
PHYSICAL REVIEW B 105, 035123 (2022)

First-principles wave-vector- and frequency-dependent exchange-correlation
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We propose a spatially and temporally nonlocal exchange correlation (XC) kernel for the spin-unpolarized
fluid phase of ground-state jellium for use in time-dependent density functional and linear response calculations.
The kernel is constructed to satisfy known properties of the exact XC kernel to accurately describe the correlation
energies of bulk jellium and to satisfy frequency-moment sum rules at a wide range of bulk jellium densities,
including those low densities that display strong correlation and symmetry breaking. These effects are easier to
understand in the simple jellium model than in real systems. All exact constraints satisfied by the recent MCP07
kernel [A. Ruzsinszky et al., Phys. Rev. B 101, 245135 (2020)] are maintained in the revised MCP07 (rMCP07)
kernel, while others are added. The revision f rMCP07

XC (q, ω) differs from MCP07 only for nonzero frequencies ω.
Only at densities much lower than those of real bulk metals is the frequency dependence of the kernel important
for the correlation energy of jellium. As the wave vector q tends to zero, the kernel has a −4πα(ω)/q2 divergence
whose frequency-dependent ultranonlocality coefficient α(ω) vanishes in jellium, and is predicted by rMCP07
to be extremely small for the real metals Al and Na.
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I. INTRODUCTION

Ground-state density functional theory (g.s. DFT) [1] is a
mature field that yields exact-in-principle g.s. energies and
densities of any nonrelativistic many-electron system. Prac-
tical applications of g.s. DFT require approximations to the
exchange-correlation (XC) energy EXC, the simplest of which,
the local density approximation (LDA), predates modern g.s.
DFT. Modern approximations to the XC energy can make
reasonable predictions of g.s. properties, often comparable to
experiments.

g.s. DFT can be extended to the time domain to include
either arbitrary [2] or weak [3,4] time-dependent external
potentials (TD-DFTs). Within the exact theory or the linear-
response regime, the XC potential rather than the XC energy
must be approximated. The XC kernel fXC is related to the XC
potential vXC via functional differentiation,

fXC(r, t ; r′, t ′) = δvXC(r, t )

δn(r′, t ′)
θ (t − t ′), (1)

with θ (y > 0) = 1 and θ (y < 0) = 0. fXC can be computed
from the second functional derivative of EXC from a g.s.
calculation only in an adiabatic approximation (assuming the
response is local in time). Approximate expressions for EXC

used in g.s. calculations do not necessarily provide similarly
accurate adiabatic approximations to fXC for use in TD-DFT
calculations.

*kaplan@temple.edu
†perdew@temple.edu

Thus, highly accurate approximations to the exact fXC

are needed for realistic beyond-random phase approximation
(RPA) descriptions of materials. g.s. DFT is instructive in
this regard: functionals that are most broadly transferrable,
e.g., that of Ref. [5], are designed to satisfy known limiting
behaviors of the exact EXC. These include the uniform density
(jellium) limit, gradient expansions for slowly varying metal-
lic densities, and scaling relations. Being able to find EXC (or
fXC) for the simple jellium model is necessary but insufficient
for computation of EXC (or fXC) in real materials.

Recently, an approximate, dynamic kernel for jellium
was proposed with similar construction principles. Jellium is
characterized by a uniform electron density n = 3/(4πr3

s ) =
k3

F/(3π2). In this paper, we will use Hartree atomic units,
h̄ = me = e2 = 1, for all quantities and numerical coefficients
unless noted otherwise. rs is presumed to be in units of the
bohr radius. The modified Constantin-Pitarke 2007 (MCP07)
[6] kernel is constructed as an interpolation between static
fXC(q, ω = 0) and long-wavelength dynamic fXC(q = 0, ω)
limits:

f MCP07
XC (q, ω) =

{
1 + e−kq2

[
fXC(0, ω)

fXC(0, 0)
− 1

]}
× f MCP07

XC (q, 0). (2)

In this equation, fXC(0, ω) is the Gross-Kohn-Iwamoto (GKI)
kernel [3,7], which satisfies known analytic and asymptotic
ω → ∞ behaviors of the exact fXC(0, ω). The static limit
is controlled by f MCP07

XC (q, 0), a revision to the Constantin-
Pitarke static kernel [8] that enforces known exact constraints
on the short-wavelength limit fXC(q → ∞, 0), as well as
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the gradient expansion of fXC(q, 0) for slowly varying
densities. fXC(0, 0) is the adiabatic local density approxi-
mation (ALDA), found as the q → 0 limit of the Fourier
transform of δ2EXC

δn(r)δn(r′ ) evaluated at the uniform density n. The
order in which the |q| → 0 and ω → 0 limits are taken yields
different limiting behaviors for the exact fXC, as discussed in
Appendix C. For MCP07 and our model fXC, we make the
simplifying approximation that either order of limits yields
the ALDA fXC. The inverse-squared screening wave vector

k = − fXC(0, 0)

4πB(rs)
, (3)

with B(rs) parameterized by Eq. (7) of Ref. [9], was chosen
to enforce two separate exact constraints on the static kernel
fXC(q, ω = 0) [6]:

lim
q→0

[ lim
ω→0

fXC(q, ω)] = fXC(0, 0), (4)

lim
q→∞[ lim

ω→0
fXC(q, ω)] = −4π

[
C(rs)

k2
F

+ B(rs)

q2

]
. (5)

C(rs) is given by Eq. (A2) of Ref. [8]. However, k also ap-
pears, through e−kq2

, in the dynamic MCP07 to control the
interpolation in Eq. (2) between the nonuniform static and
uniform dynamic limits. This choice was made consistent
with an Occam’s razor principle: Other things being equal,
the simplest hypothesis is to be preferred. We will investigate
the effect of modifying k in e−kq2

.
It should be kept in mind that the RPA, which sets f RPA

XC =
0, includes exchange effects and long-range correlation effects
exactly in metals [10]. The RPA lacks an accurate description
of short-range correlation [11], which is typically better de-
scribed by semilocal g.s. energy functionals (depending only
upon the electron density and its spatial derivatives), motivat-
ing the family of RPA+ energy functionals [12]. These can
provide highly accurate descriptions of metals, but do not test
fXC. In RPA+, a local or semilocal correction is added to RPA.

Although the ALDA, by definition, provides a better de-
scription of short-range correlation than does the RPA, ALDA
does not generally make better predictions than RPA. This
can be seen clearly in Fig. S10 of Ref. [13] which plots
jellium correlation energies per electron εc: the RPA makes
εc too negative, whereas the ALDA overcorrects RPA at all
densities. The ALDA also predicts onset of a static charge
density wave for rs ≈ 30 bohr, not in line with any quantum
Monte Carlo (QMC) predictions of Wigner crystallization. A
transition from the spin-unpolarized fluid phase to the Wigner
crystal phase is possible for rs ≈ 85 ± 20 bohr [14].

