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Signatures of nontopological patches on the surface of topological insulators
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The nontrivial topology in the layered FeTe0.55Se0.45 superconductor has been suggested by both theory and
experiment to be strongly dependent on the Te concentration. Motivated by this together with the Te fluctuations
expected from alloy disorder, we develop a simple layered model for a strong topological insulator that allows
us to describe a scenario where topologically trivial domains permeate the sample. We refer to such a phase
as topological domain disordered and study the local density (LDOS) of the topological surface states that
can be measured using scanning tunneling spectroscopy (STS) in this phase. We find that topologically trivial
domains on the surface, where one would expect the topological surface state to be absent, appear as regions of
suppressed LDOS surrounded by domain walls with enhanced LDOS. Furthermore, we show that studying the
energy dependence of the STS should allow us to distinguish the topologically trivial parts of the surface from
other forms of disorder. Finally, we discuss implications of such local disappearance of the topological surface
states for the observation of Majorana modes in vortices.
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I. INTRODUCTION

Recently an iron based chalcogenide superconductor,
FeTe.55Se.45 (FTS), has been found to host a strong topo-
logical insulator (TI) phase which is both predicted by first
principle calculations [1,2] and later confirmed in the ex-
periments [3,4]. Angle resolved photoemission spectroscopy
(ARPES) measurements on this FTS system have shown ev-
idence of parity inversion at the Z (0, 0, π ) point [3] along
with the existence of single Dirac dispersion spectrum at the
surface [3–5]. The coexistence of superconductivity and the
TI phase in the same material leads to an exciting possibility
of realizing Majorana bound states (MBSs) in vortex cores
[6–10]. Such MBSs are of particular interest as the building
blocks for fault tolerant quantum computing [11–13]. Interest-
ingly, evidence for such MBSs in the form of zero bias peaks
(ZBPs) within the vortex cores have been observed using
scanning tunneling spectroscopy (STS) by several indepen-
dent groups [14–16]. The FTS superconductors also appear to
be low density (Fermi energy) superconductors relative to the
superconducting gap in this system. This allows one, in prin-
ciple, to separate the MBS from Caroli–de Gennes–Matricon
(CdGM) states [14,17] that generically exist in superconduct-
ing vortices [18,19]. Perhaps, one of the most encouraging
signatures of MBSs is the observation of nearly quantized
conductance into vortex cores [20], which is one of the most
unique aspects of MBS.

However, the ZBPs are not present in all the vortices
[14,16] and the conductance plateau for most of the ZBPs are
significantly less than unity [20]. The reduction of the percent-
age of ZBPs within vortices with increasing magnetic field
seen in [14,16] has been argued to arise due to increased cou-
pling between nearby MBSs with decreasing intervortex dis-

tances in a recent theoretical work [21]. Another proposed ex-
planation for the disappearance of ZBPs is the delocalization
of the MBSs due to the interplay of impurity induced Zeeman
field and spin-orbit coupling [22]. While the former explana-
tion will be relatively benign to MBSs at low density, the latter
mechanism would be associated with quasiparticle poisoning
that would be detrimental to a Majorana qubit. Such quasi-
particle poisoning is consistent with the suppression of the
conductance height for most of the ZBPs seen in recent exper-
iments [20]. Furthermore, magnetic field induced alignment
of Fe impurity magnetic moments has been shown to give rise
to the half quantum anomalous Hall phase locally where the
vortices would lack any MBSs [23]. However, a more com-
plete understanding of disorder that can affect the details of
vortex MBSs is still lacking in the literature. One example that
we focus on in this work is the role of Te/Se composition fluc-
tuations on the topological surface states that MBSs rely on.

