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Probing three-state Potts nematic fluctuations by ultrasound attenuation
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Motivated by recent studies of three-state Potts nematic states in magic-angle twisted bilayer graphene and
doped-Bi2Se3, we analyze the impact of critical nematic fluctuations on the low-energy properties of phonons.
In this study, we propose how to identify the three-state Potts nematic fluctuations by ultrasound attenuation.
The Gaussian fluctuation analysis shows that the Landau damping term becomes isotropic due to fluctuations
of the C3-breaking bond-order, and the nematoelastic coupling is also shown to be isotropic. These two features
lead to an isotropic divergence of the transverse sound attenuation coefficient and an isotropic lattice softening, in
contrast to the case of the C4-breaking bond-order, which shows strong anisotropy. Moreover, we use a mean-field
approximation and discuss the impurity effects. The transition temperature takes its maximum near the filling of
the van Hove singularity, and the large density of states favors the nematic phase transition. It turns out that the
phase transition is of weak first-order in the wide range of filling and, upon increasing the impurity scattering,
the first-order transition line at low temperatures gradually shifts towards the second-order line, rendering the
transition a weak first-order in a wider range of parameters. Furthermore, it is confirmed that the enhancement
of the ultrasound attenuation coefficient will be clearly observed in experiments in the case of a weak first-order
phase transition.
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I. INTRODUCTION

Recent discoveries of electron-nematic phases, which
break a certain point group symmetry of the system, have
suggested that the superconducting pairing mechanism may
be closely related to nematicity in some correlated elec-
tron systems, such as cuprates, iron-based compounds, heavy
fermions, doped-Bi2Se3, and magic-angle twisted-bilayer
graphene (MA-TBG) [1–14]. Obviously, the relation between
electron-nematic order and unconventional superconductiv-
ity is a pressing question in present condensed-matter
physics [15–24].

In the case of MA-TBG, an electron-nematic state,
which breaks the lattice C3z symmetry, has been detected
by scanning tunneling microscopy [25–27] and transport
measurements [28]. This C3z-broken electron-nematic state,
referred to as a three-state Potts nematic state, is of interest
for its competition with nematic superconductivity [28] and
for the mystery of the Landau level degeneracy [28–30] in
different regions of its phase diagram [26,28]. From a theo-
retical point of view [20,22,30–35], it has been pointed out
that unique properties of the moiré phonon, which reflects a
nonrigid crystal [36,37], assist a nematic phase transition [32],
and the microscopic origin of this nematic state is attributed to
the interference of the valley+spin fluctuation [35]. Moreover,
in the case of doped-Bi2Se3, which is a candidate material of
nematic superconductors [38–46], a three-state Potts nematic
state has been reported [47–49] above the superconducting
transition temperature. Although this seems to contradict the
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nematic superconductivity for which an order parameter is
accompanied with a breaking of the lattice point group sym-
metry, it is pointed out that this nematic state is a vestige [16]
of the nematic superconductivity [17,49,50] caused by the
strong superconducting fluctuation. In addition to the rela-
tionship between nematicity and superconductivity, it is also
important to identify the critical behavior of electron-nematic
states and to distinguish whether it is intrinsic (i.e., induced
spontaneously) or extrinsic (i.e., due to trivial strains or the
structural distortion).

Motivated by recent studies of the three-state Potts ne-
matic state, we investigate the impact of critical nematic
fluctuations on phonons, which in turn enables us to identify
the nematic properties by ultrasound attenuation experiments.
Despite a lot of research, the identification of such a three-
state Potts nematic state and the clarification of whether
it is induced spontaneously or from trivial strains are not
easy task. We analyze the influence of the nematoelastic
coupling on the low-energy properties of phonons by a phe-
nomenological argument using a Ginzburg-Landau-Wilson
(GL) action [51] and a model calculation based on the Hub-
bard model. It is shown that nematic fluctuations induce an
isotropic divergence of the transverse sound attenuation coef-
ficient, which is defined as the inverse of the phonon mean free
path.

The plan of this paper is as follows. In Sec. II, we present
a phenomenological argument to see how the critical nematic
fluctuation affects the properties of phonon. In Sec. III, we
present a model calculation of nematicity, and we discuss a
mean-field phase diagram. In Sec. IV, we give a brief discus-
sion on the application of our results. Section V is devoted to
a summary of the paper.
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II. PHENOMENOLOGICAL APPROACH

In this section, we present a phenomenological theory to
show how the ultrasound attenuation detects the critical ne-
matic fluctuations. In the following subsection, we use models
[see Eqs. (1) and (16)] that agree with the pioneering work
presented in Ref. [32]. Because we consider how to capture
the signature of the intrinsic nematic phase transition, our
focus is different from Ref. [32], where the nematicity affected
by the static strain and acoustic phonons was discussed.

A. GL action for nematic fluctuations

First, we deal with the nematic phase transition phe-
nomenologically. In hexagonal lattices, such as MA-TBG
and doped-Bi2Se3, the nematic order is described by a two-
component order parameter � = (�1,�2), which belongs to
a two-dimensional representation of the point group D3 [35],
D6 [32], and D3d [50] in the three-state Potts-model class. The
GL action for the nematic fluctuation [32] is given by

Snem[�] =
∫

x

[
1

2
r�+�− + 1

6
u3(�3

+ + �3
−)

+ 1

4
u4(�+�−)2

]
, (1)

where x = (r, τ ), �± = �1(x) ± i�2(x), and GL coef-
ficients r, u3, u4. � is naturally parametrized as � =
�(cos 2θ, sin 2θ ), where the angle θ can be identified with
the orientation of the nematic director n̂ = (cos θ, sin θ ) with
angle 2θ reflecting the invariance of π rotation. The cubic
term reflects the hexagonal anisotropy and is expressed as

1
6 u3(�3

+ + �3
−) = 1

6 u3�
3 cos 6θ, (2)

which is minimized at θ = 2nπ/6 = {0, π/3, 2π/3} for
u3 < 0 and θ = (2n + 1)π/6 = {π/6, π/2, 5π/6} for u3 >

0. These solutions represent threefold-degenerate nematic
directors.

When we consider the Gaussian fluctuation region, the
corresponding action for nematic fluctuation is given by

SGauss[�] =
∫

q
�q

[
χ̂−1

d (q, iεm)
]
�∗

q, (3)

with q = (q, iεm), the boson Matsubara frequency εm, and
�∗

iq = �i−q, because of �i(x) ∈ R. Here,

χ̂−1
d (q, iεm) = (

r + ξ 2
0 q2

)
1l + D̂

( |εm|
	d (q)

)
(4)

is the matrix of the d-wave density correlation function, where
r ∝ Tc0 − T measures the distance from the mean-field tran-
sition temperature Tc0, with the mean-field correlation length
ξ0 and the damping rate 	d (q). The Landau damping term

D̂( |εm|
	d (q) ) depends on the type of order parameter and the

microscopic details of the system.
In the following subsection, we derive the functional form

of D̂( |εm|
	d (q) ) coming from the C3-breaking bond-order [see

Eq. (11)], which is an example of the three-state Potts nematic
order. Remarkably, we find that the C3-breaking case has
an isotropic angular dependence of the Landau damping, in
sharp contrast to the strong angle dependence of the Landau

damping in the case of the C4-breaking bond-order [52,53],
which is an example of the Ising nematic order.

B. Phenomenology of a C3-breaking bond-order fluctuation

According to the standard Hertz-Millis-Moriya descrip-
tion [54–57], the dynamics of a ferroic order parameter
that couples to an itinerant electron system is overdamped
at low frequency. This is based on the simplest treatment
of the critical order parameter fluctuation. On the other
hand, the dynamics of electron-nematicity is more compli-
cated [15,57,58]. For example, in isotropic Fermi liquids,
the order parameter fluctuation of the d-wave Pomeranchuk
instability is decomposed into a ballistic (z = 2) transverse
mode and an overdamped (z = 3) longitudinal mode, where
z is a dynamical critical exponent. This nature leads to various
intriguing properties unique to the nematic quantum critical
point, such as an unusual non-Fermi-liquid behavior [59–61]
and the multiscale quantum criticality [62]. Moreover, in
lattice systems with C4-breaking bond-order fluctuation, the
appearance of a ballistic mode and its effect on the critical
properties have been discussed [52,53].