It should be noted that the exact value of rs for which
the fermion fluid crystallizes in jellium is still uncertain. The
earliest reliable prediction of a transition from the ferromag-
netic fluid phase to the Wigner crystal phase from QMC was
rs = 100 ± 20 bohr [14], with more recent QMC calculations
finding rs = 65 ± 10 bohr [15] and rs = 106 ± 1 bohr [16].
As the energy differences separating the Wigner crystal and
fluid phases of low-density jellium are extremely small (on the
order of 10−4–10−5 eV [14]), any small numerical, method-
ological, etc. errors can drastically alter the predicted phase
diagram at low densities, including the relative ordering of
the fluid phases. Moreover, each of the references cited here

used different approximation methods, and different methods
to estimate the uncertainty in their results. This makes a direct
comparison nontrivial.

For the present purposes of this work, however, it suffices
to know that (1) the Wigner crystallization phase is energeti-
cally competitive with the fluid phases for jellium at densities
rs � 60 bohr and (2) the structure factor of the fluid phase
is very weakly spin-dependent at these densities [17]. Neither
observation depends upon the precise values given previously,
but both are relevant for the construction of the kernel pre-
sented here.

Extensive tests of the MCP07 functional for real systems
are not currently available, and not without good reason, as
we shall discuss shortly. However, it was observed in Ref. [13]
that the MCP07 kernel can be improved in two regards: a more
accurate recovery of jellium correlation energies at all den-
sities and better satisfaction of the third frequency-moment
sum rule (see, for example, Eq. (3.142) of Ref. [18]) for low-
density jellium. Although the densities at which the MCP07
correlation energy is seriously in error are too low to be
important in real materials, they are the densities at which
jellium displays the interesting effects of strong correlation
and symmetry breaking. These effects are easier to understand
in a simple model like jellium than they are in real materials.
This motivates the main inquiry of this paper: improving the
MCP07 kernel for jellium at all densities and for known exact
sum rules.

Applications of the unmodified MCP07 and rMCP07 ker-
nels to real systems are likely to be limited to metals.
Intermetallic formation energies are described rather poorly
by RPA, but improve somewhat [19] with a wave-vector-
dependent uniform gas kernel, and might improve further with
MCP07 or rMCP07 kernels.

II. COMPARING CP07 AND MCP07 TO MOTIVATE
AN IMPROVED KERNEL

The construction principles underlying CP07 are the com-
mon link between all three kernels, although each differs
substantially in their wave vector and frequency dependence.
In analogy with g.s. DFT [5], we refer to their common
construction principle as the satisfaction of exact constraints.
One constructs an approximate kernel by interpolating be-
tween known limits of the exact fXC for jellium. The exact
constraints imposed on MCP07 seem to suffice only for the
density range rs � 10 bohr, which includes the typical range
of electron densities in metals. This range is of obvious im-
portance for practical purposes. We will argue that a good
deal of interesting physics is contained in the less-studied,
lower-density jellium.

The CP07 kernel is constructed for wave vectors q and
imaginary frequencies ω = iu only [8]:

f CP07
XC (q, iu) = 4π

q2
B(rs){exp[−K (rs, u)q2] − 1}

− 4π

k2
F

C(rs)

1 + 1/q2
. (6)

The B(rs) function is given by Eq. (7) of Ref. [9] and the
C(rs) function is given by Eq. (A2) of Ref. [8]. All frequency
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dependence is contained within the function K (rs, u); to
evaluate the kernel at real frequencies (or at arbitrary complex
frequencies), one must find the analytic continuation of the
kernel. As noted in Ref. [6], the approach to the large-q
limit of CP07 is not quite right. To compensate for that, the
CP07 K (rs, u) is fitted to ensure that f CP07

XC reproduces the
correlation energies per electron found with the Perdew-Wang
[20] local spin-density approximation (LSDA). K (rs, u) is a
rational polynomial in u.

MCP07 builds upon CP07 in a few substantial ways:
(1) Introducing an interpolation between zero and infinite

frequency limits, allowing for a more-controlled frequency
dependence.

(2) Using a function of real-valued frequency that is easily
continued to complex frequencies.

(3) Correcting CP07’s approach to the q → ∞ limit.
(4) Making the gradient expansion coefficients for weakly

-inhomogeneous densities more accurate (small q regime).
MCP07 adopts the structure of CP07 only for its static

limit, modifying the screening wave vector to have only den-
sity dependence [6]:

f MCP07
XC (q, 0) = 4π

q2
B(rs)

{
e−k(rs )q2

[1 + E (rs)q4] − 1
}

− 4π

k2
F

C(rs)

1 + [k(rs)q2]−2 . (7)

E (rs), defined in Eq. (14) of Ref. [6], controls the second-
order gradient expansion, and k(rs) ≡ k, shown in Eq. (3),
ensures recovery of the ALDA when q → 0. By correcting the
wave-vector dependence, including the correct second-order
gradient expansion omitted in CP07, MCP07 is able to predict
both the emergence of a static charge-density wave in low-
density jellium and a transition density in the correct range;
CP07 does not predict onset of a static charge-density wave
[6].

The MCP07 model has no fitted parameters but predicts
accurate correlation energies for jellium in a metallic range
of densities. The static MCP07 kernel is also highly accu-
rate in its predictions of jellium correlation energies. This
observation confirms the conjecture of Lein et al. [21] that
the correlation energies of high- and metallic-density jellium
are largely determined by the wave-vector dependence of the
kernel and are much less sensitive to its frequency depen-
dence. They advanced this argument after noticing that the
Richardson-Ashcroft kernel [22] and its static limit predicted
similarly accurate correlation energies at higher densities.
Recently, this conjecture was confirmed [23] in finite one-
dimensional systems by comparing the energies computed
using the exact kernel and its static limit. As we will show,
this conjecture does not apply at lower densities (in three
dimensions).

The frequency dependence of the MCP07 kernel, con-
trolled by fXC(0, ω) separately from the static kernel
f MCP07
XC (q, 0), is modeled by the Gross-Kohn [3] dynamic

LDA, with a correct high-frequency limit due to Iwamoto
and Gross [7]. We hereafter refer to this kernel as the GKI
dynamic LDA. In CP07, the frequency dependence was cho-
sen to satisfy first- and third-moment frequency sum rules
(Eqs. (3.141) and (3.142) of Ref. [18]) in the q → 0 limit.

Reference [13] demonstrates that a dynamic kernel satisfying
the third-frequency moment sum rule in this limit does not
necessarily satisfy it for all q. The GKI dynamic LDA is
constructed for real frequencies and satisfies the same sum
rules as CP07. It is easily continued to arbitrary complex
frequencies.

To better emphasize the construction principles underly-
ing the XC kernel presented here, we refer to this kernel
as the revised MCP07 (rMCP07) kernel. rMCP07 retains all
exact constraints satisfied by CP07 and MCP07 and adds a
few auxiliary constraints: accurate description of the jellium
structure factor, sum rules, and correlation energies at all
densities. These constraints were already satisfied sufficiently
by MCP07 in the typical metallic range of densities but not at
lower densities [13].

By design, rMCP07 makes modest corrections to MCP07
in the metallic range of densities and more substantial cor-
rections in the intermediate-to-low range of densities. For
practical purposes, this means that rMCP07 and MCP07
should be comparably accurate for typical metals—although
rMCP07 also prescribes a numeric parametrization of the
analytic continuation of the kernel to imaginary frequencies,
a boon for computational efficiency.

