∫

d2k
(2π )2

b†
k−qbk e−i(k×q)�2

B/2. (32)

It is straightforward to verify that ρF,L(q) and ρB,L(q) satisfy
the GMP algebra separately,

[ρF,L(q), ρF,L(p)] = 2i sin
(q × p

2
�2

B

)
ρF,L(q + p),

[ρB,L(q), ρB,L (p)] = 2i sin
(q × p

2
�2

B

)
ρB,L (q + p),

[ρF,L(q), ρB,L (p)] = 0. (33)
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Finally, the constraint in Eq. (25) is translated into

G(q) = ρF,R(q) + ρB,R(q) = (2π )2ρ̄δ(q). (34)

Since the N vortices are shared among N = Nb + Nf particles,
ρ̄ = 1/(2π�2

B) matches the average density of vortices.

C. Composite fermions as dipolar excitons

To illustrate the above Pasquier-Haldane construction in a
more transparent manner, we consider various simple cases
here. Along the way, we will also relate the composite
fermions in the mixture to the dipolar excitons in bilayer
systems studied in previous work [38]. By doing so, one can
appreciate the value of the construction better, and understand
the physical meaning of composite fermions and composite
bosons in the system.

To begin, consider the special case when all N particles in
the system are fermions. This is the integer quantum Hall state
at ν = 1. Since there is only one possible way for filling N
fermions in N different Landau orbitals in the LLL, the Hilbert
space is one dimensional. Meanwhile, there are N composite
bosons in the Pasquier-Haldane construction. It seems that
there are N2 different momenta q for each CB to take, similar
to a CF as suggested in Eq. (13). This leads to a Hilbert
space with a large dimension of

(N2+N−1
N

)
. However, due to

the constraint (25), the CBs actually form the unique uniform
state with one particle per Landau oribtal. It is instructive to
compare with the flux-attachment treatment of Zhang, Hans-
son, and Kivelson [39], in which the CBs condense into the
q = 0 state to minimize the energy of the system. All excited
states at ν = 1 involve higher Landau levels; as a result the CB
BEC ground state is the only state left in the Pasquier-Haldane
construction!

We now consider the more interesting case of one boson
and N − 1 fermions. Equivalently, we can think of the system
as being made of one boson and one fermionic hole (with op-
posite charge of the boson), with a Hilbert space of dimension
N × N = N2. The situation here is identical to the formation
of bosonic excitons from binding electrons and holes in the
bilayer system at total filling factor ν = 1 [38], in the extreme
case of one electron in the upper layer and N − 1 electrons (or
equivalently, one hole) in the lower layer. The electron-hole
pair form a dipolar exciton with N2 possible values of q, just
like a single spin-wave excitation in the ν = 1 quantum Hall
ferromagnet [40]. The difference in statistics for the single
marked particle (boson in the present case and electron in the
upper layer in Ref. [38]) has no effect as there are no other
identical particles that it can exchange with. In the Pasquier-
Haldane construction, we have one CF and N − 1 CBs. With
the CBs forming a BEC and drop out as in the previous case,
we are left with one CF that can occupy one of the N2 plane
wave states with fixed q, matching the Hilbert space of dimen-
sion N2. This immediately suggests physically a CF should be
viewed as a dipole formed by the boson and fermioic hole, as
illustrated in Fig. 3. The (single) CF dispersion is identical to
that of Refs. [38,40], and we will demonstrate how to obtain
it systematically from the Pasquier-Haldane construction in
Sec. III B.

The situation becomes more complicated when the mix-
ture has two or more bosons. Consider the specific case with

dipolar exciton

background

FIG. 3. The identification of dipolar excitons in the Bose-Fermi
mixture as composite fermions. Here, the vortices are interpreted as
the holes of physical fermions (marked as hollow circles). The blue
and red solid dots denote physical bosons and physical fermions,
respectively.

two bosons, or equivalently, two composite fermions. Naively
there are N2(N2 − 1)/2 ways to put two CFs in the N2 CF
momentum eigenstates, bigger than the actual physical Hilbert
space size of N2(N2 − 1)/4 by a factor of two, similar to
what happens in the bilayer system of electrons. As pointed
out in Ref. [38], this factor of two comes from the ambiguity
in associating one boson (in the present case) with one of
the two fermionic holes. Due to this overcompleteness one
cannot treat each dipolar exciton there as a point particle. The
Pasquier-Haldane construction provides a systematic recipe to
resolve the overcompleteness problem by imposing a singlet
representation of the SU(N )R group for composite particles.
This also leads to the coupling between composite particles
and an emergent gauge field, which will be discussed in
Sec. V.

III. HAMILTONIAN OF THE BOSE-FERMI MIXTURE

Armed with the machinery and physical picture developed
in the previous section, we are now ready to formulate the
Hamiltonian for the Bose-Fermi mixture. Our main goal is
to construct a suitable Hamiltonian from which the exact
single-particle dispersion emerges, and the two-body scatter-
ing matrix elements of composite fermions match previously
known results. Also, the constraint in Eq. (34) is satisfied in
the construction.