The importance of the Se/Te concentration fluctuations
becomes obvious on considering the fact that Te doping is
necessary to drive topologically trivial FeSe into a nontrivial
phase, FeTe1−xSex (FTS) at x = 0.45. The dependence of the
topological character in FTS systems on x is further supported
by first principle calculation [1], which finds that increasing
Te concentration, (1 − x), shifts the center of the p-type band
to lower energies facilitating band inversion. This sensitivity
of the topological nature of FTS to Te doping is consistent
with recent ARPES experiments [24], where the topologi-
cal surface states are found to disappear below a certain Te
doping. Since in FeTe.55Se.45 the topological phase appears to
occur in the alloy phase, fluctuations in x are likely to occur
in much of the sample. This can lead to local variations of the
topological invariant on the surface in which case the topolog-
ical surface states may disappear from parts of the surface. As
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we will discuss in the next section, we expect small fluctua-
tions in x to be able to drive such variations in the topological
invariant. We will refer to this phase as a topological domain
disordered phase. As we will discuss in Sec. IV, such local
fluctuations that lead to the local disappearance of the surface
state from the top layer of the sample are expected to affect
the properties of MBSs in the system as probed by STS.

While variation of parameters in the Hamiltonian of any
strong TI can lead, in principle, to the fluctuation of a local
topological invariant [25,26], the layered nature of FTS pro-
vides a system where the topological invariant can vary on
the scale of a single atomic plane. This, potentially, allows
access to such domain wall physics using STS. From a theo-
retical standpoint, this layered nature allows us to construct a
relatively simple phenomenological model of the topological
phase by considering nearest neighbor tunneling between the
layers of electrons. The phenomenological model is deter-
mined almost entirely by the symmetries (i.e., properties un-
der C4 rotation) of the low-energy bands near zero momentum
and is independent of the complex details of the strongly cor-
related spectrum of a layered material. In this work, we choose
parameters so that the bulk bands and the computed sur-
face state dispersion match the surface spectrum measured in
ARPES [3,4] within the relevant energy and momentum scale
(Sec. III A). We then use this model to study the effect of a dis-
order potential in the band-inversion parameter on the LDOS
within the energy window of Dirac dispersion (Sec. III B).
This disorder potential realizes the topological domain dis-
ordered phase. Finally, we contrast the variation of surface
LDOS to the more conventional case of chemical potential
disorder to provide a signature of the topological domain
disordered phase that is detectable in experiment (Sec. III C).

II. EFFECTIVE MODEL

A. Motivation

In order to gain insight required to develop an effective
model for the topological surface states of FTS, let us consider
the dispersion for the FTS system along the �Z line (Fig. 1),
which shows a band inversion between the even parity dxy

band and the odd parity pz band [1]. This band inversion,
absent in FeSe (i.e., for x = 1), along with a spin-orbit cou-
pling (SOC) induced insulating gap is responsible for the
topological surface states. The top of the valence band at the
Z point has inverted parity like p band in Fig. 1 and it is
seen to be only about 20 meV below the Fermi energy as
found in experiments [3]. This value is significantly smaller
when compared to first-principle calculations [1], where the
valence band is found to be about 0.5 eV below the Fermi
energy at Z . Assuming that the large shift ∼1.5 eV of the
p band with Te concentration changing from (1 − x) = 0 to
(1 − x) = 0.5, as found in first principles calculations [1], is
qualitatively consistent with the real material and the flat d
band comparatively remains close to the Fermi energy for both
the cases, one would expect the composition x = 0.45 to be
precariously close to the topological phase boundary by only
about δE ∼ 0.5 × 0.02/1.5 eV ∼ 5 meV.

The fact that the composition of FeTe.55Se.45 is near the
topological phase boundary appears to be consistent with a

FIG. 1. �Z band dispersion from our model ĤI , for the parameter
values described in the text, without SOC (dashed curve), i.e., t ′ = 0
in our model, and with SOC (solid curve) are shown. Crossing
between d-type and p-type bands happens for |δ‖| < |δz| (dashed).
Hybridization between them via SOC opens up a gap (solid).

recent spatially resolved ARPES experiment [24]. Spatially
resolved electron diffraction spectroscopy (EDS) analysis of a
large sample revealed significant fluctuations in the Fe/Te/Se
density distribution over various length scales. This is consis-
tent with the atomic scale topographic image of the surface
of FeTe.55Se.45 [27], which shows spatial inhomogeneity in
Te density profile on the surface. The ARPES experiment in
[24] correlated the spatially resolved ARPES data to EDS data
to estimate the composition dependence of the topological
phase. Using this analysis, the experiment [24] has found that
FeTe.55Se.45, though topological, resides close to the phase
boundary between the topological and trivial phases since
small variations of the Te concentration are seen to destroy
the topological surface states.