From a theoretical standpoint, low-density jellium models
exotic phenomena that are often associated with complex
materials: strong correlation [24,25] and symmetry break-
ing [13,14,26], among others. An accurate model of fXC at
low densities is needed to further study emergent phenom-
ena in jellium. Because jellium is simple in comparison to
real systems, the origins of these effects can be most easily
understood in the jellium model. Both MCP07 and rMCP07
correctly predict a drop in the spectral function toward zero
frequency around the known wave vector of the incipient
static charge-density wave, as shown in Ref. [13] and here.

In g.s. DFT, the LSDA is the uniform-density limit of more
sophisticated approximations to the XC energy (e.g., Ref. [5]).
LSDA is constructed to accurately model the XC energy of
jellium at all physical spin densities. XC energy functionals
that tend to the LSDA for uniform densities have been shown
to describe sp-bonded molecules more accurately than those
that do not [27]. These systems are completely dissimilar to
jellium, but still have energetically relevant regions of lower
inhomogeneity that are well-described by LSDA.

In the same way, construction of general-purpose kernels
for real materials should be aided by construction of a highly
accurate, approximate kernel for jellium, where the q → 0
limit of the kernel is a finite negative number. We do not sug-
gest that a kernel for jellium can accurately describe systems
like insulators, for which it was determined empirically that
the correct long-wavelength limit of the kernel is [28]

lim
q→0

fXC(q, q, ω) = −4πα(ω)

q2
. (8)

The functional form of α(ω), often called the ultranonlocality
coefficient, is not known in general. Empirical approximations
using material-specific parameters (e.g., Ref. [29]) typically
use either experimental data or results from higher-level theo-
ries to fit a model for α(ω). Appendix D presents approximate
values of this coefficient in metals, calculated from a for-
mula for weakly inhomogeneous systems using the jellium
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kernel developed here. Many empirical kernels for real sys-
tems model this behavior, but they contain parameters that are
fitted to experimental data or g.s. DFT input. A general pur-
pose construction would not rely (so heavily) on empiricism.
Determining an accurate, approximate kernel for jellium is
a necessary but insufficient step for constructing a general-
purpose kernel for real materials, including metals.

We will demonstrate the versatility of this kernel by calcu-
lating physical quantities that have interpretations in real sys-
tems, and not with self-consistent calculations. A few freely
available codes, e.g., GPAW [30] and the DP code [31], can
perform self-consistent TD-DFT calculations in solids using a
model fXC(q, ω) as input. However, obtaining well-converged
solutions in real systems is often extremely challenging and
deserves due attention in a dedicated computational work. As
this is beyond the scope of the current paper, we will instead
focus on direct applications of the rMCP07 kernel to physical
properties, such as screening due to a weak perturbation.
As another direct application of our kernel, one could use
Eqs. (21) and (23) of Ref. [32] to construct a fully nonlocal
approximation to the XC potential for a given density.

There are practical limitations to using a model fXC(q, ω)
in TD-DFT codes. If, for all real frequencies, only the imagi-
nary part of the kernel is defined in closed form, the real part
must be computed by a Kramers-Kronig relation. If the kernel
is defined in closed form only at real frequency, one must then
analytically continue the kernel to imaginary frequencies to
efficiently compute correlation energies, as will be discussed.
The continuation is typically done by numeric integration or
Taylor expansion. The cost of repeated numeric integration
(or series expansion) compounds substantially. Our solutions
to these problems will be discussed in Sec. III.

III. REVISED MCP07 XC KERNEL: rMCP07

We begin by reparametrizing Re fXC(0, ω) at real frequen-
cies ω. Note that the GKI kernel proposes only an imaginary
part of fXC(q = 0, ω) and the real part must be constructed
via the Kramers-Kronig relation:

Re fXC(0, ω) − fXC(0,∞) = 1

π
P

∫ ∞

−∞

Im fXC(0, u)

u − ω
du. (9)

Iwamoto and Gross determined the infinite-frequency limit to
be [7]

fXC(0,∞) = −1

5

3π

k2
F

− 1

15n

[
22εUEG

c + 26rs
dεUEG

c

drs

]
, (10)

with εUEG
c the correlation energy per electron in a uniform

electron gas (UEG). Reference [13] determined that the fre-
quency dependence of the MCP07 kernel at intermediate rs

(particularly rs = 69) was likely in error, as the static structure
factor

S(q) =
∫ ∞

0
S(q, ω)dω (11)

exhibited unphysically large peaks [33], as compared to pre-
viously unpublished QMC data [15] shown in Appendix B.
Here, we define the term intermediate densities as that range
of densities between normal metallic densities (1 � rs � 10)
and the Wigner crystal phase of jellium (rs � 85). Thus we

will use intermediate density to refer to the approximate range
10 � rs � 100. The dynamic structure factor, or spectral func-
tion,

S(q, ω) = − 1

πn
Imχ (q, ω) (12)

is determined by the adiabatic-connection fluctuation-
dissipation theorem [34,35] for the interacting density-density
response function,

χ (q, ω) = χ0(q, ω)

1 − [4π/q2 + fXC(q, ω)]χ0(q, ω)
, (13)

and χ0(q, ω) is the noninteracting, or Kohn-Sham, response
function [36].

In the MCP07 kernel, Re fXC(0, ω) is parametrized as

Re fXC(0, ω) = fXC(0,∞) − c[b(n)]3/4h(ω̃), (14)

ω̃ = [b(n)]1/2ω, (15)

b(n) =
{γ

c
[ fXC(0,∞) − fXC(0, 0)]

}4/3
, (16)

where γ = 
( 1
4 )2/(32π )1/2 and c = 23π/15 are determined

from the static and infinite frequency limits of [3]

Im fXC(0, ω) = −c[b(n)]3/4g(ω̃), (17)

g(X ) = X

[1 + X 2]5/4
. (18)

The scaling relations in Eqs. (14)–(18) greatly simplify the
numerical evaluation of the kernel, although they are believed
to be exact only within the GKI frequency interpolation. The
dimensionless function h(X ) enforces these limits,

lim
X→0

h(X ) → 1

γ
, (19)

lim
ω→∞ Re fXC(0, ω) → fXC(0,∞) + c

ω3/2
, (20)

while modeling the finite frequency dependence of
Re fXC(0, ω) through the Kramers-Kronig principal value
integral. As noted in the Introduction, repeated evaluation
of Re fXC(0, ω) through the Kramers-Kronig integral is
computationally expensive. Therefore, an accurate model of
the Kramers-Kronig-derived frequency dependence through
h is an essential component of an analytic and numerically
efficient fXC(0, ω). Figure 4 of Ref. [6] shows that h
adequately models this frequency dependence, however, h
can be improved. We propose a simple modification to the
MCP07 h(X ) function

h(X ) = 1

γ

1 − c1X 2

[1 + c2X 2 + c3X 4 + c4X 6 + (c1/γ )16/7X 8]7/16
,

(21)
where the parameters

(c1, c2, c3, c4) = (0.174724, 3.224459, 2.221196, 1.891998)
(22)

were determined by directly fitting to numeric Kramers-
Kronig results. Note that h is an even function of real-valued
frequency. (An exact expression for h is given in Eq. (4.84)
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of Ref. [37], however, this expression involves nonstandard
special functions.)