Now we ask what happens for the dynamics of the ne-
matic fluctuation for the C3-breaking bond-order case, which
is one of the microscopic origins of electron-nematicity (see
Appendix A). For simplicity, we assume a circular Fermi sur-
face around the 	 point. The interaction between the nematic
fluctuation (�1q,�2q) and the electrons (c†

k, ck) resulting from
the Hubbard-Stratonovich transformation is given by

Hcoup ∝
∑
q,k

[d1k�1q + d2k�2q]c†
k+q/2ck−q/2, (5)

with form factors d1k ∼ (k̂2
x − k̂2

y ) = cos 2θk and d2k ∼
2(k̂x k̂y) = sin 2θk. θk represents the propagating direction of
the wave vector k = |k|(k̂x, k̂y) = |k|(cos θk, sin θk). It reflects
a two-dimensional representation of a C3 symmetric lattice,
meaning that two waves, the dx2−y2 -wave and the dxy-wave,
cannot be treated separately. The coupling term is expressed
in terms of the relative angle between the wave vector and the
nematic director (θk − θ ) as follows:

Hcoup ∝
∑
q,k

�q cos 2(θk − θ )c†
k+q/2ck−q/2, (6)

where we have used �1q = �q cos 2θ , �2q = �q sin 2θ , and
the coupling term vanishes at θk − θ = ±π/4.

The low-energy contribution of a nematic polarization ma-
trix χ

i j
q = ∑

k dikd jkGkGk+q with i, j = 1, 2 and an electron
Green’s function Gk determines the dynamical properties of
the nematic polarization Di j

q = χ
i j
q − χ

i j
q,0. The k-summation

can be performed by linearizing the electronic dispersion,
leading to

Di j
q = −iaρ0

∫ 2π

0

dψ

2π

dikd jk

ia − cos ψ
, (7)

with ψ = (θk − θq), a = εm
vF|q| , the density of states at the

Fermi level ρ0, the Fermi velocity vF, and the boson Matsub-
ara frequency εm. After evaluating the above integration, the
dynamical part of the nematic polarization matrix in the static
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region (|εm| � vF|q|) is

D̂q = −ρ0
|a|
2

1l − ρ0

[ |a|
2

− 2a2

](
cos 4θq sin 4θq

sin 4θq − cos 4θq

)
.

(8)

At first glance, this would seemingly break the C3-symmetry,
but later calculations show that the C3-rotation symmetry is
preserved when the angle of the nematic directors is taken
into account. Next, we express D̂q in terms of the angle θ

of nematic directors. Thus the Gaussian action including the
above discussion is rewritten as

SGauss[�] =
∫

q
�T

q

[(
r + ξ 2

0 q2)1l + D̂q
]
�∗

q, (9)

�T
q D̂q�

∗
q = −�(q)ρ0

[ |εm|
vF|q| cos2 (2θq − 2θ )

− 2
|εm|2

(vF|q|)2
cos (4θq − 4θ )

]
�∗(q). (10)

The orientation of the nematic directors is restricted to three
directions by the cubic term as follows: θ = {0, 2π/3, 4π/3}
for u3 < 0 and θ = {−π/6, π/2, 7π/6} for u3 > 0. Precisely
speaking, the damping term preserves this Z3 symmetry in a
disordered state, thus we need to treat three angles θ equiv-

alently; cos2 (2θq − 2θ ) → 1
3 [cos2 (2θq) + cos2 (2θq − 2π

3 ) +
cos2 (2θq − 4π

3 )] = 1
2 for u3 < 0. Eventually, we arrive at the

following action with the single-component scalar field �:

SGauss[�] =
∫

q
�(q)

[
χ−1

d (q)
]
�∗(q), (11)

χ−1
d (q) = r + ξ 2

0 q2 + |εm|
	d (q)

, (12)

with � = �(cos 2θ, sin 2θ ) and the damping rate 	−1
d (q) =

ρ0

2vF
|q|−1. We conclude that the C3-breaking bond-order fluctu-

ation leads to an isotropic angular dependence of the Landau
damping.

The above results are quite contrasted to the Ising ne-
matic case where the nematic director is forced to be θ =
{0, π/2} for the dx2−y2 -wave. In that case, the term D( |εm|

	d (q) ) in
Eq. (4) is expressed as the following anisotropic form [52,53]:

[ |εm|
vF|q| cos2 2θq − 2 |εm|2

(vF|q|)2 cos 4θq], which leads to the angle-
dependent dynamics of nematic fluctuation. It is possible to
understand from the coupling term in Eq. (6) what is re-
sponsible for these differences between the three-state Potts
nematicity and the Ising nematicity, as follows. The dynamics
of nematic fluctuation is damped due to particle-hole pair
excitations close the Fermi surface, which is a source of the
Landau damping. It requires electrons to scatter along the
Fermi surface. One of the unique properties of bond-orders is
the presence of the nodal structure in the form factor [52,53].
This implies that a particle-hole pair creation is prohibited at
certain directions, leading to a large anisotropy in physical
quantities. For example, in the case of the Ising nematicity, the
nematic director is forced to be θ = {0, π/2} for dx2−y2 -waves,
so that the coupling term vanishes at θk = ±π/4 in Eq. (6). On
the contrary, the three-state Potts nematic case of our interest
does not have such a specific direction of vanishing coupling

because nematic directors are not orthogonal to each other, as
we have discussed in this subsection.

C. Probing the nematicity through acoustic phonons

In addition to the angle dependence of the Landau damping

D̂( |εm|
	d (q) ) in Eq. (4), there is a unique character in the nematic

order, i.e., the nematic order parameter couples linearly to
acoustic phonon modes [32,50,53,63–66]. This is essentially
different from the cases of other ferroic orders, e.g., ferro-
magnetism or superconductivity, whose order parameters only
couple to the totally symmetric mode of a phonon in quadratic
order. Because of this specific form of coupling, the unique
properties are reflected in the transverse acoustic phonon. As
a result, through linear nematoelastic coupling, phonon modes
affect the thermodynamic and transport properties near the
nematic critical point.

Despite a lot of research, an identification of the electron-
nematic phase transition and clarifying whether it is induced
spontaneously or from trivial strains is not an easy task. The
ultrasound attenuation of acoustic phonons is one of the good
techniques of identifying the electron-nematic phase transi-
tion and its critical behavior. It is also pointed out that the
selection rules of ultrasound attenuation coefficients can de-
termine the Ising nematic phase transition [64]. In this section,
we focus on the impact of nematoelastic coupling on acoustic
phonons.

First we consider the dynamical properties of two
acoustic phonon modes, a transverse (T ) and a longitudi-
nal (L) one, with sound velocity vT (L). The displacement
field u is decomposed into two modes uμ=T,L = ũμêμ

with êT = (− sin θq, cos θq), êL = (cos θq, sin θq), and θq =
tan −1(qy/qx ). The elastic action for two acoustic phonon
modes reads [51]

Sph[u] = ρ

2

∑
μ=T,L

∫
q

ũμ(q)Kμ(q)ũ∗
μ(q), (13)

Kμ(q) = K (0)
μ (q) − δKμ(q), (14)

with q = (q, iεm), the full (bare) inverse propagator Kμ(K (0)
μ ),

the phonon self-energy δKμ, the boson Matsubara frequency
εm = 2πT m, and the mass density ρ. The bare inverse prop-
agator has the form K (0)

μ = ε2
m + v2

μq2. The sound attenuation
coefficient [67] αμ is defined as the inverse of the phonon
mean free path as follows:

αμ(q) = − lim
ω→0

1

vμω
ImKR

μ (q, ω), (15)

where KR
μ (q, ω) is the retarded function of the full inverse

propagator.
In general, the lowest order of the symmetry-allowed ne-

matoelastic coupling [32,50] in the free energy is

Fnem−ph[�, u] = −κ

∫
r
[(εxx − εyy)�1 + 2εxy�2], (16)

with the coupling constant κ and the strain tensor
εi j = 1

2 (∂iu j + ∂ jui ). Considering the nematoelastic coupling
Snem−ph = ∫

τ
Fnem−ph, we calculate the effective action for

phonons coupled with nematic fluctuation. In terms of ũL(q)
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and ũT (q), the nematoelastic action reads

Snem−ph[�, u] = −κ

∫
q

(ũL(q) ũT (q))

× i|q|
(

cos (2θq − 2θ )
− sin (2θq − 2θ )

)
�∗(q), (17)

with the angle of nematic director θ (see Appendix B). Treat-
ing the three angles equally does not show anisotropy, with a
similar argument as before, and thus we obtain the following
form:

Snem-ph[�, u] = −κ

∫
q

i
|q|
2

[ũL(q) − ũT (q)]�∗(q). (18)

Therefore, we conclude that the nematoelastic coupling has
an isotropic angular dependence. After integrating out the
nematic order parameter field in the total action Stot =
SGauss[�] + Sph[u] + Snem-ph[�, u], an additional contribution
to the phonon Green’s function in Eq. (14) is

δKμ(q) = κ2q2

2ρ
χd (q). (19)

Indeed, up to the leading-order correction, we can confirm that
the self-energy has no anisotropy.