B. Model Hamiltonian

We construct an effective model for the strong TI phase
including a pair of bands with opposite parity (d type and
p type). We label the even (d-type) and odd (p-type) par-
ity bands by ρz = ±1, respectively. Adding the jz = ±1/2
angular momentum degree of freedom described by the set
of Pauli matrices σα=x,y,z leads to a model similar to the
Bernevig-Hughes-Zhang (BHZ) model for each layer [28]
as elaborated below. Our model for FTS respects inversion
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symmetry, described by the operator ρz, and time reversal
symmetry (TRS), described by the operator iσ yK . Here K
is the complex conjugation operator. The fourfold rotational
symmetry around the z axis (C4) for FTS results in an effective
rotational symmetry at long wavelengths. The pz-type band
that we consider is invariant under C4 rotation and has orbital
angular momentum lz = 0 and hence total angular momentum
jz = ±1/2 including spin. In contrast, the dxz ± idyz bands
have orbital angular momenta lz = ±1. A large spin-orbit
splitting between them gives rise to a pair of d bands with total
angular momenta j = l + s = 3/2, 1/2. Thus, combining the
two orbital sectors (pz and dxz ± idyz), we obtain two sectors
with total angular momentum jz = ±1/2 (one of dxy type
and one pz type) but with opposite parity. By applying the
appropriate unitary transformation, we can define σz = 2 jz
in this manifold. This implies the C4 rotation operator to be
C4 = eiπ jz/2 = eiπσ z/4. In the more rigorous group theory rep-
resentation (e.g., in the DFT based calculation [1]), the states
ρz = ±1 correspond to states in the �±

6 representations at the
� and Z points. Focusing near small in-plane momenta (i.e.,
kx, ky � 0), the Hamiltonian in this space of �±

6 states, under
the symmetry constraints and the approximation of nearest
neighbor tight binding along the z direction, can be written
as

ĤI (k‖ � 0, kz ) =
[
δ‖ + δz cos kz − A

2

(
k2

x + k2
y

)]

× σ 0ρz + t ′ sin kzσ
zρx, (1)

where ρz = ±1 correspond to �±
6 states, being the two sectors

of odd (even) parity, and σz = ±1 correspond to the two
angular momentum sector of jz = ±1/2 as described above.
Here the parameters δ‖,z determine the energy differences
between the �±

6 states at the � and Z point, which are written
as δ‖ + δz and δ‖ − δz, respectively. Thus, if |δz| > |δ‖|, the
two bands can cross somewhere along the �Z line facilitating
band inversion as seen in Fig. 1, which is plotted for δz =
−9.3 meV, δ‖ = −3 meV, and t ′ = 7.5 meV. In our model
[Eq. (1)] it corresponds to the coefficient of ρz changing
sign while going from � to Z , which implies the valence
band states have opposite parity eigenvalues at these two time
reversal invariant momenta (TRIMs). This is the condition for
a band inversion to occur which leads to a nontrivial strong
TI phase [29]. The second term describes an SOC which
hybridizes the two d and p type ρz = ±1 sectors to open up
a gap along the �Z (kz : 0 → π ) direction (Fig. 1), which
is required for the system to have an insulating gap. Note
that, while FTS is a superconducting material, a topological
surface state in a range of in-plane momentum kx,y can only
exist in a range of energy where there is a gap as the per-
pendicular momentum, kz, changes. This does not preclude a
superconducting state from gapless states at different in-plane
momenta from the topological surface states. The flatness of
the valence band along �Z (band width of �4 meV as in
[3]) justifies the tight binding approach used to model the
dispersion along kz direction. The parameter A in the first term
of ĤI (k‖ � 0, kz ) determines the curvature of the parabolic
dispersion for small in-plane momenta (k‖ � 0) around the �

point. A system with the Hamiltonian Eq. (1) with δ‖,z chosen
to be in the topological regime (|δz| > |δ‖|) hosts topological

surface states on the (001) surface with in-plane Dirac disper-
sion. The corresponding velocity for the dispersion near the �

point is determined by a SOC term given by

ĤSOC = α(kxσ
x + kyσ

y)ρx. (2)

Finally, since the ARPES spectrum of the FTS system does
not appear to show particle-hole symmetry [3,4], we include
the corresponding symmetry breaking term as follows:

Ĥeh = δ2 cos kzσ
0ρ0. (3)

The three terms described above can be combined to obtain
our model Hamiltonian

Ĥ = ĤI + ĤSOC + Ĥeh, (4)

which can describe the surface states of FTS in the topologi-
cal phase along with a bulk spectrum that is consistent with
ARPES measurements of the (001) surface for parameters
described later.