We also need to analytically continue the GKI kernel to
imaginary frequencies. As this case is useful for the evaluation
of the correlation energy, the analytic continuation to purely
imaginary frequencies can be accurately represented by

fXC(0, iu) ≈ −c[b(n)]3/4 j(ω̃) + f (0,∞), (23)

j(y) = 1

γ

1 − k1y + k2y2

[1 + k3y2 + k4y4 + k5y6 + (k2/γ )16/7y8]7/16
,

(24)

with the ki,

(k1, k2, k3, k4, k5) = (1.219946, 0.973063, 0.42106,

1.301184, 1.007578), (25)

determined by a nonlinear least-squares fit to an rs-
independent form, followed by a grid search to refine the
parameters. u � 0 is purely real.

In this paper, we will use the Perdew-Wang parametrization
[20] of the correlation energy per electron in jellium, as this
yields an improved, smoother fit to QMC data [14] than does
the Perdew-Zunger parametrization [38] used for fXC(0, 0) in
the MCP07 kernel. Reference [13] also made it clear that the
MCP07 kernel does not adequately reproduce the correlation
energies per electron in jellium at intermediate densities (10 <

rs < 100). The correlation energy per particle is given by the
multidimensional integral [10],

εc = 1

2

∫
d3q

(2π )3

∫ 1

0

dλ

λ

∫ ∞

0
dω

4πλ

q2
[Sλ(q, ω) − S0(q, ω)],

(26)
where fxc,λ(q, ω, rs ) = λ−1 fXC(λ−1q, λ−2ω, λrs) [21] and Sλ

is evaluated using the coupling-constant λ-scaled fXC. Note
that S0(q, ω) = −Imχ0(q, ω)/(πn). We adopt a similar inte-
gration scheme as Ref. [13] to evaluate correlation energies
per particle, but use a grid with a fixed number of points
chosen to recover the RPA values reported there.

The screening wave vector k in Eq. (2) for the dynamic
MCP07 kernel was chosen to be identical to the wave vector
appearing in the static part of the MCP07 kernel. That choice
was made consistent with an Occam’s razor-style construction
principle: free parameters should be avoided when possible.

Consider the revision

f rMCP07
XC (q, ω) =

{
1 + e−(q/̃k)2

[
fXC(0,�)

fXC(0, 0)
− 1

]}
× f MCP07

XC (q, 0), (27)

� = p(rs, q)ω, (28)

k̃ = kF
A + Bk3/2

F

1 + k2
F

, (29)

p(rs, q) =
( rs

C

)2
+

[
1 −

( rs

C

)2]
exp[−D(q/̃k)2]. (30)

The density dependence of k̃ will be discussed below. p(rs, q)
is designed to tend to one as q → 0, but to become much
greater than one when rs → ∞ with q > 0. Moreover, the

TABLE I. Jellium correlation energies per particle εc, in
Hartree/electron, for a variety of XC kernels and reference PW92
[20] values. For a plot of εc on the range 0.1 � rs � 120, see Fig. 1.
The values of εc were determined using a denser integration grid than
was used to fit the rMCP07 parameters.

rs εc PW92 RPA ALDA MCP07 rMCP07

0.1 –0.1209 –0.1440 –0.1111 –0.1286 –0.1267
0.2 –0.1011 –0.1234 –0.0908 –0.1079 –0.1061
0.3 –0.0900 –0.1117 –0.0794 –0.0962 –0.0944
0.4 –0.0824 –0.1035 –0.0716 –0.0881 –0.0863
0.5 –0.0766 –0.0973 –0.0657 –0.0819 –0.0802
0.6 –0.0720 –0.0923 –0.0609 –0.0770 –0.0753
0.7 –0.0682 –0.0882 –0.0570 –0.0729 –0.0712
0.8 –0.0650 –0.0846 –0.0537 –0.0694 –0.0677
0.9 –0.0622 –0.0815 –0.0508 –0.0663 –0.0647
1 –0.0598 –0.0788 –0.0483 –0.0636 –0.0621
2 –0.0448 –0.0618 –0.0328 –0.0471 –0.0464
3 –0.0369 –0.0528 –0.0246 –0.0383 –0.0383
4 –0.0319 –0.0468 –0.0191 –0.0326 –0.0331
5 –0.0282 –0.0425 –0.0152 –0.0285 –0.0293
6 –0.0254 –0.0391 –0.0120 –0.0253 –0.0264
7 –0.0232 –0.0364 –0.0095 –0.0228 –0.0240
8 –0.0214 –0.0342 –0.0074 –0.0207 –0.0221
9 –0.0199 –0.0323 –0.0055 –0.0190 –0.0205
10 –0.0186 –0.0307 –0.0039 –0.0175 –0.0191

product r2
s ω has no λ dependence under the coupling-constant

integration of Eq. (26). Here

(A, B,C, D) = (3.846991, 0.471351, 4.346063, 0.881313)
(31)

were determined by minimizing the unweighted sum

σ =
∑

rs

∣∣εrMCP07
c (rs) − εPW92

c (rs)
∣∣. (32)

For the fit, 20 values of rs in the range 1 � rs � 100 bohr
were used to determine A, B, C, and D. Overfitting is avoided
by using a large number of rs values and a fixed integration
grid, where numeric convergence is not guaranteed to iden-
tical precision for each rs. Figure S10 of Ref. [13] shows
that εMCP07

c is least accurate at intermediate rs, motivating
the factor of r2

s in Eq. (30). The accuracy of the rMCP07
kernel at intermediate densities is greatly improved, as seen
in Fig. 1. The rMCP07 kernel also represents an accurate
extrapolation to rs > 100 and rs < 1. From Fig. 1, we also see
that rMCP07 improves upon the CP07 kernel at low densities,
where CP07 predicts too-negative correlation energies, and at
higher densities, where CP07’s behavior is erratic. At highest
densities, the Richardson-Ashcroft local field factor [22] (with
corrections from Ref. [21]) is most accurate, but its accuracy
degrades substantially as rs increases.

At low densities, exchange and correlation have the same
length scale, the Fermi wavelength 2π/kF. Accordingly, at
low densities, k̃ ∝ kF. At high densities, the appropriate length
scale for correlation is the inverse of the Thomas-Fermi wave
vector, kTF = √

4kF/π . Thus, k̃ ∝ kTF at high densities. These
effects are built into Eq. (29).