As a consequence, we obtain the full inverse propagator for
phonons in Eq. (14), which gives rise to the renormalization
of sound velocities as

v∗
μ = vμ

√
1 − ReδKR

μμ(q, ω → 0)

v2
μq2

= vμ

√
1 − κ2

2v2
μρ

ReχR
d (q, ω → 0). (20)

Note that a sound velocity renormalization implies a lattice
softening. They are tied together in the equation vμ = √

cμ/ρ,
where the corresponding elastic constants are cμ. In the same
way, sound attenuation coefficients are

αμ(q) = − lim
ω→0

1

v∗
μω

ImδKR
μμ(q, ω)

= lim
ω→0

κ2q2

2ρv∗
μω

ImχR
d (q, ω → 0), (21)

∼ κ2

2ρv∗
μ

1

r2

|q|
γd

, (22)

with γd = 2vF
ρ0

. Thus αν (q) ∝ r−2. The symmetry-allowed
coupling term leads to the isotropic divergence of transverse
(longitudinal) sound attenuation αT (L) ∝ (Tc − T )−2 and an
isotropic lattice softening.

In addition to the above equation, there is another relevant
term [64,68] that is induced by the deformation potential,

F ′
nem-ph[�, u] = κ ′ ∑

q,q′
�∗

a(q + q′)�a(q′)[i|q|uL(q)], (23)

where the longitudinal sound modes couple to the quadratic
term of nematic fields. It originates from a change in volume
due to the effective nematic-nematic interaction. This term
also leads to the divergent contribution to the longitudinal

sound attenuation αL ∝ (Tc − T )−2. Note that the latter term
is essentially the same as in weak ferromagnetism [68] for
sound attenuation near the ferromagnetic transition in met-
als [69].

Finally, we comment on the comparison with the Ising
nematic case. In the case of the Ising nematicity, the nematic
director is forced to be θ = {0, π/2}. Even if we treat the two
angles equally, the anisotropy of the nematoelastic coupling
remains. As pointed out in previous studies, this leads to the
angle-dependent damping properties of acoustic phonons [64]
or the mass term anisotropy of the Ising nematic fluctua-
tion [53].

We conclude that the following unique properties illus-
trate the three-state Potts nematic order: (i) the nematic
fluctuation affects the transverse acoustic phonon, (ii) the
ultrasound attenuation coefficients show an isotropic diver-
gence that is proportional to the momentum |q|, and (iii) the
sound velocity renormalization also shows an isotropic angle
dependence. We therefore propose to detect the three-state
Potts nematic order by measuring the isotropic divergence
of the transverse sound attenuation coefficient and the
isotropic sound velocity renormalization. The isotropic na-
ture of these properties is in contrast to the Ising nematic
case in which such quantities are anisotropic and subject
to selection rules [64]. Note that the vanishing anisotropy
of the acoustic phonon velocity is consistent with Cowley’s
classification [70].

III. MODEL CALCULATION

Now we move to the model calculation of the nematic
phase originating from a bond order on the honeycomb lat-
tice. In this section, we use the mean-field approximation by
taking into account the higher-order terms up to the sixth-
order coefficients in Eq. (1). Since the critical properties near
the phase transition are evaluated in the mean-field approx-
imation, the power of divergence may be changed in the
presence of strong fluctuations, but the stability and the ex-
tent of the ordered phase are expected to remain qualitatively
unchanged even with the inclusion of such effects of the mode
coupling.

A. Model and method

In a TBG, a slight mismatch in the lattice periods of two
graphene layers gives rise to a long-period moiré interference
pattern. The regions that locally appear to be AB-stacked
bilayer graphene and BA-stacked bilayer graphene form the
emergent honeycomb lattice [10,11,13]. Now we focus on
the electron-nematic phase transition near the van Hove (VH)
filling where the nematicity can be seen in the experiment,
as claimed in a previous theoretical study [35]. These authors
showed that the C3-breaking bond ordered state is stabilized
near VH filling by using the so-called DW equation method
beyond our mean-field description. Based on this work [35],
we restrict ourselves to the d-wave forward scattering
channel of electron-electron interactions only. The forward-
scattering model [71–75] derived from an extended Hubbard
model on the emergent honeycomb lattice (see Appendix C)
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reads

H = 1

N

∑
kξσ

(
cAB†

kξσ
cBA†

kξσ

)
Ĥξ

kσ

(
cAB

kξσ

cBA
kξσ

)
+ Hint + Himp, (24)

Hint = −g
∑
ξσ

∑
i=1,2

∑
q

(
nABξσ

Ei
(q)nBAξσ

Ei
(−q)

)
, (25)

with creation and annihilation operators cα†
kξσ

, cα
kξσ

, the spin
index σ , the sublattice index α ∈ {AB, BA}, the valley in-
dex ξ ∈ {+,−}, and the coupling constant g = 2VNN

3 (VNN

is the nearest-neighbor repulsive interaction). The above
forward-scattering interaction or the long-range interaction
comes from the three-peak structure of Wannier orbitals in
MA-TBG [10,11,13]. Here Hξ

kσ
is a 2 × 2 Hamiltonian for

each valley ξ and spin σ .
Since our mean-field analysis aims to show the critical

properties of the nematic fluctuation and order of the metal-
lic phase, we use a reduced tight-binding model with only
the nearest-neighbor hopping term on the honeycomb lattice,
and we deal with all spin and valley degrees of freedom on
an equal footing. Although the band structure is somewhat
different from the Bistritzer-MacDonald model and other
tight-binding models [8–14], our simple model captures the
essential properties around VH filling, including the corre-
lated insulating phase near half-filling. Imposing valley-U (1)
symmetry, we introduce two orbitals that do not hybridize
with each other. Each valley for ξ = ± is independent in the
noninteracting Hamiltonian. Although the Coulomb interac-
tion term may have both contributions from the intravalley
and the intervalley interaction, the obtained form factor from
the DW-equation methods [35] has no intervalley component.
In our mean-field calculation, we analyze all spin and val-
ley degrees of freedom on an equal footing in the following
section. As is known, in order to reproduce the correlated
insulating phase near VH filling, which is not expected in or-
dinary single-layer graphene [76], valley degrees of freedom
are needed. In this paper, we focus on the nematic metallic
phase with the C3-breaking Fermi surface, in line with the
transport measurement in Ref. [28]. The interaction term is
shown in Appendix C in terms of the di-wave density oper-
ator nABξσ

Ei
(q) = 1

N

∑
k Ei∗

k cABξ†
k+q/2σ

cBAξ

k−q/2σ
, where Ei∗

k are form
factors in a two-dimensional E representation.

The third term Himp in Eq. (24) represents the spin-
independent short-range isotropic impurity scattering,

Himp =
∑
ξσαi

uimpξσα

i nξσα
i , (26)

where the random impurity potential uimp obeys the Gaussian
ensemble 〈uimp

i 〉 = 0, 〈uimp
i uimp

j 〉 = nimp|u|2δi, j , with nimp and
u being the impurity concentration and the strength of the im-
purity potential. We resort to the Born approximation, which
results in the impurity-averaged self-energy

�̂
ξσα
imp (iωn) = ni|u|2 T

N

∑
k

Ĝ(k, iωn),

= i	sign(ωn)1l, (27)

where iωn is the Matsubara frequency and 	 is the strength of
the impurity scattering. In this calculation, we use Eq. (27)

or its retarded representation. With this approximation, the
impurity-averaged Green’s function is solved as Ĝ−1(k) =
Ĝ−1

0 (k) − �̂imp(k).
Next, we introduce the two-component nematic order pa-

rameter field �(q), with � = (�1,�2). After integrating out
the electron degrees of freedom, we have an effective action
(see Appendix D),

Seff [�] = g−1
∑
iξσ

∫
q
�i(−q)�i(q) − Trln

[
M̂ξσ

k+ q
2 ,k− q

2

]
,

(28)

M̂ξσ

k+ q
2 ,k− q

2
= ( − iωn1l + Ĥξ

kσ

)
δk+ q

2 ,k− q
2

− �i(−q)√
βN

(
0 Ei∗

k
Ei

k 0

)
, (29)

with q = (q, iωn), k = (k, iωm), and the form factor Ei
k in

Appendix C, where we have neglected any loop-current order
and only considered the (dx2−y2 , dxy)-wave components for
simplicity.

In terms of the order parameter field �, the partition
function is expressed in a functional integral form, Z =
Z0

∫
D�e−Seff [�], and the Landau free energy is given by

exp (−F/T ) = ∫
D�e−Seff [�], where the GL action up to the

sixth-order terms reads

Fnem[�0] = 1
2 r�+�− + 1

6 u3(�3
+ + �3

−) + 1
4 u4(�+�−)2

+ 1
10 u5(�4

+�− + �+�4
−) + 1

6 u6�
3
+�3

−, (30)

with �± = �1(0) ± i�2(0), the uniform (q = 0) and static
(iωn = 0) component �0 = �(q = 0), and coefficients un and
r defined in Appendix E.