Starting from the physical Hilbert space, the Hamiltonian
describing the interaction between particles in the Bose-Fermi
mixture is given by

H0 = 1

2

∑
m1,m2,m3,m4

(ubb)m1,m2,m3,m4 a†
m1

a†
m2

am4 am3

+ 1

2

∑
m1,m2,m3,m4

(u f f )m1,m2,m3,m4 f †
m1

f †
m2

fm4 fm3

+
∑

m1,m2,m3,m4

(ub f )m1,m2,m3,m4 a†
m1

f †
m2

fm4 am3 . (35)

035132-5



KEN K. W. MA AND KUN YANG PHYSICAL REVIEW B 105, 035132 (2022)

The symbol (ubb)m1,m2,m3,m4 denotes the matrix element of the boson-boson interaction projected to the lowest Landau level [14]:

(ubb)m1,m2,m3,m4 =
∫

ubb(x1 − x2)ϕm1 (z1)ϕm2 (z2)ϕm3 (z1)ϕm4 (z2) d2x1d2x2. (36)

Here, ϕm(z) is the single particle basis wave function in the LLL. We use the overbar to denote complex conjugation. Similar
definition holds for the matrix elements of u f f and ub f . These two terms describe the fermion-fermion interaction and fermion-
boson interaction, respectively.

In order to represent the Hamiltonian in terms of the CFs and CBs introduced earlier, we employ the density operators defined
in Eqs. (15), (16), (31), and (32) which satisfy the GMP algebra. The corresponding Hamiltonian is

H = 1

2

∫
d2q

(2π )2
Ubb(q) : ρF,L(q)ρF,L(−q) : +1

2

∫
d2q

(2π )2
Uf f (q) : ρB,L(q)ρB,L(−q) :

+ 1

2

∫
d2q

(2π )2
Ub f (q) : [ρB,L(q)ρF,L(−q) : +ρF,L(q)ρB,L(−q)] :, (37)

where

U (q) = ũ(q)e−q2�2
B/2 = e−q2�2

B/2
∫

u(x)e−iq·x d2x. (38)

The notation : O : denotes the normal ordering of operator
O. Since ρ

†
L(q) = ρL(−q), we intentionally write the second

line in the present form to show the Hermiticity explicitly. The
Gaussian factor in U (q) originates from the definition of LLL-
projected density operator [14]. Furthermore, Eq. (37) can be
written in the form

H = 1

2

∑
m1,m2,m3,m4

∑
n1,n2

(ubb)m1,m2,m3,m4 c†
n1,m1

c†
n2,m2

cm4,n2 cm3,n1

+ 1

2

∑
m1,m2,m3,m4

∑
n1,n2

(u f f )m1,m2,m3,m4 b†
n1,m1

b†
n2,m2

bm4,n2 bm3,n1

+
∑

m1,m2,m3,m4

∑
n1,n2

(ub f )m1,m2,m3,m4 c†
n1,m1

b†
n2,m2

bm4,n2 cm3,n1 ,

(39)

which commutes with the constraint in Eq. (25). Thus, H does
describe the particles in the physical Hilbert space.

A. The preferred Hamiltonian in the enlarged Hilbert space

Since we are now working in the enlarged Hilbert space,
there are some freedoms in representing the physical Hamil-
tonian, as long as the representation is faithful in the physical
Hilbert space, and there is no coupling between physical and
unphysical degrees of freedom. It is therefore desirable to find
the so-called “preferred Hamiltonian” [10], that is the form
being the easiest to use when making approximations, and
yield the most accurate results. To do that, we need insights
on the actual physics of the system, which is provided from
the picture of dipolar excitons in Sec. II C and Fig. 3.

We start from the Hamiltonian in Eq. (37). Due to the
normal ordering in all three terms, there is no one-body term
which gives rise to the single-particle dispersion. This issue is
commonly resolved by removing the normal ordering [18]. In
the present case, we know that a single CF at momentum k
must have its dispersion solely depending on ub f , because it is
made of a boson and a fermionic hole (similar to the fact that
the single exciton dispersion depends solely on in interlayer
interaction in Ref. [38]). This observation suggests removing

the normal ordering in the last term in Eq. (37). Furthermore,
the composite bosons should also have a single-particle dis-
persion (which is obvious if one considers the extreme case
with νb = 0 where the ground state corresponds to a BEC).
This suggests removing the normal ordering in the second
term in Eq. (37) as well.

After removing the normal ordering, the Hamiltonian still
cannot lead to the correct dispersion of a single composite
fermion. Here, we recall a technique proposed by Murthy and
Shankar [9], which has been commonly used in subsequent
work [10–12,18,41,42]. Recall that the physical states satisfy
Eq. (34), and the Hamiltonian satisfies [H, G(q)] = 0. In the
usual case of having a single type of composite particles, one
may include the constraint by replacing the density operator as
ρL(q) − G(q). This is viewed as a short cut of the conserving
approximation employed by Read in Ref. [14].

Now, the mixture consists of two different types of
composite particles. Hence, we still have the ambiguity in
replacing which density operators. Meanwhile, the following
intuition may help. In the usual case, the vortices somehow
play a role similar to the holes of the physical particles. The
vortex has an opposite charge of the physical particle. The
binding between them leads to a neutral dipole. Then, the
left density operator is replaced by ρL(q) − ρR(q). In our
case, this feature holds naturally for the composite bosons
(the vortices are holes of physical fermions but not physical
bosons). Thus we believe a good trial is replacing the left
density operator of the composite bosons by

ρB,L(q) −→ ρB,L (q) − ρB,R(q) − ρF,R(q). (40)

It is very important that this modified density operator also
satisfies the GMP algebra. It indicates that the modified
density can be a legitimate density operator after the LLL pro-
jection. The correctness of such a trial can only be confirmed
by a consistency check with the existing results, which will be
performed later in Secs. III B and III C.