There is existing precedence for scaling the frequency-
dependent part of the kernel by a function of q, as we have
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FIG. 1. Demonstrating the higher accuracy of the rMCP07 kernel in predicting jellium correlation energies per electron (in units of hartree,
Eh, per electron; note that 1Eh ≈ 27.211 eV) at a range of density parameters rs (in units of bohr radii a0 ≈ 0.529 Å). Also depicted are the
values computed with the Constantin-Pitarke (CP07) [8] kernel and Richardson-Ashcroft (RA) [21,22] local field factor [see Eq. (33)]. The
inset plots the range 0 < rs � 15. PW92 [20] (black, dashed) is essentially exact. For the values plotted here in the range 0.1 � rs � 10, see
Table I. Unlike CP07 and rMCP07, MCP07 is not fitted to the correlation energy.

by introducing �(rs, q, ω). Dabrowski [39] sought to extend
the long-wavelength Gross-Kohn kernel [3] to nonzero q by
enforcing zero and infinite [40] frequency limits on the spin-
symmetric local field factor [18]:

G+(q, ω) = 1

2
[G↑↑(q, ω) + G↑↓(q, ω)] = − q2

4π
fXC(q, ω).

(33)

The Dabrowski kernel is limited in that it uses older expres-
sions for the static local field factors [41–43] which have no
closed form, and predated the work of Iwamoto and Gross
[7], which corrected the Gross-Kohn expression to enforce the
third frequency-moment sum rule.

It should also be noted that the spin-antisymmetric local
field factor G−(q, ω) = [G↑↑(q, ω) − G↑↓(q, ω)]/2 is needed
to describe the spin-spin response function [18]:

χszsz = χ0(q, ω)

1 + (4π/q2)G−(q, ω)χ0(q, ω)
. (34)

At present, we lack sufficient information to determine a
first-principles, spin-polarized fXC from the uniform elec-
tron gas. Works like those of Richardson and Ashcroft [22]
are therefore useful in understanding the spin-spin response,
which is needed to describe two-electron interactions [44],
such as those that spur formation of Cooper pairs. It is im-
portant to note that the full correlation energy is still included
in fXC(q, ω), even if it is not decomposed into same- and
opposite-spin components. This is in stark contrast to some
approximate expressions for G+ which assume G↑↓ ≈ 0,

thereby neglecting at least opposite-spin correlation inter-
actions. A spin decomposition of the ALDA is given in
Ref. [45].

Our kernel retains the broad features of these earlier
works. It may well be possible to enforce known limits on
G(q, ω), however, all existing work is rs dependent, primarily
in a metallic range 1 � rs � 10. Real solids have regions
of significant density depletion (e.g., vacancies and voids in
semiconductors). By constraining the model kernel to recover
accurate jellium energetics at a wide range of densities, we
hope to better describe real systems.

A similar approach was taken by Panholzer et al. [46], who
directly tabulated highly accurate expressions for fXC(q, ω)
in jellium at a range of densities 0.8 � rs � 8, frequencies,
and wave vectors, as well as a prescription for using it in real
systems (a connector). Many-body theory approaches can also
be used to tabulate the dielectric function of jellium, as was
done in Ref. [47] for the static response. Our approach may
yield greater generality.

These modifications also soften the peak structure seen in
S(q) of Eq. (11) for rs = 69. Figures 2 and 3 show clearly
that the large MCP07 peak in the rs = 69 curve is reduced
substantially, while the rs = 4 curve is essentially unchanged.
It is difficult to determine what S(q) should look like at all
densities. A parametrization of the jellium S(q) from QMC
data for rs � 10 [48] suggests a monotonic increasing S(q) at
most densities. At intermediate densities, this parametrization
represents an extrapolation of unknown accuracy; previously
unpublished QMC data [15] at lower densities suggests that
S(q) is nonmonotonic, as shown in Appendix B.
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FIG. 2. Comparison of the static structure factors S(q) for the
MCP07 (dashed) and rMCP07 (solid) kernels at a higher, rs = 4
(blue), and much lower, rs = 69 (orange), density. The rMCP07
kernel almost completely eliminates the unphysically large peak
structure seen in the MCP07 kernel at lower densities. For a plot of
the rMCP07 static structure factor alone, see Fig. 3.

IV. CHARACTERIZING THE rMCP07 KERNEL

A. Static charge density wave in jellium

Here we will discuss the appearance of a static charge-
density wave in jellium at low density. A first-order phase
transition often occurs close to a singularity in a linear re-
sponse function, in our case χ (q, ω) of Eq. (13). Let kF,c be the
critical Fermi wave vector [and rs,c = (9π/4)1/3/kF,c] such
that the static dielectric function

ε̃(q, 0) = 1 −
[

4π

q2
+ fXC(q, 0)

]
χ0(q, 0) (35)

vanishes. The results of this calculation, comparable to Fig. 2
of Ref. [6], are shown in Fig. 4. As reported there, we find
that rs,c ≈ 30 for the ALDA, and rs,c ≈ 69 for MCP07; for
rMCP07, rs,c ≈ 68, exceedingly similar to MCP07. It should
be noted that MCP07 and rMCP07 do not have exactly the
same static limits because of the different parametrizations of
the ALDA used.

FIG. 3. The static structure factor S(q) of the rMCP07 kernel.

FIG. 4. Plot of the critical Fermi wave vector kF,c, or, equiva-
lently, critical Wigner-Seitz radius rs,c, such that the static dielectric
function of Eq. (35) vanishes in jellium, signaling possible onset of
a static charge density wave. For the RPA, kF,c = 0 at seemingly all
wave vectors considered here.

B. Sum rules

An important set of constraints on the spectral function are
frequency-moment sum rules of the form

�M (q) ≡
∫ ∞

0
ωMS(q, ω)dω, (36)

where �M is ostensibly known. For example, the f -sum rule
(see Eq. (3.141) of Ref. [18]) states that the first frequency
moment, in jellium

�1(q) = q2

2
, (37)

which was already well-satisfied by MCP07 [13]. Refer-
ence [13] demonstrated that MCP07 struggled with the third
frequency-moment sum rule (see Eq. (3.142) of Ref. [18])

�3(q) = q2

2

{
q4

4
+ 4πn + 2q2(t0 + tc) + 1

π

∫ ∞

0
dk

×
∫ 1

−1
du k2u2[S(

√
q2 + k2 − 2kqu) − S(k)]

}
(38)

in jellium at low densities. In Eq. (38), t0 = 3
10 k2

F is the nonin-
teracting kinetic energy per electron in jellium, and tc is the
interacting kinetic energy per electron. tc can be computed
from the virial theorem [49]

tc = −4εc(rs, 0) + 3vc(rs, 0), (39)

where εc(rs, ζ ) is the correlation energy per electron of
jellium, vc = ∂ (nεc)/∂n is the corresponding (g.s.) corre-
lation potential, and ζ = (n↑ − n↓)/n is the relative spin-
polarization, which we take to be zero. To evaluate tc, we use
the parametrization of εc(rs, ζ ) given by Ref. [20].

The rMCP07 kernel satisfies the third moment sum rule
nearly exactly at a range of densities, as shown in Fig. 5. This
figure was generated in much the same way as Fig. S9 of
Ref. [13], however, the integration cutoff was set to kc = 14kF,
much larger than the cutoff used there (∼4kF). Moreover, a
careful extrapolation to k > kc was made in this paper.
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FIG. 5. Relative differences in the third-frequency moment sum
rule of Eq. (38) for rMCP07. �L

3 represents the left-hand side of
Eq. (38) [

∫ ∞
0 ω3S(q, ω)dω] and �R

3 the right-hand side of Eq. (38).
The third moment sum rule is satisfied nearly exactly by rMCP07 at
a wide range of densities of jellium.