To calculate the sound attenuation coefficients and the
sound wave renormalization, we derive an electron-acoustic
phonon coupling for arbitrary filling of the honeycomb
lattice. The electron-phonon coupling arises from the lat-
tice modulation by phonons, which leads to a change in
the nearest-neighbor hopping t , the so-called bond-length
change [77–79]. The detailed derivation is summarized in
Appendix F. The dominant contribution to the phonon self-
energy in Eq. (14) is given by the bubble diagrams with
electron-phonon vertices,

δKμ,el-ph(q) = −g2
ph

2ρ

∫
q

tr
[
Ĝk+q/2ŵ

μ

k,qĜk−q/2ŵ
μ

k,−q

]
, (31)

with

ŵ
μ

k,q = − gph√
βN

(
0 �E∗

k,q · êμ(−q)
�Ek,q · êμ(−q) 0

)
,

�Ek,q =
( − 1

2

−
√

3
2

)
eik·a1 (iq · a1) +

(− 1
2√
3

2

)
eik·a2 (iq · a2), (32)

where êT = (− sin θq, cos θq) and êL = (cos θq, sin θq) with
θq = tan −1(qy/qx ).

B. Mean-field phase diagram

Now we determine Landau free-energy coefficients up
to the sixth order (r, u2, . . . , u6) numerically [80]. The
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3 = 0

4 = 0

1st

2nd

FIG. 1. Phase diagram of a nematic bond-ordered state. We use
VNN/t = 4.5. T 1st

c (T 2nd
c ) is the first (second)-order phase transition

point, and u3 = 0 (u4 = 0) is zeros of u3 (u4). The three arrow-
heads surrounded by the circle represent the set of the orientation
of the nematic director. The set of the orientation changes on the
zeros of u3. We calculate this by using a square mesh of 500 × 500
in the Brillouin zone. The phase transition line T 1st

c is defined by
Fnem[�1, �2] = 0 and ∂Fnem[�1, �2]/∂�i = 0 with i = 1, 2.

electron-nematic phase transition shown here is described by
a spontaneous distortion of the Fermi surface, caused by C3-
breaking hopping anisotropy. In addition, due to the symmetry
of spin and valley, we perform a mean-field analysis dealing
with all spin and valley degrees of freedom on an equal
footing. In the following section, without loss of generality,
we focus on one-spin and one-valley degrees of freedom. We
summarize the mean-field phase diagram (T , N), with the
temperature T and the filling N , determined by the Landau
free energy in Fig. 1. The transition is of purely second-order
at VH filling (NVH ∼ 1.25) because of u3 = 0 and u4 > 0.
We note that N = 2 corresponds to the full filling and N = 1
corresponds to the charge-neutral point. The important feature
is that the transition is of weak first-order in a wide range
of filling. “Weak first-order” means that the character of the
phase transition is first-order but the transition temperature
is close to the second-order transition temperature, which is
defined by u2 = 0. In general, first-order transitions are not
accompanied by a divergence of the susceptibility, but a rem-
nant of critical fluctuations can nevertheless be observed due
to the vicinity of the second-order instability, as we will show
below.

We show the temperature dependence of the order parame-
ters in Fig. 2. We note that a finite value of the order parameter
yields a deformation of the Fermi surface which breaks the
C3z symmetry. Although, in the vicinity of VH filling, the
transition is of almost second-order with a continuous change
of the order parameter in Fig. 2(a), for other fillings the tran-
sition is of weak first-order with a small discontinuous change
of the order parameter in Fig. 2(b). In this weak first-order
region, we expect a nearly diverging behavior of the nematic
susceptibility. See Appendix G for details about changes of
DOS, band structure, and Fermi surface.

= 1.25

1st

= 1.2

1st

)a( )b(
Φ1

Φ2

Φ1

Φ2

FIG. 2. Nematic order parameters (�1, �2) and r ∝ Tc0 − T
measure the distance from the mean-field transition temperature
T 2nd

c . The three arrowheads surrounded by the circle represent the
set of the orientation of the nematic director. T 1st

c (T 2nd
c ) is the first

(second) -order phase transition point. (a) N = 1.25, which is very
close to the VHs. (b) N = 1.2, which clearly shows the first-order
phase transition.

Next, we show how weak impurity scattering modifies the
mean-field phase diagram. In graphene-based materials, it is
known that there are impurity effects due to the substrate
and disorder effects due to sample inhomogeneity. Here, for
simplicity, we treat the impurity effect at the level of the Born
approximation introduced in Eq. (27). In Fig. 3, the mean-field
phase diagrams for disordered cases (	 = 0.05 and 0.09) are
shown. First, we observe that the transition temperature of the
three-state Potts nematic state is suppressed with increasing
the impurity scattering. Second, the first-order transition line
at low temperatures gradually approaches the second-order
one, rendering the transition a weak first-order. Thus we con-
clude that the transition becomes weakly first-order in the
presence of the weak impurity scattering.

As described above, we have used the mean-field ap-
proximation for the free energy and the critical properties.
In general, it is known that phase transitions and critical
properties can be modified by introducing mode-coupling
effects between fluctuations, such as third- and fourth-order
terms of GL action. In addition, due to the peculiarities of
the three-state Potts model, the classical phase transition at
finite temperature is known to be a second-order transition
in two spatial dimensions [81,82], and it is expected that
the first-order transition discussed here will be closer to the
second-order transition if we take into account the mode-
coupling effect [54–57]. Of course, in the case of quantum
phase transitions [83–85], the order of the phase transition is
not well understood, and it is an open question what happens
for the order of the phase transition when the nematic phase
transition is accompanied by loop-current order or when the
impurity vertex corrections are applied. In our analysis, the
critical properties near the phase transition point are due to
the mean-field approximation, but the stability and the extent
of the ordered phase are expected to remain qualitatively un-
changed even if the effects of such fluctuations are included.

Before closing this subsection, we comment on the connec-
tion between the calculation and experimental observations. In
Ref. [28], the authors obtained the phase diagram by changing
the filling with a gate voltage, where the electron-nematic state
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3 = 0

4 = 0

1st

2nd

3 = 0

4 = 0

1st

2nd

FIG. 3. Phase diagrams of a bond-ordered phase with the impu-
rity scattering (	 = 0.05 and 0.09). T 1st

c (T 2nd
c ) is the first (second)

-order phase transition point, and u3 = 0 (u4 = 0) is zeros of u3 (u4).
The calculation is done by using a square mesh of 100 × 100 in the
Brillouin zone and a mesh of 1000 in the energy. The phase transition
line T 1st

c is defined by Fnem[�1,�2] = 0 and ∂Fnem[�1, �2]/∂�i = 0
with i = 1, 2.

is realized only in a narrow filling range. This observation is
consistent with the fact that the electron-nematic state is stable
only near the VHs in our mean-field calculations.

C. Sound attenuation coefficients

Next, we show the sound attenuation coefficients and the
sound wave velocity for the transverse acoustic phonons,
which are modified by the Fermi surface fluctuation. The
phonon self-energy [δKμ,el-ph(q) due to the electron-phonon
couplings and δKμ,nem(q) due to the nematoelastic cou-
plings in Eq. (14)] are obtained numerically. Using these
self-energies, we calculate the normalized sound velocities

FIG. 4. Temperature dependence of the sound velocities
vnem/vep-ph and the sound attenuation coefficients αnem/αep-ph for the
transverse acoustic wave for N = 1.2. T 1st

c (T 2nd
c ) is the first (second)

-order phase transition point. The points only make sense above the
transition temperature for T > T 1st

c .

vnem/vel-ph and the normalized sound attenuation coefficients
αnem/αel-ph, which quantify the contribution of the nematic
fluctuation (vnem, αnem) to the electron-phonon coupling
(vel-ph, αel-ph). The temperature dependencies of the transverse
sound velocity and the transverse sound attenuation coeffi-
cient for several impurity scatterings are shown in Fig. 4. The
parameter region is in the weak first-order phase transition
for N = 1.2. We note that the ratio of the sound velocity
vnem/vel-ph takes about 0.8 at T 1st

c for the choice of parameters.
It is confirmed that the ultrasound attenuation coefficient is

enhanced by a factor of about 100 around the first-order tran-
sition temperature T 1st

c even if the impurity effect is present
in Fig. 4 (	 = 0.05). Furthermore, in the region where the
impurity scattering is much stronger in Fig. 4 (	 = 0.09), the
ultrasound attenuation coefficient is still enhanced by a factor
of 10 for the same parameters as above. These results suggest
that the weak first-order phase transition occurs and that the
effect of nematic fluctuations can be observed in the phonon
damping even in the presence of impurities.

IV. DISCUSSION

Here some additional comments are in order on the char-
acteristic properties discussed in the previous sections.