Based on the above discussion, we replace the Hamilto-
nian in Eq. (37) with the operators in Eq. (40). The resulting
modified Hamiltonian can be rearranged and separated in the
following form:

H ′ = HBB + HBF + HFF + HF . (41)

035132-6



QUANTITATIVE THEORY OF COMPOSITE FERMIONS IN … PHYSICAL REVIEW B 105, 035132 (2022)

Each term is given explicitly by

HBB = 1

2

∫
d2q

(2π )2
Uf f (q)[ρB,L(q) − ρB,R(q)][ρB,L (−q) − ρB,R(−q)], (42)

HBF = 1

2

∫
d2q

(2π )2
[Ub f (q)ρF,L(q) − Uf f (q)ρF,R(q)][ρB,L(−q) − ρB,R(−q)]

+ 1

2

∫
d2q

(2π )2
[ρB,L(q) − ρB,R(q)][Ub f (q)ρF,L(−q) − Uf f (q)ρF,R(−q)], (43)

HFF = 1

2

∫
d2q

(2π )2
[Ubb(q) : ρF,L(q)ρF,L(−q) : −Ub f (q) : ρF,L(q)ρF,R(−q) :]

+ 1

2

∫
d2q

(2π )2
[Uf f (q) : ρF,R(q)ρF,R(−q) : −Ub f (q) : ρF,R(q)ρF,L(−q) :], (44)

HF = 1

2

∫
d2q

(2π )2

∫
d2k

(2π )2
c†

kck[Uf f (q) − Ub f (q)(eik×q�2
B + e−ik×q�2

B )]. (45)

The physical meaning of each term is transparent. First,
HBB describes the interaction between composite bosons
which is inherited from the interaction between physical
fermions. Next, HBF describes possible interaction between
composite fermions and composite bosons after the replace-
ment of density operators. The interaction between composite
fermions is described by HFF . Finally, HF is the one-body
term of composite fermion (the fermionic dipole formed by
a physical boson and a hole of physical fermion).

B. Exact solution for a single composite fermion

In the special case of having a single CF, the dimensions
of Hilbert spaces for composite particles and physical par-
ticles match. This enables us to deduce the dispersion of a
single composite fermion exactly from the Pasquier-Haldane
construction. We obtain the dispersion by evaluating 〈HF 〉.
Suppose the composite fermion has a momentum k. In addi-
tion, the N − 1 composite bosons are condensed so that they
do not play a role here. Then, one has

E (k) = 〈k|HF |k〉 − 〈0|HF |0〉

=
∫

d2q
(2π )2

Ub f (q)
[
1 − cos

(
k × q�2

B

)]
. (46)

The subtraction is essential since the dipole at zero momentum
has a nonzero energy. When Ub f (q) is isotropic, then the
dispersion is also isotropic. In this scenario, we have

E (k) = 1

2π

∫ ∞

0
qũb f (q)e−q2�2

B/2
[
1 − J0

(
kq�2

B

)]
dq. (47)

The above result agrees with the exact single-exciton disper-
sion in Ref. [38], which also applies to the CF dispersion
here.

When νb → 0, the composite fermions have their effective
masses dominated by the single-particle dispersion [Eq. (46)
or Eq. (47)]. The effective mass is determined by the disper-
sion at |k| ≈ kF . In the case of an isotropic interaction, we

have [14,18]:

1

m∗
F

= 1

kF

∂E (k)

∂k

∣∣∣∣
k=kF

= 1

2πkF �B

∫ ∞

0
s2ũb f (s)e−s2/2J1(kF �Bs) ds. (48)

The dimensionless variable s = q�B has been defined.
The most promising platform in realizing the Bose-Fermi

mixture will be cold atomic systems. At low temperature, the
boson-boson and boson-fermion interactions are dominated
by the s-wave scattering. In position space, the interaction
takes the form of a Dirac-delta function. One has ub f (x) =
ub f δ(x) and ũb f (q) = ub f . The interaction strength ub f is
determined by the s-wave scattering length of the particles.
Note that both ubb and ub f can be tuned in the experiment by
employing the technique of Feshbach resonance [43–45]. The
single-exciton dispersion is given by

Eδ (k) = ub f

2π�2
B

(
1 − e−k2�2

B/2
)
. (49)

Up to a numerical factor, the result agrees with Ref. [18].
However, the interaction here is characterized by ub f but not
ubb. This is consistent with the physical picture in Fig. 3. The
corresponding inverse effective mass is

1

m∗
F

= 1

kF

dEδ (k)

dk

∣∣∣∣
k=kF

= ub f

2π
e−νb . (50)

As νb → 0 with Nf → 1, the result m∗
F → 2π/ub f becomes

asymptotically exact, because it receives no renormalization
from CF-CF interaction and gauge fluctuations, for reasons
we illustrate below.