For comparison, Fig. 6 shows the relative differences in the
left- and right-hand sides of Eq. (38) computed with MCP07
using the higher cutoff. (Since neither the left nor the right
sides of Eq. (38) are known exactly, the standard relative error
cannot be calculated here.) Note that for both the MCP07
kernel and the rMCP07 kernel, increasing the cutoff to 30kF

introduces large numeric instabilities in the integration. The
maximum errors made by both kernels are tabulated in Ta-
ble II.

C. Dressed interaction

Within density response theory, the dressed interaction (the
effective electron-electron interaction that makes the RPA ex-

FIG. 6. Relative differences in the third-frequency moment sum
rule of Eq. (38) for MCP07. �L

3 represents the left-hand side of
Eq. (38) [

∫ ∞
0 ω3S(q, ω)dω], and �R

3 the right-hand side of Eq. (38).
The third moment sum rule is satisfied only approximately in MCP07
at intermediate to low density jellium. These results use a higher
integration cutoff kc = 14kF.

TABLE II. Comparison of the maximum unsigned relative dif-
ferences (MURD) for MCP07 and rMCP07 in the third moment sum
rule calculation, and the corresponding value of qMURD/kF where the
maximum occurs. As shown in Figs. 5 and 6, the relative difference
is defined as the difference between the left- and right-hand sides of
Eq. (38), divided by their sum.

rs MURD MCP07 qMURD/kF MURD rMCP07 qMURD/kF

4 0.048 2.06 0.034 2.19
10 0.125 2.16 0.074 2.40
30 0.358 2.29 0.149 2.74
69 0.808 2.42 0.213 3.00
100 0.830 2.86 0.185 3.00

act),

veff (q, ω) = vbare(q) + fXC(q, ω), (40)

where the bare interaction is vbare(q) = 4π/q2, is of central
importance, as shown by Eq. (13). As q grows large, it is
possible for veff to become negative; similarly, the dielectric
function

ε̃(q, ω) = 1 − veff (q, ω)χ0(q, ω) (41)

may become negative, as shown in Appendix A. The dressed
interactions are plotted for the rMCP07 kernel at rs = 4 and
69 in Figs. 7 and 8, respectively. At metallic densities and at
intermediate densities, the effective potential becomes attrac-
tive only for q � kF.

The scaled frequency � entering rMCP07 is greater
than the frequency ω for densities rs > C. Thus, at lower
densities, the rMCP07 kernel more rapidly approaches the
infinite frequency limit than does MCP07. These differ-
ences are discernible in the dressed interaction at metallic
densities. Moreover, as rs increases, the differences be-
come more pronounced, as � grows with r2

s for q � k̃.
For example, at rs = 69, the rMCP07 dressed interaction
has approached its infinite frequency limit for ω ≈ ωp(0),

FIG. 7. Real (solid) and imaginary (dashed) parts of the
scaled effective potential veff/vbare for rs = 4 bulk jellium with
the rMCP07 kernel. The crossings are Reveff (2.185kF, 0) = 0,
Reveff (2.398kF, ωp(0)) = 0, and Reveff (3.072kF, 4ωp(0)) = 0.
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FIG. 8. Real (solid) and imaginary (dashed) parts of the
scaled effective potential veff/vbare for rs = 69 bulk jellium with
the rMCP07 kernel. The crossings are Reveff (1.773kF, 0) = 0,
Reveff (2.889kF, ωp(0)) = 0, and Reveff (2.879kF, 4ωp(0)) = 0.

whereas the MCP07 kernel tends closely to its static limit for
ω = ωp(0).

There are numerous interpretations of a negative dressed
interaction or negative dielectric function [50], so we mention
only a few here. These conditions imply that the screened
interaction is attractive, which may underpin unconventional
mechanisms of superconductivity. The Kohn-Luttinger [51]
theory posits that Friedel oscillations (characteristic of jel-
lium and simple metal surfaces) lead to regions of attractive
dressed interactions, allowing for Cooper pairing without con-
sideration of electron-phonon interactions. A first-principles
description of superconductivity using a veff (q, ω) derived
from a well-constrained local field factor [22] was developed
by Richardson and Ashcroft [52]. For a phenomenological
review of attractive quasiparticle interactions, see Ref. [53];
for the relationship between the dielectric function and high-
Tc superconductors, see Ref. [50].

A collective mode corresponding to ε̃(q) < 0, where ε̃(q)
is the static dielectric function, has been called a ghost
plasmon [54], and it was found that this mode competes
with the plasmon mode at intermediate densities, rs ≈ 22
[55]. Given that the mode emerges from poles of ε̃(q, ω)
at conjugate imaginary frequencies [55], this excitation is
better labeled as an exciton. (The name “ghost exciton” is
eye-catching but badly obscures what the collective mode
represents. The original work [54] found that the collective
mode contributes dominantly to the first-frequency-moment
sum rule, and destabilizes the system.)

Further work [46] showed that the exciton appeared in the
ALDA static response but not in the RPA response. Their
work demonstrated that inclusion of two-particle, two-hole
(2p2h) excitations in a Fermi hypernetted chain-correlated
basis function calculation of bulk jellium indeed produces
an excitonic mode at intermediate densities. Figure 14 of
Appendix C shows that the MCP07 and rMCP07 kernels also
miss this excitonic mode, but that the dynamic LDA of Qian
and Vignale (QV) [56], which satisfies a different static limit
than the GKI dynamic LDA, captures the excitonic mode. The
QV kernel is discussed in Appendix C.

Consider instead the change in density δn due to a weak
external perturbation δvext. Linear response dictates that

δn(q, ω) = χ0(q, ω)δvs(q, ω) = χ0(q, ω)

ε̃(q, ω)
δvext, (42)

where

δvs(q, ω) = δvext(q, ω) + veff(q, ω)δn(q, ω) (43)

is the change in the Kohn-Sham potential due to the perturba-
tion. δvs describes how the density screens δvext, and thus can
be used to describe screening in real systems.

V. CONCLUSIONS

We have motivated, presented, and analyzed an XC kernel
for use in TD-DFT and linear response calculations based on
known exact constraints. This form is tightly constrained to
reproduce accurate jellium correlation energies at all densi-
ties, a feat at which many common XC kernels (even MCP07)
fail. As jellium contains much of the essential physics of
metals, we anticipate that the rMCP07 and MCP07 kernels
will accurately describe properties of real metals.