Superlattice effects: In this paper, we focus on the long-
wavelength limit of acoustic phonons with linear dispersions.
Here we comment on the phonon modes in MA-TBG, which
are complicated due to the superlattice structure. One of the
unique properties of such moiré phonon modes, which reflects
a nonrigid crystal [36,37], is the appearance of rotation tensors
in addition to the ordinary strain tensors in the elastic degrees
of freedom. While for a rigid crystal the velocity of longitu-
dinal phonons is much larger than that of transverse phonons,
for twisted bilayer graphene having a nonrigid crystal prop-
erty, the velocity of transverse phonons may exceed that of
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longitudinal phonons due to the coupling between the strain
tensor and the rotation tensor [32,36,37]. Although there are
such quantitative differences, as far as the acoustic phonons
in the long-wavelength limit are concerned, there is no qual-
itative change in their linear-dispersion properties. Thus we
believe, even in the moiré materials, that our theory can be
applied to the low-energy properties of acoustic phonons with
linear dispersions. It is also important to consider the effect of
the rotation tensor to the nematicity as discussed in Ref. [32].
Since the electron-nematic order parameter does not couple to
the rotation tensor in the leading-order correction, we have
not considered it in this paper. Nevertheless, the detailed
study including the higher-order corrections to phonons and
nematicity is important; this is left for future work.

Impurity effects: In addition to the discussions in Secs. II C
and III C, it is also important to consider several scattering
mechanisms. In this connection, we comment here on the
impurity effects beyond the Born approximation in Eq. (27).
We expect that the impurity vertex correction changes the
dynamical critical exponent, leading to the change of the
wave-number dependence of the ultrasound attenuation coef-
ficients from |q| to |q|2.

The damping rate 	d (q) in Eq. (11) depends on the dynam-
ical critical exponent z as

	d (q) = γd |q|z−2, (33)

where z = 3 for a usual ferroic order in clean systems. One of
the unique properties of the electron-nematic state is that the
sound attenuation coefficient in Eq. (21) reflects the damping
rate of nematic fluctuations, as follows:

αμ(q) ∼ κ2

2ρv∗
μ

1

r2

q2

	d (q)
= κ2

2ρv∗
μ

1

r2

|q|4−z

γd
. (34)

We discuss how the impurity effect would modify the
above nematic fluctuations via a possible change in the ex-
ponent z. It is known that for charge density fluctuations, a
diffusion pole appears from vertex corrections for the impurity
scattering [57,86–88], and the dynamical critical exponent
becomes z = 4. This is related to the conservation law of
electric charge, and such a diffusive mode appears when there
is charge U (1)-gauge symmetry. On the other hand, in the
present case of electric quadrupoles (the electric quadrupole
density is not a conserved quantity [52,89]), it is expected that
the normal diffusion mode does not appear due to impurity
effects [90], and we expect the relaxation mode [91] with
z = 2, etc. In this case, the dynamical critical exponent may be
changed to a value other than z = 3, unlike the usual charge
density fluctuation, and this change will be probed through
the wave-number dependence of the ultrasound attenuation
coefficient. To identify the correct dynamical exponent is an
open problem, and further analysis will be required.

Candidate materials for experiments. A three-state Potts
nematic order has been reported for doped-Bi2Se3 [47–49].
Even in these materials, as the 2D nematic ordered state that
breaks the in-plane C3z-symmetry is stacked in the z-direction,
the formulation developed here can be applied to phonon
modes propagating in the plane with a slight modification. In
these materials, it has been suggested that a vestigial nematic
order [50] is caused by nematic superconducting fluctuations,

rather than the bond-order discussed here. Nevertheless, a
similar treatment can be applied, and thus we expect the
isotropic divergence of sound attenuation and the isotropic
lattice softening for transverse modes within the GL the-
ory discussed here. The scenario presented here is useful to
probe the nematic fluctuation, predicting a weak first-order
transition-like behavior.

In the case of MA-TBG, an electron-nematic state has
been reported at several fillings by scanning tunneling
microscopy [25–27], transport measurement [28], and the
quantum oscillation [28,29]. Our mean-field analysis for the
C3-breaking bond order is based on Ref. [35]. It is shown that
the C3-breaking intravalley bond ordered state is stabilized
near the VH filling, and the other magnetically ordered states
are suppressed by using the so-called DW equation method
including the Aslamazov-Larkin vertex correction [35]. In
addition to the weak-coupling approaches [22,35], there are
some theoretical proposals such as an orbital order and a
vestigial nematic order in the strong-coupling theory [20]. We
think that our phenomenological theory can also be applied to
the above scenarios with a slight modification. Detailed study
on this point is left for future work.

Unfortunately, MA-TBG does not allow us to conduct
usual sound attenuation experiments due to its purely 2D
character, but this does not change the fact that the mean free
path l = α−1 of phonons becomes isotropically shorter. In this
2D case, experiments using optical methods such as Brillouin
scattering [92] and double resonant Raman scattering [93]
provide alternative probes to detect the nematic fluctuation.
For these experiments, the formulation developed here can
be applied with a slight modification to identify such a three-
state Potts nematic state and figure out whether it is induced
spontaneously or from trivial strain.

V. SUMMARY

We have analyzed the impact of nematoelastic coupling on
the low-energy properties of phonons by using a phenomeno-
logical argument and a model calculation. Phenomenological
analysis has clarified that the Landau damping term becomes
isotropic due to fluctuations of the C3-breaking bond-order in
the Gaussian fluctuation region, and the nematoelastic cou-
pling is also isotropic. As a result, we have proposed to detect
the intrinsic three-state Potts nematic phase transition by mea-
suring the ultrasound attenuation of the transverse acoustic
phonon. Namely, the ultrasound attenuation coefficient shows
an isotropic divergence that is proportional to the momentum
|q|, and the sound velocity renormalization also shows an
isotropic angle dependence. Both features are quite contrasted
to the strong anisotropy in the case of the C4-breaking nematic
case.

We have determined the phase diagram by using an ex-
tended Hubbard model in a mean-field approximation to
investigate the critical properties. According to the mean-field
approximation, the transition temperature takes its maximum
near VHs, and the large density of states favors the nematic
phase transition. The order of phase transition is of weak
first-order in a wide range of band filling and, upon increasing
the impurity scattering, the first-order transition line at low
temperatures gets closer to the second-order line, making
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the transition weakly first-order in a wider parameter region.
Furthermore, it has been confirmed that the enhancement
of the ultrasound attenuation coefficient can be observed in
the case of a weak first-order phase transition. Even if the
effect of mode coupling between the nematic fluctuations
is considered, the qualitative features of the isotropic sound
attenuation coefficients and the phase diagram are expected to
be unchanged, but the order of the transition could be changed
to the second-order as expected for a classical phase transition
of three-state Potts nematicity in 2D.

ACKNOWLEDGMENTS

We are grateful to S. Sumita for his helpful contribution
in the early stage of this work. We would like to thank R.
Toshio, H. Watanabe, K. Adachi, K. Takasan, H. Adachi, and
Y. Yanase for fruitful discussions and useful comments. This
work was partly supported by JSPS KAKENHI (Grants No.
20J13688, No. JP19H01838, and No. JP18H01140). K.K. is
supported by WISE Program from MEXT and a Research Fel-
lowship for Young Scientists from JSPS. M.S. is grateful for
the support by the Swiss National Science Foundation (SNSF)
through Division II (No. 184739). The numerical calculations
were performed on the supercomputer at the Institute for Solid
State Physics in the University of Tokyo.

APPENDIX A: NEMATIC POLARIZATION FOR A
CIRCULAR FERMI SURFACE

Here, we derive the functional form of the Landau damping

D̂( |εm|
	d (q) ) in Eq. (4), which results in Eq. (11). We assume the

circular Fermi surface around the 	 point and the single-band
system in a C3 symmetric lattice. The interaction between the
nematic fluctuation (�1q,�2q,) and the electrons (c†

k, ck) is
given by

Hcoup ∝
∑
q,k

[d1k�1q + d2k�2q]c†
k+q/2ck−q/2, (A1)

where form factors of a two-dimensional representa-
tion are d1k ∼ (k̂2

x − k̂2
y ) = cos 2θk and d2k ∼ 2(k̂x k̂y) =

sin 2θk with the wave vector of electron k = |k|(k̂x, k̂y) =
|k|(cos θk, sin θk). Furthermore, the order parameter is
parametrized as � = �(cos 2θ, sin 2θ ) with the nematic di-
rector n̂ = (cos θ, sin θ ) and its angle θ . Thus, the coupling
term is expressed in terms of the relative angle θk − θ as
follows:

Hcoup ∝
∑
q,k

�q cos 2(θk − θ )c†
k+q/2ck−q/2, (A2)

where the coupling term vanishes at θk − θ = ±π/4.
The low-energy contribution of a nematic polarization χ

i j
q

determines the dynamical properties of the nematic fluctua-
tions. The k-summation can be performed by linearizing the
electronic dispersion,