III. NUMERICAL RESULTS FOR SURFACE
STATE SPECTRA

A. Ideal surface state

For the purpose of simulating states localized at the (001)
surface, it is necessary to represent the Hamiltonian in Eq. (4)
in real space along the z direction. We do this by discretizing
the z direction with a lattice parameter c. The resultant Fourier
transform translates cos kz to cos kz → (|z〉〈z + c| + H.c.)/2
and sin kz by sin kz → i(|z〉〈z + c| − H.c.)/2. Here z is the
real-space coordinate representing planes stacked in the z
direction. Using the resulting discretized Hamiltonian we sim-
ulate the surface states for each (kx, ky) around the � point
numerically.

The calculated surface dispersion and the bulk bands near
the � point are shown in Fig. 2. The energy dispersion
curve (EDC) for the broad parabolic bulk band has been
shown by the blue line and that of the Dirac dispersion
by the red line. The parameters in Eqs. (1)–(3) are tuned
to be δz = −9.3 meV, δ‖ = −3 meV, t ′ = 7.5 meV, δ2 =
1.2 meV, A = 798 meV Å2, and α = 266 meV Å, such that
the relevant quantities from the simulated dispersion match
the estimates from the ARPES measurements in [3,4], viz.
(i) the band width of the valence band along �Z direction
in Fig. 1 (about 4 meV [3]), (ii) the energy gap between the
Dirac point and the top of the bulk valence band (∼10 meV),
and (iii) the Dirac velocity for the surface states dispersion
(∼370 meV Å ), the latter two of which are measured in
Refs. [3,4]. In Refs. [3,5], there are similar dispersions for the
surface states from a phenomenological model like ours but
with important differences in the quantities listed above.

B. Disordered surface state

We now use the parameters determined in the previous
paragraph to study tunneling properties of the topological
domain disordered phase. As discussed in the Introduction,
such a phase can arise from local fluctuations in the Se con-
centration, x. We model these fluctuations by allowing the
parameter δ‖ in the Hamiltonian [Eq. (1)] to vary in space
(x-y-z) according to the relation δ‖(x, y, z) = δ‖ + w(x, y, z),
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FIG. 2. Surface-weighted parabolic bulk dispersion and the
Dirac dispersion for the surface states along with their energy disper-
sion curves (EDC) shown in blue and red, respectively, as obtained
from our model with the parameters specified in the text.

where w(x, y, z) is random with a Gaussian distribution. Mo-
tivated by the layered structure of FTS, we assume w(x, y, z)
to be smooth in each x-y plane, but uncorrelated between
neighboring layers. For the purpose of conceptual and also
computational simplicity, we start by assuming that w(x, y, z)
varies along the x and z direction but is uniform along the
y direction, i.e., w(x, y, z) ≡ w1D(x, z). As mentioned earlier,
we assume that the disorder fluctuations are uncorrelated be-
tween different layers along z. However, motivated by the
strong in-plane electronic dispersion [4] as well as correlation
between the positions of Se atoms in the plane [14,27], we
assume that w1D(x, z) has a finite correlation length along the
x direction that is represented by its Fourier transform along x
having the form

w1D(kx, z) = σw√
2

exp

[
− (kxλ)2

2

]
[X + i Y ]. (5)

In the above, X and Y are two random variables for each
value of kx, z, which are chosen from the normal distribution,
N (0, 1). σw and λ are respectively the amplitude and charac-
teristic length scale of the disorder potential. We estimate the
typical length scale of Te density variation to be 3 nm from
STS topographic images from the experiments [27] and use
that as the value for λ. Since the potential w1D(x, z) breaks
translation invariance along x, it is necessary to replace the kx

momentum in Eq. (1) by kx → −i∂x, where ∂x is a discretized
derivative with an in-plane lattice parameter a.