Both MCP07 and rMCP07 approximate the kernel of the
spin-unpolarized fluid phase of jellium. At densities typical of
valence electrons in metals, for which this phase is the g.s.,
both kernels accurately model fXC. At much lower densities,
the spin-unpolarized fluid, spin-polarized fluid, and Wigner
crystal phases are all very close in energy. The unpolarized
fluid phase may only be metastable in this range, although a
recent calculation shows it may be stable [17]. At these lower
densities, the MCP07 static structure factor deviates appre-
ciably from that of the paramagnetic fluid phase. rMCP07 is
constructed as an improvement upon MCP07 at all densities,
but especially at these lower densities where jellium displays
strong correlation and symmetry breaking. As shown in Ap-
pendix E, the wave-vector- and frequency-dependent MCP07
[13] and rMCP07 XC kernels correctly predict a drop in the
spectral function toward zero frequency at the known wave
vector of the incipient static charge density wave.

Our former interpretation [13] of Anderson’s explanation
for symmetry breaking required that at or near the critical
density n and wave vector q, 100% of the spectral weight
S(q, ω) should drop to zero frequency ω, as in Appendix E.
Our current and more defensible interpretation is that only a
significant fraction of the spectral weight should drop to zero
frequency.

The satisfaction of more exact constraints can sometimes
worsen some predictions. While rMCP07 is clearly more
accurate than MCP07 for the static structure factor, the corre-
lation energy, and the third-moment sum rule at intermediate
densities (10 < rs < 100), Fig. 9 and Appendix E suggest that
MCP07 may be more correct than rMCP07 for the plasmon
dispersion and in a qualitative sense for the spectral function
S(q, ω) at rs = 69. In Appendix A, Figs. 10 and 11 show
that the rMCP07 dielectric function ε̃ has an unexpected and
possibly spurious zero (in its real part) at rs = 69, q ≈ 2kF,
and ω = ωp(0), which MCP07 does not have, and which both
lack at rs = 4. This would create not only a strong peak in
S(q, ω) at ω = 0, but also a strong peak at ω = ωp(0). Remov-
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FIG. 9. Real (left) and imaginary (right) parts of the rMCP07 plasmon dispersion frequency ωp(q) such that |̃εrMCP07(q, ω)| < 10−6, with
ε̃ given by Eq. (41).

FIG. 10. Real (solid) and imaginary (dashed) parts of the RPA (left) and rMCP07 (right) dielectric functions ε̃(q, ω) = 1 − [ 4π

q2 +
fXC(q, ω)]χ0(q, ω) for ω = 0, ωp(0), and 4ωp(0), for rs = 4 jellium.

FIG. 11. Real (solid) and imaginary (dashed) parts of the RPA (left) and rMCP07 (right) dielectric functions ε̃(q, ω) = 1 − [ 4π

q2 +
fXC(q, ω)]χ0(q, ω) for ω = 0, ωp(0), and 4ωp(0), for rs = 69 jellium.
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ing this second zero of ε̃ might further improve the rMCP07
approximation to the XC kernel of jellium.

The XC kernel for a real material should, of course, reduce
to the jellium kernel as the electron density becomes more
uniform. Knowing this kernel for a real system would make
exact the RPA for the g.s. energy and would also enable an
accurate calculation of the optical absorption spectrum. The
main difference arises in the q → 0 limit, where the jellium
kernel tends to a finite constant, while the kernel of a real sys-
tem shows, at optical frequencies, an ultranonlocality or q−2

divergence that is further discussed in Appendix D. We find
that in rMCP07 the coefficient of this divergence is extremely
small for real simple metals.

A highly accurate approximation to the kernel for jellium is
a step toward an accurate kernel for real metals, and ultimately
for semiconductors and insulators. In the jellium limit, and
in the density range 0 < rs < 10 important for real materials,
the kernel fXC(n, q, ω) is described well by MCP07 and even
better by rMCP07, although both might be further improved
by making a more realistic interpolation fXC(n, 0, ω) between
the known high- and low-frequency limits (as discussed fur-
ther in Appendix C). But this improvement would likely lose
the closed-form analytic expression that makes the kernel
potentially most useful.

The code used to fit the revised MCP07 kernel is made
freely available in Ref. [57]. The data used to generate plots
of the revised kernel are available in the “published_data”
directory of the code repository [57].
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APPENDIX A: PLOTS OF THE rMCP07 DIELECTRIC
FUNCTION AND RELATED QUANTITIES

The plasmon dispersion curves, plotted in Fig. 9, were
made by zeroing out the dielectric function at complex fre-
quencies ω = u + iv (with u, v both real)

ε̃(q, u + iv) ≈1 −
[

4π

q2
+ fXC(q, u) − v

∂Im fXC(q, u)

∂u

+iv
∂Re fXC(q, u)

∂u

]
χ0(q, u + iv), (A1)

where a low-order Taylor expansion of fXC(q, u) has been
made to analytically continue the kernel to complex frequen-
cies just below the real axis. Without simplification, the Taylor

series of fXC(q, u) would be

fXC(q, u + iv) ≈ fXC(q, u0) + (u + iv − u0)
dfXC

du
(q, u0),

(A2)
with u0 a real frequency. In this calculation, we use the Taylor
expansion from u0 = u to analytically continue the kernel
only to imaginary frequencies. This is more rigorous than the
procedure used in Ref. [6], which used a Taylor series about
u0, and varied u and v. That procedure assumes the low-order
Taylor series about u0 also has validity for u ≈ u0, which
cannot be the case generally.

With that simplification

fXC(q, u + iv) ≈ fXC(q, u) + iv
∂ fXC

∂u
(q, u) (A3)

fXC(q, u + iv) ≈ fXC(q, u) + iv

[
∂Re fXC

∂u
(q, u)

+ i
∂Im fXC

∂u
(q, u)

]
. (A4)

As the plasmon frequencies lie just below the real axis, a
two-dimensional Newton-Raphson method was used to zero
out both components of the dielectric function simultaneously.
The Jacobian matrix

J =
(

∂Rẽε
∂u

∂Rẽε
∂v

∂Imε̃
∂u

∂Imε̃
∂v

)
(A5)

was calculated numerically. Then, given a guess of the plas-
mon frequency ωp, j (q) = u j + iv j , the next guess for the
plasmon frequency would be(

u j+1

v j+1

)
=

(
u j

v j

)
− J−1

(
Rẽε(u j, v j )
Imε̃(u j, v j )

)
. (A6)

The root finding algorithm stopped either when no roots could
be found or when [6]

Reωp(q) = 1
2 q2 + kFq, (A7)

indicating that the energies of the plasmon and a particle-hole
pair were degenerate. In all cases, we have found that the
numerical procedure failed before the particle-hole continuum
condition was met.

APPENDIX B: THE JELLIUM STRUCTURE FACTOR
FROM QMC DATA

This Appendix presents previously unpublished QMC data
for the static structure factor S(q) of jellium, at lower densi-
ties, rs � 10. These results are plotted in Fig. 12 and show
that the peak structure in S(q) at intermediate- to low-density
jellium is not as pronounced as in MCP07 (Fig. 2). De-
tails of the QMC computational methods can be found in
Refs. [15,26]. The structure factors have been computed using
the Fourier-transformed electron density

ρ(q) =
∑

σ

ρσ (q) (B1)

as

S(q) = 〈ρ(q)ρ(−q)〉/N (B2)
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FIG. 12. Previously unpublished QMC data of the static structure
factor S(q) in jellium [15] at lower densities. The data has been
smoothed by assuming a Gaussian noise distribution around each
point. See the discussion around Eq. (B3). These results are for the
spin-polarized fluid phase, which was found to be more stable than
the spin-unpolarized fluid phase for 75 � rs � 100 in Ref. [14], and
for 60 � rs � 100 in Ref. [26].