C. CF-CF scattering matrix element

Now, we discuss the interaction between composite
fermions. Its most relevant term is given by the four-fermion
interaction. Since the CFs in the mixture are spin-polarized,
the interaction term written in the position space should in-
volve two spatial derivatives. As a result, the interaction is
irrelevant in the dilute limit under renormalization group (RG)
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transformation [46]. This means in the regime of νb � 1, the
effect from the CF-CF interaction is negligible. Therefore, the
single-particle dispersion and effective mass in Sec. III B can
accurately describe the properties of CFs in the low-density
limit.

In spite of its irrelevance, it is important to check the
scattering matrix element of the CF-CF interaction term for
validating the modified Hamiltonian in Eq. (41). We denote

the initial and final quantum states of the two CFs as |p1, p2〉
and |k1, k2〉. In the discussion below, we only consider the
regime of small momentum by focusing on the leading order
terms.

Since HF in Eq. (45) is a one-body term, we should not
include it in the two-body interaction. For HBB in Eq. (42), it
leads to a contribution in the order of |k|2. Considering the
second line of HBF in Eq. (43), one obtains

〈p1, p2, CB|[ρB,L(q) − ρB,R(q)][Ub f (q)ρF,L(−q) − Uf f (q)ρF,R(−q)]|k1, k2, CB〉

∼ 〈p1, p2|c†
k+qck|k1, k2〉〈CB|bk′−qbk′ |CB〉 sin

(
k′ × q

2
�2

B

)
. (51)

Here, |CB〉 denotes the quantum state of the N − 2 composite bosons which is separated from the two composite fermions. The
above matrix element vanishes as 〈CB|bk′−qbk′ |CB〉 requires q = 0. The same conclusion is reached for another term in HBF .
Therefore, in the leading order of momentum, we are left with a two-body interaction term V = HFF . From this, we have

〈p1, p2|V |k1, k2〉 ≈ 1

2

∫
d2q

(2π )2

∫
d2kd2k′

(2π )4
〈p1, p2|c†

k−qc†
k′+qck′ck|k1, k2〉[Ubb(q) − Ub f (q) + Uf f (q) − Ub f (q)]

= δ(k1 + k2 − p1 − p2)

A
[Ubb(k1 − p1) − Ub f (k1 − p1) + Uf f (k1 − p1) − Ub f (k1 − p1)]. (52)

Here, the symbol A denotes the area of the system. The matrix
element is consistent with the effective dipole-dipole interac-
tion term in Ref. [47]. This is more evidence to support the
replacement of the density operator and the modified Hamil-
tonian in Sec. III A.

IV. HARTREE-FOCK APPROXIMATION
OF CF-CF INTERACTION

To obtain the correction in the effective mass, one needs
to include the effect from the two-body interaction. A simple
treatment is the Hartree-Fock approximation, which will be
employed in the following discussion.

For the Bose-Fermi mixture, we assume the wave function
of the whole system is factorized into two parts. Specifically,

the composite fermions takes a wave function in the Slater
determinant form, whereas the composite bosons have a wave
function in a permanent form. Then, we have the following
properties for the contractions:

〈c†
kck′ 〉 = (2π )2δ(k − k′)nF (k), (53)

〈b†
kbk′ 〉 = (2π )2δ(k − k′)nB(k). (54)

Here, nF (k) labels the occupation number of composite
fermions at momentum k. Note that the prefactor (2π )2 origi-
nates from the commutation and anticommutation relations in
Eqs (14) and (30). From the contractions, HBF gives zero con-
tribution to the energy expectation value. By including both
the single-particle dispersion and the Hartree-Fock result, we
obtain the energy dispersion for composite fermions:

εF (k) =
∫

d2q
(2π )2

Ub f (q)
[
1 − cos

(
k × q�2

B

)] −
∫

d2k′

(2π )2

[
Ubb(k − k′) + Uf f (k − k′) − 2Ub f (k − k′) cos

(
k × k′�2

B

)]
nF (k′).

(55)

In the special case when all interactions are isotropic, the composite fermions will form a circular Fermi surface with the
Fermi momentum kF = √

2νb�
−1
B . Then, Eq. (55) can be simplified to

εF (k) = 1

2π

∫
qũb f (q)e−q2�2

B/2
[
1 − J0

(
kq�2

B

)]
dq

− e−k2�2
B/2

∫ kF

0

dk′

2π
k′e−k′2�2

B/2
{
[Ubb(|k − k′|) + Uf f (|k − k′|)]I0

(
kk′�2

B

) − 2Ub f (|k − k′|)}. (56)

The second term can be expanded in a power series of kF �B ∼ √
νb. These resulting terms become irrelevant in the dilute limit,

i.e., νb → 0.
For composite bosons, the dispersion and effective mass are solely contributed by HBB in Eq. (42). The Hartree-Fock

approximation leads to the dispersion

εB(k) =
∫

d2q
(2π )2

Uf f (q)
[
1 − cos

(
k × q�2

B

)] + 2
∫

d2k′

(2π )2
Uf f (k − k′)

[
1 − cos

(
k × k′�2

B

)]
nB(k′). (57)

035132-8



QUANTITATIVE THEORY OF COMPOSITE FERMIONS IN … PHYSICAL REVIEW B 105, 035132 (2022)

In cold atomic systems, the most dominant interaction be-
tween spin-polarized fermions is the p-wave scattering, which
is irrelevant in the RG sense. Independent of the details of the
fermion-fermion interaction, the non-negative εB(k) favors a
condensation of composite bosons in the single-particle state
with k = 0.