χ i j
q =

∑
k

dikd jkGkGk+q ∼ −iεmρ0

∫
kFS

dikd jk

iεm − vFk · q
,

= − iεm

vF|q|ρ0

∫ 2π

0

dθk

2π

dikd jk

iεm/vF|q| − cos (θk − θq)
, (A3)

with d1kd1k = cos2 2θk, d2kd2k = sin2 2θk, d1kd2k =
sin 2θk cos 2θk, ρ0 is the density of states at the Fermi
level, an electron Green’s function G−1

k = iωn − εk − μ, the
energy dispersion εk = k2/2m, the electron mass m, the Fermi
velocity vF, the fermion Matsubara frequency ωn, and the
boson Matsubara frequency εm. Now we set ψ = (θk − θq)
and rewrite each component of dikd jk as

d1kd1k = cos2 2θk

= cos2 (2ψ + 2θq)

∼ cos2 2θq cos2 2ψ + sin2 2θq sin2 2ψ, (A4)

d2kd2k = sin2 2θk

= sin2 (2ψ + 2θq)

∼ cos2 2θq sin2 2ψ + sin2 2θq cos2 2ψ, (A5)

d1kd2k = 1
2 sin 4θk = 1

2 sin (4ψ + 4θq)

∼ 1
2 cos 4θq sin 4ψ + 1

2 sin 4θq cos 4ψ,

= 1
2 sin 4θq(2 cos2 2ψ − 1), (A6)

where we have ignored terms proportional to sin 2ψ cos 2ψ

because they vanish after ψ integral. Combined with the
above equations, the dynamical part of nematic polarization
D̂q = χ̂q − χ̂q,0 is calculated as

Di j
q = −iaρ0

∫ 2π

0

dψ

2π

dikd jk

ia − cos ψ
, (A7)

with a = εm
vF |q| and

D11
q = iaρ0{cos2 2θq[iSgn(a) − 2ia] + sin2 2θq[2ia]},

(A8)

D22
q = iaρ0{cos2 2θq[2ia] + sin2 2θq[iSgn(a) − 2ia]},

(A9)

D12
q = iaρ0

{
sin 4θq[iSgn(a) − 2ia] − 1

2 sin 4θq[iSgn(a)]
}
,

(A10)

with D12
q = D21

q . We have used the following equations in the
above calculations:

IC (a) = −
∫ 2π

0

dψ

2π

cos2 2ψ

ia − cos ψ
,

= i(1 + 2a2)

[
(1 + 2a2)√

1 + a2
Sgn(a) − 2a

]
|a→0,

→ iSgn(a) − 2ia, (A11)

IS (a) = −
∫ 2π

0

dψ

2π

sin2 2ψ

ia − cos ψ
,

= 2ai[1 + 2a2 − 2|a|
√

1 + a2]|a→0, → 2ia.

(A12)
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As a consequence, the frequency-dependent part of nematic
polarization is given as

D̂q = −aρ0

2

(
1 0
0 1

)

− ρ0

[a

2
− 2a2

](cos 4θq sin 4θq

sin 4θq − cos 4θq

)
. (A13)

Next, we express the above function in terms of the angle of
nematic director θ and consider the dynamical part of Eq. (3),

�T
q D̂q�

∗
q = �q(cos 2θ sin 2θ )D̂q

(
cos 2θ

sin 2θ

)
�∗

q,

= −�qρ0

[ |εm|
vF|q| cos2 (2θq − 2θ )

− 2
|εm|2

(vF|q|)2
cos (4θq − 4θ )

]
�∗

q, (A14)

where �q = �q(cos 2θ, sin 2θ ) and �q is the norm of �q.
Thus the Gaussian theory for the three-state Potts nematic

fluctuation is described by SGauss[�] = ∫
q �q[r + ξ 2

0 q2 −
Dq]�∗

q with

Dq = −ρ0

[ |εm|
vF|q| cos2 (2θq − 2θ )

− 2
|εm|2

(vF|q|)2
cos (4θq − 4θ )

]
, (A15)

where r ∝ Tc0 − T measures the distance from the mean-field
transition temperature Tc0, where the mean-field correla-
tion length is ξ0. The orientations of the nematic directors
are restricted to three directions by the cubic term in
Eq. (1) as follows: θ = {0, 2π/3, 4π/3} for u3 < 0 and θ =
{−π/6, π/2, 7π/6} for u3 > 0. Precisely speaking, the damp-
ing term preserves this Z3 symmetry in a disordered state, thus
we need to treat three angles equivalently,

cos2 (2θq − 2θ ) → 1

3

[
cos2 (2θq) + cos2

(
2θq − 2π

3

)

+ cos2

(
2θq − 4π

3

)]
, (A16)

= 1

3

[
cos2 (2θq) + 1

2
cos2 (2θq) + 3

2
sin2 (2θq)

]
, = 1

2
.

(A17)

Therefore, within this treatment, there is no anisotropy of
Landau damping in the three-state Potts nematic case, and
thus we can use the following action:

SGauss[�] =
∫

q
�q

[
r + ξ 2

0 q2 − Dq
]
�∗

q,

Dq = −ρ0

2

|ωm|
vF|q| , (A18)

as shown in Eq. (11).

APPENDIX B: NEMATOELASTIC COUPLING

Here, we derive the nematoelastic coupling in Eq. (18). In
terms of ũL(q) and ũT (q), the nematoelastic action reads

Snem-ph[�, u] = −κ

∫
q

(ũL(q) ũT (q))

× i|q|
(

cos 2θq sin 2θq

− sin 2θq cos 2θq

)(
�1(−q)
�2(−q)

)
,

= −κ

∫
q

(ũL(q) ũT (q))

× i|q|
(

cos (2θq − 2θ )
− sin (2θq − 2θ )

)
�∗(q), (B1)

where θq shows the propagating direction of a wave vector q.
In the second line, we have used � = �(cos 2θ, sin 2θ ).

In the case of the Ising nematicity, the nematic director is
forced to be θ = {0, π/2} for the dx2−y2 -wave. Even if we treat
the two angles equally, the anisotropy of the nematoelastic
coupling remains, as follows:

cos2 (2θq − 2θ ) → cos2 (2θq), (B2)

sin2 (2θq − 2θ ) → sin2 (2θq). (B3)

This form is the same as in Ref. [53]. However, in the case
of the three-state Potts nematicity, treating the three angles
equally does not show any anisotropy. Thus we conclude that
Z3 symmetry leads to an isotropic angular dependence of the
nematoelastic coupling,

cos2 (2θq − 2θ ) → 1
2 , (B4)

sin2 (2θq − 2θ ) → 1
2 . (B5)

Thus we obtain the following isotropic form:

Snem-ph[�, u] = −κ

∫
q

i
|q|
2

[ũL(q) − ũT (q)]�∗(q). (B6)

APPENDIX C: QUADRUPOLE-QUADRUPOLE
INTERACTION

Here, we derive the forward-scattering interaction [71–75]
in Eq. (25). We note the atomic structure of TBG. In a
small twist angle TBG, a slight mismatch in the lattice
periods of two graphene layers gives rise to a long-period
moiré interference pattern. The regions that locally
appear to be AB-stacked bilayer graphene and BA-stacked
bilayer graphene form the emergent honeycomb lattice in
Fig. 5(a). Furthermore, it is pointed out that the Wannier
state [10,11,13] is centered at the AB or BA spot in the
moiré pattern, while the maximum amplitude is at three
AA spots. Because of the three-peak form of the Wannier
state, the Coulomb interaction between the neighboring
sites is as important as the on-site interaction [11].
Considering the nearest-neighbor (NN) direct channel
on the multiorbital Hubbard model, the interaction term is
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BAABBAAB

+2 0+-+-
+
-+

-0 +++
---+

-

(a) (b) (c)

BAAB

AA AA AA

FIG. 5. (a) The primitive lattice vectors on the honeycomb lat-
tice: a1 = (

√
3

2 , 1
2 ), a2 = (0, 1) with vectors of the nearest-neighbor

bond τ1 = (− 1
2
√

3
, − 1

2 ), τ2 = ( 1√
3
, 0), and τ3 = (− 1

2
√

3
, 1

2 ). The
basis function of E (or Eg) representation of form factor: (b) dx2−y2 -
wave, (c) dxy-wave.

given by

Hint = 1

2

∑
ab

∑
σσ ′

Vabc†
aσ caσ c†

bσ ′cbσ ′ , (C1)

= VNN

2N

∑
α �=β

∑
q

γ NN
αβ (q)ρα (q)ρβ (−q), (C2)

γ NN
AB,BA(q) = (e−iq·τ1 + e−iq·τ2 + e−iq·τ3 ), (C3)

where a = (i, α, ξ ) denotes the unit-cell index i, the sublattice
index α ∈ {AB, BA}, the valley index ξ ∈ {+,−}, and the
density operator ρα (q) = ∑

α,ξ,σ

∑
k cαξ†

k+qσ
cαξ

kσ
.