The numerical results for the surface density of states in
the case where δ‖(x, y, z) varies along the x and z direc-
tions, which is calculated using the approach described in the
previous paragraph, are shown in Fig. 3. Here Fig. 3(a) shows
the profile of δ‖(x) on the top layer, i.e., z = 0. As discussed
in Sec. II B, regions with |δ‖| < |δz| are in a nominally triv-
ial phase, while the rest of the surface is in the topological
phase. To help identify trivial regions, Fig. 3(a) plots δ(x) =

FIG. 3. (a) |δ‖(x)|/|δz| − 1 plotted as the red curve where the
black lines show some of the topological [δ(x) < 0] and trivial
[δ(x) > 0] phase boundaries. (b) Top layer (blue) and second layer
(yellow) LDOS for the topological domain disorder. (c) Normalized
top layer LDOS at different energies within the Dirac dispersion
window collapse on each other.

|δ‖(x)/δz| − 1, so that trivial domains on the otherwise topo-
logical surface would appear as regions with δ(x) > 0. As
discussed in the Introduction, this local attribution of trivial
and topological is more as a guide to understanding the numer-
ical results that follow rather than a strict identification (since
a topological phase is strictly speaking a global property). The
LDOS associated with this disorder realization applied to the
Hamiltonian Eq. (4) is plotted for the top (i.e., z = 0) and
the second layer (i.e., z = c) of the system in Fig. 3(b). We
notice that the top layer LDOS is suppressed at the nominally
trivial regions, whereas the second layer LDOS is enhanced.
The same observation holds for different energies within the
Dirac dispersion window. In fact, the normalized LDOS for
the top layer at different energies nearly collapse on each other
as shown in Fig. 3(c) if scaled appropriately. This suggests
that the conclusion that the Dirac surface states are trans-
ferred from the top layer to the layer below in the locally
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trivial region applies over a range of energy. This transfer
of LDOS between the layers would be difficult to measure
in STS. However, a closer examination of Fig. 3(b) shows
that the trivial regions represented by LDOS enhancement in
the second layer occur in the vicinity of large LDOS peaks
in the top layer near the topological-trivial boundaries. Such
peaks in the LDOS on the top layer that demarcate the trivial
domains may be visible in STS.

The more obvious signature of a trivial patch on the surface
of a strong topological insulator would be the reduced local
density of states seen in Fig. 3(b). However, as also apparent
from this plot, dips in local density of states are also seen in
areas of strong fluctuations of δ(x), which are otherwise topo-
logical. This is consistent with the fact that disorder-induced
Fermi energy fluctuations on the surface can lead to the Dirac
point crossing the local Fermi level. The local density of states
would be expected to be suppressed at such a point, since the
density of states of the Dirac dispersion in two dimensions
vanishes at the Dirac point.

C. Topological domain disorder versus
chemical potential disorder

To determine distinctive features associated with topolog-
ical domain disorder relative to conventional charge density
fluctuations, we simulate the LDOS in the presence of chem-
ical potential disorder with a Gaussian distribution. For this
purpose, we keep δ‖ fixed and add a Gaussian disorder po-
tential proportional to the identity matrix, w(x)σ 0 ρ0, to the
Hamiltonian in Eq. (4). We choose the amplitude of chemical
potential fluctuations to be about 2 meV (estimated from the
broadening of the Dirac point in ARPES measurement [3,4])
and choose the same length scale (λ � 3 nm) for the disorder
variation similar to Eq. (5). Looking at the normalized top
layer LDOS plot at several energies [Fig. 4(a)], we notice
that, unlike the case of topological domain disorder, the LDOS
profiles at various energies are distinct in shape and do not
collapse on each other upon scaling in stark contrast to the
case of topological domain disorder. The difference of the
profiles in this case for different energies is related to the de-
pendence of the length scale for LDOS variation, ξ , with
energy as ξ (E ) ∝ 1/(E − ED) around the Dirac energy ED