V. NONCOMMUTATIVE FIELD THEORY
AND GAUGE FLUCTUATIONS

Using the effective masses of CFs and CBs, the Hamil-
tonian describing the Bose-Fermi mixture under the Hartree-
Fock approximation can be written as

HHF =
∫

d2k
(2π )2

(
k2

2m∗
F

c†
kck + k2

2m∗
B

b†
kbk

)
. (58)

Here, the approximation of the energy dispersion by a simple
quadratic form is justified as the low-energy physics of the
system is dominated by quantum states that are close to the
Fermi surface. Furthermore, it is noted that an exact dispersion
of composite fermions in the low-density limit was obtained
in Sec. III B. In this limit, the Fermi surface is small and
close to the origin, so that the quadratic dispersion is really
an expansion from the origin. Note that HHF does not contain
any explicit term for the CF-CB interaction. The interaction
has been transmuted into different terms in HFF and HF

after employing the modified density operators in Eq. (40).
Furthermore, its residual effect described by HBF gives no
contribution under the Hartree-Fock approximation. The cor-
responding Euclidean action for HHF is

SHF =
∫

d3k

(2π )2

[
c̄(k, τ )

∂c(k, τ )

∂τ
+ k2

2m∗
F

c̄(k, τ )c(k, τ )

]

+
∫

d3k

(2π )2

[
b̄(k, τ )

∂b(k, τ )

∂τ
+ k2

2m∗
B

b̄(k, τ )b(k, τ )

]
.

(59)

Here, τ labels the imaginary time. To save space, we have
defined the shorthand notation, d3k = d2kdτ .

Equations (58) and (59) seem to suggest that the Hartree-
Fock theory of CFs and CBs look like those for particles
living in the ordinary commutative space, whose range of
momenta is infinite even if the system size is finite. On the
other hand, the number of independent momenta is N2 in our
case, reflecting the finite number of degrees of freedom in the
LLL. The issue becomes clear when we remind ourselves that
particles restricted to the LLL have their dynamics controlled
by the noncommutative guiding center coordinates R. This
feature suggests us to formulate our theory in noncommutative
space, instead of ordinary commutative space. Furthermore,
we pointed out in Sec. II B the existence of a SU(N )R × U(1)
gauge invariance under the transformation of Landau orbitals
for vortices. This is reinstated by the constraint in Eq. (34).
In order to implement the constraint, we need to introduce
gauge fields, such that the physical Hilbert space is made of
the gauge-invariant states. This in turn introduces gauge inter-
actions among the CFs and CBs, which plays a crucial role in
the physics. To implement these, we follow the procedures in
Ref. [18] to construct a low-energy field theory of the mixture.
Meanwhile, the striking difference between CF liquids in the

Bose-Fermi mixture and system of bosons at ν = 1 will be
addressed.

From the above discussion, it becomes quite natural to
study gauge fluctuation by defining the CF field as a function
of R:

c(R, τ ) =
∫

d2k
(2π )3/2

exp (ik · R) c(k, τ ), (60)

c̄(R, τ ) =
∫

d2k
(2π )3/2

exp (−ik · R) c̄(k, τ ). (61)

Similar definitions hold for composite boson fields. This ap-
proach was employed By Dong and Senthil. It is possible to
trade the noncommutative fields as fields defined on the com-
mutative space -time (x, τ ). Nevertheless, the corresponding
fields c(x, τ ) and c̄(x, τ ) are still noncommutative fields. This
is captured by replacing the multiplication between ordinary
fields with the Moyal-Weyl star product  [16,17]. In the
present case, we have [19]

c(x)  c(y) = exp

(
−i�2

Bεi j ∂

∂xi

∂

∂y j

)
lim
x→y

c(x)c(y). (62)

Mathematically, the star product provides a deformed multi-
plication law that implements the noncommutative structure
of the guiding center coordinates. Using the noncommutative
fields, the action of the Bose-Fermi mixture can be written as

SHF =
∫ [

c̄(x, τ )  ∂τ c(x, τ ) + ∇c̄(x, τ )  ∇c(x, τ )

2m∗
F

]
d3x

+
∫ [

b̄(x, τ )  ∂τ b(x, τ ) + ∇b̄(x, τ )  ∇b(x, τ )

2m∗
B

]
d3x.