We change the ordering of fermion operators in the NN
direct channel as∑

p1 p2 p3

γ NN
AB,BA(p2)cαξ†

p1+p2σ
cαξ

p1σ
cβξ ′†

p3−p2σ
′c

βξ ′
p3σ

′

∼ −
∑
kk′q

γ NN
AB,BA(k − k′)cαξ†

k+q/2σ
cβξ

k−q/2σ ′c
βξ†
k′−q/2σ

cαξ

k′+q/2σ ′ ,

(C4)

where we have ignored the intervalley component and con-
sider only σ = σ ′. Now we decouple γ NN

AB,BA(k − k′) as
γ NN

AB,BA(k − k′) = 1
3 s∗

ksk′ + 2
3 E1∗

k E1
k′ + 2

3 E2∗
k E2

k′ , where sk, E1
k ,

and E2
k are the form factors in Figs. 5(b) and 5(c), such as

sk = eik·τ1 + eik·τ2 + eik·τ3 ,

E1
k = eik·τ1 − 1

2
eik·τ2 − 1

2
eik·τ3 ,

E2
k = −

√
3

2
eik·τ2 +

√
3

2
eik·τ3 . (C5)

We can rewrite Eq. (C4) in terms of the density operator,
which is in the E -representation of the point group D3,
nABξσ

Ei
(q) = 1

N

∑
k Ei∗

k cABξ†
k+q/2σ

cBAξ

k−q/2σ
,

HAB
int = −VNN

3N

∑
ξσ

∑
k,k′,q

(
nABξσ

E1
(q)

[
nABξσ

E1
(q)

]†

+ nABξσ
E2

(q)
[
nABξσ

E2
(q)

]†)
. (C6)

Finally, we have Hint = HAB
int + HBA

int as shown in Eq. (25).
In the D3 point group case [11], form factors result from

Table I. The real part of nABξσ
Ei

(q) corresponds to the d-wave
components of the density operator, referred to as nematic
fields, whereas the imaginary part of nABξσ

Ei
(q) corresponds to

TABLE I. The character table of the D3 point group.

E C3z C2y linear quadratic

A1 1 1 −1 x2 + y2

A2 1 1 −1
E 2 −1 0 (x, y) (x2 − y2, xy)

the p-wave components, referred to as loop-current fields [35].
We note that, if we consider the D6 point group case [14],
which is another symmetry of MA-TBG, nematic fields ap-
pear irrespective of loop-current fields.

APPENDIX D: EFFECTIVE ACTION

Here, we derive the action in Eq. (28). The effective model
containing the quadrupole-quadrupole interaction in Eq. (25)
or in Appendix C is given by

H = 1

N

∑
kξσ

(
cAB†

kξσ
cBA†

kξσ

)
Ĥξ

kσ

(
cAB

kξσ

cBA
kξσ

)
+ Hint, (D1)

Hint = −g
∑
ξσ

∑
i=1,2

∑
q

(
nABξσ

Ei
(q)nBAξσ

Ei
(−q)

)
, (D2)

where g = 2VNN
3 is a coupling constant and Ĥξ

kσ
is a 2 ×

2 Hamiltonian for each valley ξ and σ . We perform
the Hubbard-Stratonovich transformation by using the two-
component complex field (�, �̄), with � = (�1, �2), �i ∈
C, and �̄ = �∗, as follows:

Sint = −
∑
iξσ

∫
q

1√
βN

(
�̄i(−q)nABξσ

Ei
(q)

+�i(−q)nBAξσ
Ei

(q)
) + 1

g

∑
iξσ

∫
q
�i(−q)�̄i(q),

=
∑
iξσ

∫
q

∫
k

∑
αβ

c̄α
k+ q

2 ξσ

[
V i

αβ (k, q)
]
cβ

k− q
2 ξσ

+ 1

g

∑
iξσ

∫
q
�i(−q)�̄i(q), (D3)

where V i
αβ (k, q) is an (α, β ) component of the matrix V̂ i(k, q).

In terms of form factors Ei
k in Eq. (C5), it is expressed

V̂ i(k, q) = − 1√
βN

(
0 Ei∗

k �̄i(−q)
Ei

k�i(−q) 0

)
, (D4)

with q = (q, iωn), k = (k, iωm), where σx, σy are Pauli ma-
trices and c̄, c are Grassmannian variables corresponding to
creation and annihilation operators.

Next, we divide � into nematic fields �i(q) and
loop-current fields �′

i(q), where �i(q) = Re�i(q) ∈ R and
�′

i(q) = Im�i(q) ∈ R. In the following calculation, for sim-
plicity, we only consider an electron-nematic order, and in this
case the matrix V̂ i(k, q) is written as

V̂ i(k, q) = −�i(−q)√
βN

(
0 Ei∗

k

Ei
k 0

)
. (D5)

The total action in this system is given by the two-component
real field � = (�1,�2),

Stot[c̄, c,�] = S0[c̄, c] + Sint[c̄, c,�], (D6)
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with

S0[c̄, c] =
∑
iξσ

∫
q

∫
k

∑
αβ

c̄α
k+ q

2 ξσ

[( − iωnδαβ + Hξ

kσ,αβ

)
× δq,0

]
cβ

k− q
2 ξσ

. (D7)

After integrating out the electron degrees of freedom, we have
an effective action for the nematic field,

Seff [�] = 1

g

∑
iξσ

∫
q
�i(−q)�i(q) − Trln

[
M̂ξσ

k+ q
2 ,k− q

2

]
, (D8)

M̂ξσ

k+ q
2 ,k− q

2
= −Ĝ−1

0 δk+q/2,k−q/2 −
∑
i=1,2

V̂ i(k, q), (D9)

where we have introduced the noninteracting Green’s function
Ĝ−1

0 (k) = iωn1l − Ĥξ

kσ
. This leads to Eq. (28).

APPENDIX E: GINZBURG-LANDAU EXPANSION

Here, we derive the GL expansion in Eq. (30). For simplic-
ity, we approximate the 2 × 2 Dirac Hamiltonian with chiral
symmetry on the honeycomb lattice,

Ĥk =
(

μ ε∗
k

εk μ

)
, (E1)

Ûk = 1√
2

(
1 1

eiθk −eiθk

)
, (E2)

where a phase factor is introduced as θk = εk
|εk| with εk = t (1 +

e−ik·a1 + e−ik·a2 ), the hopping parameter t , and the chemical
potential μ. The band representation of the noninteracting
Green’s function and the interaction vertex in Eq. (D9) is
given by

Ĝ0(k) = Ûk

(
g+

k 0
0 g−

k

)
Û †

k , (E3)

V̂ i(k, q) = − 1√
βN

Ûk

{(
1 0
0 −1

)[
di

k�i(−q) − pi
k�

′
i(−q)

]

+
(

0 −i
i 0

)[ − pi
k�i(−q) + di

k�
′
i(−q)

]}
Û †

k ,

(E4)

where [g±
k ]−1 = iωn ∓ |εk| − μ is the electron Green’s func-

tion, ωn is the fermion Matsubara frequency, and we have
introduced the d- and p-wave components of the form factor
Ei

k in Eqs. (C5),

di
k = Re

[
Ei

ke−iθk
]
, (E5)

pi
k = Im

[
Ei

ke−iθk
]
. (E6)

If the system has space inversion symmetry, the p-wave com-
ponent of the nematic field vanishes. Now we focus on the
d-wave component, for which the matrix V̂ i(k, q) is obtained
in a diagonal form,

V̂ i(k, q) = −di
k�i(−q)√

βN
Ûk

(
1 0
0 −1

)
Û †

k ,

= v̂i(k, q)�i(−q), (E7)

where we have introduced the shorthand notation of the inter-
action vertex v̂i(k, q).

As described in Appendix D, we have used the effective
action in Eq. (D9). In terms of the order parameter field � =
(�1,�2), the partition function is expressed in a functional
integral form,

Z = Z0

∫
D�e−SGL[�], (E8)

SGL[�] =
∑

n=1,...,6

S(n)
GL[�]. (E9)

We expand the above GL action up to the sixth-order terms
in the nematic order parameter by using the following rela-
tion: TrlnM = Trln(−Ĝ−1

0 ) − ∑∞
n=1

1
n Tr(Ĝ0V̂ )

n
, where M̂ is

shown in Eq. (D9). The first-order term of � is

Tr(Ĝ0V̂ ) = 1√
βN

∑
i

∫
k
[Ĝk]αβ[v̂i(k, q)]βα�i(−q), (E10)

where this integration becomes zero because Ĝk has C3 sym-
metry. The second-order term is

1

2
Tr(Ĝ0V̂ )2 = 1

2

∫
q

∑
i j

χ i j
q �i(−q)� j (q), (E11)

χ i j
q = T

N

∑
k,iωn

tr[Ĝk+q/2v̂
i(k, q)Ĝk−q/2v̂

j (k,−q)]. (E12)

Thus the Gaussian term is

S(2)
Gauss[�] =

∫
q

∑
i j

[
χ−1

d (q)
]

i j
�i(−q)� j (q), (E13)

[
χ−1

d (q)
]

i j = 1

g
δi j − χ i j

q , ∼ (
r + ξ 2

0 q2
)
δi j + D̂i j

q , (E14)

where g = 2VNN
3 is a coupling constant, the dynamical part

of nematic fluctuation is defined as D̂q = χ̂q − χ̂q,0, r =
1/g − χ11

q=0 ∝ Tc0 − T measures the distance from the mean-
field transition temperature Tc0, and the mean-field correlation
length is ξ0.