[Fig. 4(b)].
Hence the LDOS variation within the Dirac dispersion

window is distinct between the cases of topological domain
disorder and chemical potential disorder. The two cases can
be distinguished by comparing the normalized LDOS at vari-
ous energies and the energy dependence of the characteristic
length scale for LDOS variation, ξ (E ), for the top layer. Thus
the LDOS peaks in Fig. 3(b) that are in the vicinity of a topo-
logically trivial patch can potentially be distinguished from
peaks associated with chemical potential fluctuations based
on their energy independence. Besides the energy independent
peaks, another signature of the LDOS features associated with
topological domain disorder is the energy independence of
the characteristic length scale. We estimate the characteris-
tic length scale ξ for the LDOS variation as the inverse of
the width, �kx, of the Fourier spectrum of the LDOS (i.e.,
quasiparticle interference spectrum) according to the relation
ξ � 1/

√〈�k2
x 〉. Figure 4(b) shows a plot of the length scale

FIG. 4. (a) Normalized LDOS at different energies for the chem-
ical potential disorder. (b) Comparison of energy dependence of
LDOS-LDOS correlation length between the topological domain
disorder (orange) and the chemical potential disorder (blue) cases.

ξ as a function of the tunneling energy relative to the Dirac
point. We find that for chemical potential disorder (shown in
blue) ξ increases substantially as energy is reduced. This is
in contrast to topological domain disorder (shown in yellow)
where the associated length scale ξ is seen to be energy
independent in Fig. 4(b). This conclusion is consistent with
the collapse of the various LDOS peaks seen in Fig. 3(c),
which shows that the widths of peaks at the edge of trivial
regions are independent of energy. This can be understood
as these peaks being associated with tunneling into domain
walls, whose widths are controlled by spatial variation of the
disorder parameter δ(x).

The results discussed so far have been based on a simplified
model for disorder where the variation of the disorder param-
eter along the y direction was ignored. Finally, we present the
results from the simulation of a more realistic model where the
topological domain disorder is introduced in 2D at each layer.
The corresponding disorder potential in momentum space for
each layer, w2D(kx, ky, z), can be obtained by substituting kx

in Eq. (5) by k‖ =
√

k2
x + k2

y . In this case the trivial islands
[shown as white regions on the top layer in Fig. 5(a)] are finite
in size along all directions. The 2D LDOS is plotted using
a color plot in Fig. 5(b) for the top layer and the next layer
in the upper panel and lower panel, respectively. Correlating
to the trivial island picture in Fig. 5(a) it can be noted that
at the trivial regions the top layer LDOS is reduced, whereas
the second layer LDOS is increased, consistent with the result
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FIG. 5. (a) Trivial islands shown as white patches, whereas the
dark blue region is topological; (b) top layer 2D LDOS and next
layer 2D LDOS shown in color map in the upper and lower panel,
respectively, where the density gradient goes high to low from yellow
to dark blue. (c) Normalized top layer LDOS plot at five different
energy values along the green line marked in (a).

for the 1D disorder case as discussed before. Moreover, the
energy collapse feature of the LDOS at different energies [as
shown for a section of the sample on the top layer in Fig. 5(c)]
is also present in the 2D disordered case.

In our model the suppression of the LDOS on the trivial
regions of the top layer and the correlated enhancement of
the same on the next layer can be explained as follows. The
topologically trivial domains on the top layer do not let any
of the Dirac surface states penetrate inside them. Rather, the
layer below the top layer at those regions provides the bound-
ary between the bulk topological phase and the trivial phase
residing on the top layer, which implies that the gapless states
are shifted below to the next-to-top layer that is topological.