(63)

Here, the symbol d3x = d2xdτ is defined.
Now, we discuss the coupling between composite par-

ticles and (emergent) gauge fields. When q �= 0, c†
kck and

b†
kbk in Eq. (58) do not commute with ρF,R(q) and ρB,R(q),

respectively. It implies the SU(N )R (gauge) symmetry is spon-
taneously broken in the Hartree-Fock ground state. As a result
the corresponding SU(N ) gauge fluctuation is Higgs and be-
comes unimportant at low-energy, just like in the system of
bosons at ν = 1 [18]. In that case the remaining U(1) symme-
try is respected by the CF Fermi sea ground state, As a result it
was necessary to introduce a noncommutative emergent U(1)
gauge field a, which couples to the right current densities
of the composite fermions. Its associated gauge fluctuation
in the small momentum q ≈ 0 (or long-wavelength) regime
and becomes the most important gauge fluctuation there. Here
we follow the same procedure, but as we will see later in
Sec. V C, the existence of composite boson condensate gen-
erates a mass gap to Higgs the U(1) gauge fluctuation as
well, with the Higgs mass depending sensitively on ν f or CB
density, vanishing for ν f = 0 (or equivalently, νb = 1, which
is the case studied in Ref. [18]). This feature does not exist
in the system of bosons at ν = 1. Furthermore, we introduce a
noncommutative background gauge field A and couple it to the
left current densities of the composite particles. Its physical
meaning will become more transparent when we approximate
A by its commutative field later. For a more detailed discussion
on the gauge transformation, we refer the readers to Ref. [18].
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Following the above discussion, we define the covariant
derivatives for the CF and CB fields as [18]

Dμc = ∂μc − ic  aμ − iAμ  c, (64)

Dμb = ∂μb − ib  aμ − iAμ  b. (65)

When there is no confusion, we hide the argument of c and b.
They are functions of x and τ . Using the covariant derivatives,
a gauge invariant action can be formulated:

S =
∫

d2xdτ

[
c̄  Dτ c +

2∑
j=1

1

2m∗
F

D jc  Djc + b̄  Dτ b +
2∑

j=1

1

2m∗
B

D jb  Djb + ia0ρ̄

]
. (66)

Here, an additional term ia0ρ̄ is included in the action. Its sig-
nificance becomes transparent if we consider the equation of
motion for a0. This leads to

c̄  c + b̄  b = ρ̄ = 1

2π�2
B

. (67)

The equation reproduces the constraint in Eq. (34) and fixes
the average number density of composite particles at ρ̄ =
1/2π�2

B.

A. The Seiberg-Witten map

Since the action S is a noncommutative field theory, it is
difficult to reveal the low-energy physics of the Bose-Fermi
mixture. On the other hand, the Seiberg-Witten map provides
a systematic approach to express the noncommutative field in
a power series of the noncommutative parameter [15]. Each
term in the power series consists of the commutative field,
gauge fields, and their derivatives. In describing the physics
of composite fermions within the LLL, the noncommutative
parameter is � = −�2

B. Using the map, the noncommutative
composite particle fields and U(1) gauge fields are approxi-
mated as [18]:

Aμ = Âμ − �

2
εαβ Âα (∂β Âμ + ∂β Âμ − ∂μÂβ ), (68)

aμ = âμ + �

2
εαβ âα (∂β âμ + ∂β âμ − ∂μâβ ), (69)

c = ψ + �

2
εαβ[(âα − Âα )∂βψ − iâαÂβψ], (70)

b = φ + �

2
εαβ[(âα − Âα )∂βφ − iâαÂβφ]. (71)

Since our goal is to obtain an approximate low-energy com-
mutative field theory in the leading order of �, the series is
truncated at the first power of �. It seems that the validity of
the expansion relies on the smallness of |�|. However, this
makes no sense as �2

B is a dimensionful quantity. This issue
and the corresponding assumptions in applying the Seiberg-
Witten map will be discussed in Sec. V B. Note that we follow
the convention in recent literature, such that Â, â, ψ , and φ are
commutative fields. Being commutative fields, any product
between them is defined by the ordinary multiplication law.

In the zeroth order in �, the approximate Lagrangian den-
sity is given by

L0 = ψ̄ (∂τ − iâ0 − iÂ0)ψ +
2∑

j=1

|(∂ j − iâ j − iÂ j )ψ |2
2m∗

F

+ φ̄(∂τ − iâ0 − iÂ0)φ +
2∑

j=1

|(∂ j − iâ j − iÂ j )φ|2
2m∗

B

+ i

[
â0 + �

2
εi j âi(∂ j â0 + ∂ j â0 − ∂0â j )

]
ρ̄. (72)

Basically, one simply replaces all noncommutative fields by
their corresponding commutative fields. Now, ∂1Â2 − ∂2Â1

should be interpreted as the additional magnetic field different
from the one which defines the filling factor of the system. It
is important to treat the term ia0ρ̄ in Eq. (66) carefully. Since
ρ̄ ∼ �−2

B ∼ 1/|�|, one should also include the first-order cor-
rection term of a0 in the approximation. After performing an
integration by parts in the last line of L0, one obtains

L0 = ψ̄[∂τ − i(â0 + Â0)]ψ + 1

2m∗
F

2∑
j=1

|[∂ j − i(â j + Â j )]ψ |2 + iâ0ρ̄ − i

4π
εαβγ aα∂βaγ

+ φ̄[∂τ − i(â0 + Â0)]φ + 1

2m∗
B

2∑
j=1

|[∂ j − i(â j + Â j )]φ|2. (73)

The first line above resembles the form of HLR theory [4].
As a result, the composite fermions in the mixture will form
a composite Fermi liquid. However, the underlying physics
is quite different. Here, the effective mass for the compos-
ite fermions is solely contributed by the interaction between

physical particles. It exactly approaches Eq. (48) in the limit
of νb → 0. More importantly, the CFs here are defined within
the LLL which is not the case in the original HLR theory.
The Chern-Simons term has the correct coefficient 1/4π for a
system with filling factor ν = 1. This is correctly reproduced
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only if the noncommutative gauge field a0 is coupled identi-
cally to both composite fermions and composite bosons in the
mixture.