In a similar way, we evaluate the coefficients up to sixth
order. GL coefficients un+1 come from uniform contributions
of the (n + 1)th-order term in the noninteracting Dirac
dispersion,

un+1 = T

N

∑
k,iωn

tr[Ĝk v̂
i(k, 0)]n+1, (E15)

= 1

N

∑
k

(
di

k

)n+1 1

n!

[
∂n

∂nε
f (ε+

k ) + (−1)n+1 ∂n

∂nε
f (ε−

k )

]
,

(E16)

where we have used the noninteracting formula in Eqs. (E3)
and (E7) with T

∑
iωn

[gi(k)]n+1 = 1
n!

∂n

∂nε
f (εi) at the second

line. If we treat the impurity effect in a Born approximation,
the electron Green’s function is evaluated as Ĝ−1(k) =
Ĝ−1

0 (k) − �̂imp(k) and the self-energy is obtained in Eq. (27).
As a consequence, we arrive at the following GL action up

to sixth order:

SGL[�] =
∫

x

[
1

2
r�+�− + 1

6
u3(�3

+ + �3
−) + 1

4
u4�

2
+�2

−

+ 1

10
u5(�4

+�− + �+�4
−) + 1

6
u6�

3
+�3

−

]
,

(E17)
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where x = (r, τ ), �± = �1 ± i�2, and r = 1/g − u2 as
shown in Eq. (30).

APPENDIX F: ELECTRON-PHONON COUPLING

Here, we derive the electron-phonon coupling in Eq. (31)
from a change in the bond length [77–79]. We assume that the
electron-phonon coupling arises from the lattice modulation
by phonons, which leads to a change in the nearest-neighbor

hopping t ,

Hel-ph =
∑

δ

g(δ)
∑
ri,ξσ

[uα (ri ) − uβ (ri + δ)]
∑

α

cα†
ξσ cᾱ

ξσ ,

(F1)

where uα (ri ) is the lattice displacement vector at ri, δ is
the nearest-neighbor lattice vector, and g(δ) = ∇t (δ) = gnnδnn

with the hopping amplitude t (δ) between sites ri and ri + δ.
The Fourier representation of the electron-phonon coupling is

Hel-ph =
∑
τ i

τ i
gph√

N

∑
pq

[
uAq − uBqeiq·τi

][
c†

Ak+q/2cBk−q/2eik·τ i + c†
Bk+q/2cAk−q/2ei(k+q/2)·τ i

]
,

= gph√
N

∑
pq

[
uAq ·

(
E1

k−q/2
E2

k−q/2

)
− uBq ·

(
E1

k+q/2
E2

k+q/2

)]
c†

Ak+q/2cBk−q/2 + gph√
N

∑
pq

[
uAq ·

(
E1∗

k+q/2
E2∗

k+q/2

)
− uBq ·

(
E1∗

k−q/2
E2∗

k−q/2

)]

× c†
Bk+q/2cAk−q/2,

= gph√
N

∑
pq

[
uOP

q · Ek + uAC
q · �Ek,q

]
c†

Ak+q/2cBk−q/2 + gph√
N

∑
pq

[
uOP

q · E∗
k + uAC

q · �E∗
k,q

]
c†

Bk+q/2cAk−q/2, (F2)

where we have introduced displacement fields of an optical
phonon uOP

q = 1√
2
(uAq − uBq) and an acoustic phonon uAC

q =
1√
2
(uAq + uBq) in the long-wavelength limit. The vectors Ek

and �Ek,q are obtained from the Taylor expansion for small
q as follows: Ek+q/2 − Ek−q/2 = Ek + �Ek,q · · · and Ek =
(E1

k , E2
k ),

�Ek,q =
(

− 1
2

−
√

3
2

)
eik·a1 (iq · a1) +

(
− 1

2√
3

2

)
eik·a2 (iq · a2).

(F3)

Finally, the electron-phonon coupling term for acoustic
phonons resulting from the bond-length change is

Sel-ph[c̄, c, ũL, ũT ]

=
∑
iξσ

∫
q

∫
k

∑
αβ

c̄α
k+ q

2 ξσ
[ŵμ(k, q)]αβcβ

k− q
2 ξσ

ũμ(−q), (F4)

with the displacement field of acoustic phonons uμ=T,L =
ũμêμ, where êT = (− sin θq, cos θq) and êL = (cos θq, sin θq)
with θq = tan −1(qy/qx ) and

ŵ
μ

k,q = − gph√
βN

(
0 �E∗

k,q · êμ(−q)
�Ek,q · êμ(−q) 0

)
. (F5)

After integrating out the electron degrees of freedom, we have
a self-energy correction to the phonon action in Eq. (14),

δKμ,el-ph(q) = −g2
ph

2ρ

∫
q

tr
[
Ĝk+q/2ŵ

μ

k,qĜk−q/2ŵ
μ

k,−q

]
. (F6)

This is shown in Eq. (31).

APPENDIX G: HARTREE-FOCK APPROXIMATION OF A
BOND-ORDER

Here, we derive the mean-field theory of the three-state
Potts nematic phase transition following Ref. [75] and show

the Fermi surface and DOS in Sec. III B. The effective
model containing the quadrupole-quadrupole interaction is
shown in Eq. (25) and in Appendix C. After introducing
the mean-field decoupling nαβ

kσ
= nαβ

kσ
− 〈nαβ

kσ
〉 + 〈nαβ

kσ
〉 and ig-

noring the second-order correction (nαβ

kσ
− 〈nαβ

kσ
〉), we arrive

Γ

K

M

kx

ky

FS

FS

0

0.4

2.0

0.8

1.2

1.6

DOS

DOS

/

DOS

(a)

K Γ K

band

band

/

(b)

(c)

FIG. 6. (a) The density of states and the particle number N .
(b) The band structure along the high-symmetric line of the
Brillouin zone. (c) The Fermi surface. The data are plotted for the
disordered phase [� = (0, 0), T/t = 0.15] and the nematic phase
[� = (0.12, 0), T/t = 0.05]. We use VNN/t = 4.5, N = 1.2.
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at

HMF
int = 1

N

∑
k,k′

[
fk,k′

〈
nBA

k′
〉
nAB

k + f ∗
k,k′

〈
nAB

k′
〉
nBA

k

]
,

− 1

N

∑
k,k′

fk,k′
〈
nBA

k′
〉〈

nAB
k

〉
,

=
∑

k

(
cA†

k cB†
k

)( 0 �AB
k

�BA
k 0

)(
cA

k

cB
k

)

−
∑

k

�AB
k

〈
nAB

k

〉
, (G1)

with fk,k′ = g(E1∗
k E1

k′ + E2∗
k E2

k′ ), a coupling constant g =
2
3VNN, the mean-field �AB

k = 1
N

∑
k′ fk,k′ 〈nBA

k′ 〉, and form fac-
tors Ei

k in Eq. (C5). The two-component complex order
parameter (�, �̄) with � = (�1, �2) contributes to the above
mean field as

�AB
k = − g

N

∑
k′

[
E1∗

k E1
k′
〈
nBA

k′
〉 + E2∗

k E2
k′
〈
nBA

k′
〉]
,

= [
E1∗

k �1 + E2∗
k �2

]
, (G2)

where the order parameters are defined as �1(2) =
− g

N

∑
k E1(2)

k 〈nBA
k 〉. Moreover, the energy shift resulting

from the mean-field theory is

−
∑

k

�AB
k

〈
nAB

k

〉 = −
∑

k

[
E1∗

k �1 + E2∗
k �2

]〈
nAB

k

〉
,

= N

g
[�∗

1 �1 + �∗
2 �2]. (G3)

For example, for a tight-binding model on the honeycomb
lattice,

Ĥ0
k =

(
0 t (1 + e−ik·a1 + e−ik·a2 )

t (1 + eik·a1 + eik·a2 ) 0

)
,

(G4)

the mean-field term induces the hopping anisotropy as

ĤMF
k =

(
0 E1∗

k �1 + E2∗
k �2

E1
k �∗

1 + E2
k �∗

2 0

)
. (G5)

Finally, we obtain the mean-field Hamiltonian, ĤMF
k .

We show numerical results obtained in the Hartree-Fock
approximation; The density of states, the band structure, and
the Fermi surface in the disordered phase and the nematic
phase are summarized in Fig. 6. In the vicinity of VH filling in
Fig. 6(a), which corresponds to the saddle point of the band in
Fig. 6(b), a finite value of the order parameter yields a defor-
mation of the Fermi surface which breaks the C3z symmetry in
Fig. 6(c). We note that N = 2 corresponds to the full filling,
and N = 1 corresponds to the charge-neutral point.
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