IV. SUMMARY AND DISCUSSION

In this work, we have studied the effect of alloy disor-
der (i.e., Te/Se composition fluctuations) on the topological
surface state of FTS. In order to do this, we have introduced
a variant of the BHZ model [28] for the strong TI phase
that is appropriate to a layered system such as FTS where
the bandwidth from out-of-plane tunneling is much smaller
than the in-plane bandwidths. Similar to the BHZ model, the

topological properties such as the surface state dispersion and
the near-gap bulk band structure can be characterized with a
few phenomenologically determined parameters. We have fit
our model to ARPES [3,4] and been able to reproduce the
qualitative structure of the surface ARPES dispersion. The
BHZ model, which is based on a small wave-vector approxi-
mation, is not appropriate to FTS because of the narrow band
width in the out of plane direction. Our phenomenological
model can be combined with input from DFT calculations [1]
to model the effect of Te composition fluctuations as a shift of
the odd parity pz band. As a side note, our phenomenological
approach to model topological invariant fluctuations can be
modified for the 2D FTS system which also possesses nontriv-
ial topological properties as a function of x [30]. We find that
fluctuations in the position of the odd parity band can drive
local fluctuations in the topological invariant, which in turn
can lead to the disappearance of the surface state in parts of
the surface for the 3D sample. More generally the fluctuations
in topological invariant can also be driven by the change of
the interlayer hopping term, denoted by δz in our model as
the invariant is determined by the ratio of the on-site potential
difference, δ‖, and interlayer hopping amplitude, δz, denoted
by δ(x) = |δ‖(x)/δz|. Since the interlayer hopping amplitude
is mediated by the atomic orbitals from the next-to-top layer,
the composition of Se/Te only on the topmost layer may not
correlate to the local topological property on the surface of the
sample. The disappearance of the surface state at the trivial
domains is marked by a reduced local density of states on
the top surface in these areas, which are bounded by domain
walls of peaks in the LDOS. One complication that we discuss
is that the suppressed density of states in the nontopological
domains may appear similar to topological areas where the
Fermi level crosses the Dirac point. We have shown that the
effects of topological domain disorder can be distinguished
from other forms of disorder by considering the energy depen-
dence of the pattern of the fluctuation of density of states (also
known as quasiparticle interference). Another relevant issue
regarding the LDOS measurement of the surface states using
STM is the presence of large M pockets near the in-plane
BZ corner at the same energy as the Dirac cone. Hence the
states from the M pocket, in spite of them being from bulk
bands, can contribute to the STM measured surface electronic
density of states. However, states near the M pocket carry
large momentum and the corresponding density oscillates at
the scale of the in-plane lattice constant (�0.4 nm), which is
an order of magnitude smaller than the length scale of density
fluctuations due to the proposed domain disorder (�3 nm).
Thus averaging of the electronic density over a length scale
which is in between these two lengths should suppress the
contribution from the states near the M pocket. As a relevant
point we note that the experimental evidence of a nearly V-
shaped density of states around the Dirac point [15], which is
the characteristics of a 2D Dirac dispersion, indicates that the
long wavelength surface state density is not affected by the
states from any other nontopological bands.

As mentioned in the Introduction, our motivation to study
the effect of alloy disorder on the topological surface states
was based on its potential effect on the vortex MBSs. As an
example of how local fluctuations in the topological character
of a system can affect MBSs, consider a scenario where in
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the SC state a vortex core penetrates through a trivial region
on the top surface. Since the trivial region does not support
topological states on the surface, such a vortex would not be
expected to support any MBS. This would in principle be
a potential explanation for the absence of MBSs in a large
fraction of vortex cores in experiments [14,16]. Furthermore,
such a topological domain disordered phase might also help
explain the absence of quantized conductance in a large set
of vortices [20]. This would occur when the trivial region is
small in size relative to the superconducting coherence length
so that the MBS wave function is still accessible to tunneling
but at a reduced tunneling strength. Quantitative effect on the
MBS wave function would depend on the actual correlation
length for the alloy disorder and must be left to future work.

The alloy disorder that is natural in FTS can have other
effects such as change in band width of the odd parity band
and the topological gap. In fact, the disappearance of the
topological surface state in experiments [24] can in principle
arise from a reduction or shift in the topological gap as op-

posed to a change in the topological invariant discussed in the
manuscript. However, since DFT calculations or experimental
data are not available to estimate these effects, it is diffi-
cult to estimate at present. Furthermore, correlation between
the alloy disorder, i.e., Te/Se positions, may complicate the
analysis of the disorder effects. However, one can hope that
these effects together with iron impurity induced Zeeman field
[22] as well as nematic fluctuations and strain effects can be
included into the surface state model to develop a complete
understanding of the evolution of vortex level spectra with
magnetic field [14].
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