It is natural to ask for the first-order correction terms in
� in the Lagrangian density. The calculation turns out to
be cumbersome. On the other hand, a comparison between
the Seiberg-Witten map in Eqs. (68)–(71) and the map in
Ref. [18] suggests that they take a very similar form. The main
difference is that there is an additional composite boson field b
in the present system. In principle, one can follow the detailed
calculation in Ref. [18] and obtain the O(�) terms in the La-
grangian density of the Bose-Fermi mixture. We expect there
will be a correction term describing the coupling between
internal electric field and density gradient of the composite
particles, similar to the system of bosons at ν = 1 as shown in
the reference. In addition, a correction term that goes as δρL�2

B
will present. As we will show below, both correction terms
in O(�) are small in the low-density regime of composite
fermions.

B. Validity of the Seiberg-Witten map

Now, we should comment on the validity of the appli-
cation of Seiberg-Witten map in the Bose-Fermi mixture. It
is obvious that the parameter |�| = �2

B in the expansion is
not a dimensionless parameter. As pointed out precisely in
Ref. [18], the small parameters that one should consider are
δρL|�| and q2|�|. Here, δρL stands for the deviation in the
density of composite particles away from their mean values in
the real space. The momentum of the gauge field is denoted
as q.

In the present case, the density fluctuation of the compos-
ite bosons in real space is believed to be small due to the
Bose-Einstein condensation. Hence, δρL is governed by the
density fluctuation of composite fermions. This fluctuation is
bounded by the filling factor of physical bosons, νb = Nb/N .
In the dilute limit where νb � 1, δρL�2

B is a small param-
eter by default. Furthermore, the typical momentum of the
gauge field is set by the Fermi momentum, i.e., q ∼ kF . Since
k2

F �2
B ∼ νb, we also have q2|�| being a small parameter when

νb � 1. Therefore, the application of Seiberg-Witten map is
manifestly justified when the mixture has a small number of
bosons. In principle, this regime can be accessed experimen-
tally. This makes it advantageous to study the Bose-Fermi
mixture as compared to other systems.

The zeroth-order terms in the Lagrangian density captures
the most important and interesting physics of the system,
which we will discuss below.

C. Anderson-Higgs mass of gauge fields due
to composite boson condensation

As mentioned in the introduction, the existence of compos-
ite bosons and their condensation lead to a dramatic difference
between the Bose-Fermi mixture and the system of bosons
at ν = 1. Due to the CB condensation, we may write the
composite boson field as

φ(x, τ ) = √
nBeiη(x,τ ). (74)

Here, nB denotes the average number density of bosons in the
condensate. In the mean-field approximation, nB is assumed
to be uniform and independent of position. For η(x, τ ), it
is a slow varying phase factor. It can be gauged away (or
“eaten by the gauge boson”) by making a transformation in
the electromagnetic potential:

âμ → âμ + ∂μη. (75)

Since the Bose-Fermi mixture is a two-dimensional system,
it seems that the formation of BEC of composite bosons
violates the Mermin-Wagner theorem [48,49]. However, the
composite bosons are coupled to the emergent gauge field.
Due to this gauge coupling, the condensate wave function (or
order parameter) is a gauge-dependent quantity, hence not a
physical observable. In other words, a nonvanishing vacuum
expectation value for φ(x, τ ) does not imply a spontaneous
symmetry breaking. In fact, the BEC of composite bosons
does not possess a true long-range order.

Let us focus on the Hamiltonian of the composite bosons.
For simplicity, we set the additional external gauge potential
Â = 0. Then, a direct substitution of Eqs. (74) and (75) leads
to a quadratic term for the emergent gauge field:

HCB = 1

2m∗
B

2∑
j=1

|(∂ j − iâ j )φ|2 = nB

2m∗
B

|â|2. (76)

The gauge field acquires a mass gap, and the corresponding
gauge boson has a mass

M =
√

nB

m∗
B

=
√

1 − νb

2π�2
Bm∗

B

. (77)

This significantly changes the low-energy properties of com-
posite fermions in the mixture, which will be discussed in the
next subsection. Notice that the above discussion is similar
to the Anderson-Higgs mechanism of composite bosons in
explaining fractional quantum Hall effect by Zhang, Hansson,
and Kivelson [39].

D. Landau-Fermi liquid formed by CFs and crossover
to non-Fermi liquid behavior

Now, we discuss the low-energy properties of composite
fermions in the Bose-Fermi mixture. We assume the physical
bosons and fermions in the mixture interact with a Dirac-delta
type interaction, which is appropriate for cold atomic systems.
In the mean-field approximation, the CFs form a circular
Fermi surface with a Fermi momentum, kF = √

2νb/�B. The
corresponding Fermi energy is given by

EF = k2
F

2m∗
F

≈ ub f

(
νb

2π�2
B

)
e−νb . (78)

Note that we have employed the result for effective mass
in Eq. (50), which is exact as νb → 0. Suppose �B is fixed.
In the regime of νb � 1, both kF and EF are very small.
Meanwhile, the emergent gauge field acquires a mass gap with
an associated energy scale

EM = M2 = 1 − νb

2π�2
Bm∗

B

. (79)
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Since m∗
B depends on νb, EM is actually a nonlinear function

in νb. One expects EM would grow faster as ν f = 1 − νb

increases. At low temperature (T ) such that kBT � EM , the
gauge field fluctuation is strongly suppressed. As stated in
Sec. V C, the Higgs mechanism does not involve spontaneous
symmetry breaking, so the suppression is allowed even in two
dimensions. The composite Fermi liquid behaves as a genuine
Landau-Fermi liquid when kBT < EF . In this situation, we
predict the system has a low-temperature specific heat,

cv = π

6
m∗

F k2
BT =

(
π2k2

B

3ub f
eνb

)
T, (80)

which can be measured in experiment.
In the opposite limit with νb → 1, EM → 0 and the gauge

boson becomes massless. Also, both kF and EF are not small.
When EM < kBT < EF , fluctuation of gauge field becomes
significant. The composite Fermi liquid becomes a non-Fermi
liquid. In this scenario, the low-temperature specific heat is
mainly contributed by gauge field fluctuation, and should
scale as T 2/3 predicted in the HLR theory [4,50]. It is noted
that this T 2/3 dependence was actually obtained from the ran-
dom phase approximation (RPA), which becomes exact only
in the large-N limit. Given that the temperature dependence
from the leading order terms is already an approximate result
from RPA, it is not worthwhile to discuss the correction in
specific heat from higher-order terms in the Lagrangian den-
sity of the system. On the other hand, the linear T dependence
in the low-density regime is an exact result. Furthermore, the
smallness of δρL|�| and q2|�| (see Sec. V B) ensures that
the correction in cv should be insignificant in the low-density
regime.

From the above discussion, we predict there should be a
crossover from Landau-Fermi liquid to non-Fermi liquid for
composite fermions. The crossover occurs because EF and EM

become comparable to each other when νb is increased from
nearly zero to one. This idea has been summarized in Fig. 1.
A smoking gun of the crossover would be an observation of
the change in temperature dependence of the low-T specific
heat from T to T 2/3 (or more qualitatively, a change in the
temperature dependence in cv). Such an observation will also
provide a direct evidence of the existence of emergent gauge
field in the system.

VI. SUMMARY AND CONCLUSION

To conclude, we have formulated a low-energy description
of composite fermions in the Bose-Fermi mixture at total
Landau-level filling factor ν = 1. In order to restrict the theory
in the lowest Landau level, we have generalized and em-
ployed the Pasquier-Haldane construction. Besides composite
fermions, the construction involves composite bosons in the
enlarged Hilbert space. The composite fermions have been
identified as dipolar excitons, which form between bosons
and fermionic holes in the mixture. Armed with this intuitive

physical picture, we derived a preferred Hamiltonian to de-
scribe the system. Its validity was confirmed by evaluating
the single-particle dispersion and two-body interaction matrix
element for composite fermions. Both results turned out to be
consistent with previous work.

Different from previous work, the feasibility of varying
the CF density by changing the filling factors of the phys-
ical bosons and fermions, allowed us to examine the limit
of having a small number of composite fermions. Since the
four-fermion interaction is irrelevant in this limit, we showed
that the energy dispersion and effective mass of CFs deduced
from the preferred Hamiltonian are asymptotically exact as
νb → 0. We applied the Hartree-Fock approximation to obtain
the correction in energy dispersion due to the irrelevant CF-CF
interaction.

We followed the recent work, and employed the techniques
of noncommutative field theory and the Seiberg-Witten map
to study the gauge fluctuation in the system. Very importantly,
we pointed out the generation of a mass gap for the gauge
field due to the CB condensation. This mechanism strongly
suppresses the effect of gauge fluctuation at low temperature
when the system has νb � 1. On the other hand, the gauge
field becomes massless and its fluctuation becomes signifi-
cant when νb → 1. Therefore, we have proposed a crossover
from Landau-Fermi liquid to non-Fermi liquid of composite
fermions by increasing temperature. This result is illustrated
in Fig. 1. We suggested a possible detection of the crossover
by observing a change from T to T 2/3 dependence in the low-
temperature specific heat of the system. Furthermore, we have
validated the application of the Seiberg-Witten map in the
system by arguing the parameters, δρL�2

B � 1 and q2�2
B � 1

are indeed small when νb � 1.
Finally, let us recapitulate the advantages of studying the

Bose-Fermi mixture at ν = 1. The tunability of CF density
permitted us to (i) perform an asymptotically exact calcula-
tion of the effective mass of composite fermions; (ii) justify
the application of Seiberg-Witten map in a natural manner;
and (iii) suggest a possible crossover between Landau-Fermi
liquid and non-Fermi liquid of CFs in the system. To the
best of our knowledge, no existing proposal can realize all
these three features in a single system. Therefore, we have
proposed an accessible system, in which a well-controlled
and quantitative theory of composite fermions can be formu-
lated properly within the lowest Landau level. We believe our
work has provided an important and deeper understanding
of composite fermions and the emergence of gauge fields in
condensed matter systems.
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