(see Refs. [15,26]), where σ = ±1 are the spin orientations
and N is the number of electrons. The calculations used
a fixed-node diffusion Monte Carlo method, based on a
Jastrow-type trial wave function. The extrapolation from the
variational Monte Carlo (VMC) and mixed estimators to the
exact estimator (see Ref. [58]) has not been applied, since at
low density (rs � 60), the difference between the VMC and
mixed estimates of S(q) is comparable to the error bar in
both approximate estimates. Improvements in technique, like
the backflow method of Ref. [17], are important to recover a
higher fraction of the exact correlation energy, as shown, for
instance, in Ref. [59]. However, as demonstrated in Ref. [59],
the relative contribution to the total correlation energy due
to backflow decreases monotonically with decreasing density,
going from 4.4% at rs = 0.5 to 1.4% at rs = 20. Therefore,
at the low densities (rs � 60) of interest for this discussion,
the improvements due to backflow are unlikely to affect the
picture significantly, at least for the computation of S(q).
Further, the results presented here are smoothed (the method is
described below). Therefore, we do not expect the qualitative
shapes of the structure factors presented here to change sub-
stantially when computed using more recent DMC methods.
An analytic parametrization of the structure factor at high
densities rs � 10 is given in Ref. [48].

Note that the data in Fig. 12 has been smoothed in the
following manner, which we call Gaussian noise smoothing.
Suppose we sample S(q) at M + 1 points q0, q1, ..., qM , and
consider the value of S(qi ) to be correlated to its 2N-nearest
neighbors, at most (by virtue of smoothness). Let NL ≡
max(0, i − N ) and NU ≡ min(M, i + N ). Then the smoothed
S̃(qi ) is given by

S̃(qi ) = W −1
NU∑

j=NL

S(q j ) exp

{
[S(q j ) − μi]2

σi

}
, (B3)

W =
NU∑

j=NL

exp

{
[S(q j ) − μi]2

σi

}
(B4)

for i = 0, 1, ..., M, where

μi = 1

NU − NL + 1

NL∑
j=NU

S(q j ), (B5)

σi = 1

NU − NL + 1

NL∑
j=NU

S(q j )
2 − μ2. (B6)

For q/kF < 1, N = 1, and for q/kF � 1, N = 4. These values
were chosen to make a reasonable compromise between data
fidelity and readability. The limit S(q → 0) → 0 is lost when
N is increased beyond 1 in this range. Conversely, the raw data
(available on the code repository) was too oscillatory near the
peak in each curve to be easily interpreted, and thus a larger
value of N was needed to smooth the larger, likely unrealistic
oscillations. However, increasing N beyond 4 was found to
break the limit S(q → ∞) → 1.

This method of data smoothing is similar to data binning
but with a generalized weight function. Data binning would
replace Eq. (B3) with a simple average,

S̃bin(qi ) = 1

NU − NL

NU∑
j=NL

S(q j ), (B7)

a method we also tried. However, a simple binning method
resulted in lower data fidelity (i.e., too much loss).

APPENDIX C: THE ORDER OF LIMITS ISSUE

The static ω → 0, long-wavelength q → 0 limit of the
exact fXC(q, ω) appears to be nonunique. As was derived by
Gross and Kohn [3],

lim
q→0

[
lim
ω→0

fXC(q, ω)
]

= d2

dn2

[
nεLDA

XC (n)
] ≡ f ALDA

XC (rs), (C1)

from the compressibility sum rule, where εLDA
XC (n) is the LDA

XC energy per electron in jellium. However, as was shown by
Conti and Vignale [60], in the reverse limit

lim
ω→0

[lim
q→0

fXC(q, ω)] = f ALDA
XC (rs) + 4

3

μXC(rs)

n2
, (C2)

where μXC(rs) is the XC shear modulus of bulk jellium.
Clearly, both limits agree when μXC(rs) = 0, however, it is
unclear what the physical consequences of this assumption
would be; the excitation energies of atoms are not described
optimally by f ALDA

XC , nor a longitudinal fXC(ω) with μXC = 0,
nor with |μXC(rs)| > 0 [61].

Within time-dependent current-density functional theory
[62], there exist two kernels in the linear response regime: a
longitudinal kernel f L

XC that is identified with the scalar fXC of
TD-DFT, and a transverse XC kernel f T

XC. In this framework
[60],

lim
ω→0

[lim
q→0

f T
XC(q, ω)] = μXC(rs)

n2
. (C3)

Thus, even when μXC(rs) is set to zero, an approximation
for f T

XC(q, ω) can estimate the value of μXC(rs). At present,
reliable estimates exist only in a limited range of metallic
densities [56,63], however, μXC(rs)/n2 � | f ALDA

XC (rs)|.
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FIG. 13. The 
(rs ) parameter in the dynamic, long-wavelength
Qian and Vignale [56] kernel. Above a critical rs, no solutions for

(rs ) can be found consistent with the constraints placed on the ker-
nel. Above this value, we have set 
 = 0; the transition is abrupt and
dependent upon the ALDA used, as well as the XC shear modulus.

We wish to compare the dynamic GKI kernel with the
(longitudinal) dynamic kernel of QV [56]. The GKI kernel
recovers the order of limits q → 0 then ω → 0, whereas the
QV kernel recovers the opposite order of limits. Moreover, the
QV kernel promises a more correct treatment of two-plasmon
excitations [56] by using a GKI-like frequency interpolation
plus a Gaussian correction,

Im fXC(ω) = − 2ωp(0)

n

{
a(rs)ω̃

[1 + b(rs)ω̃2]5/4

+ω̃3 exp

[
− (|ω̃| − �(rs))2


(rs)

]}
, (C4)

where ω̃ = ω/[2ωp(0)] and ωp(0) = √
4πn is the semiclas-

sical plasmon frequency. The parameters a(rs), b(rs), 
(rs),
and �(rs) are constrained by a set of equations. There are
solutions for a(rs) and b(rs) for all rs, however, there are no
solutions for 
(rs) and �(rs) = 1 − 3
(rs)/2 above a critical
rs,c.

Just like the GKI kernel, the QV kernel requires ALDA in-
put; it also requires input for μXC(rs) at arbitrary rs. Equation
(11) of Ref. [64] parametrized μXC(rs),

μXC(rs)

n
= a

rs
+ (b − a)

rs

r2
s + c

, (C5)

with a = 0.031152, b = 0.011985, and c = 2.267455; we
will use their parametrization here. (Ref. [60] presented a
similar fit in Eq. (4.9) of their work, but their parameters
appear to be in significant error.) The value of rs,c above
which no solutions exist for 
(rs) and �(rs) will depend on
the particular f ALDA

XC and μXC(rs) used (PW92 in our case); if
μXC(rs) = 0 for all rs, then rs,c ≈ 45.2, whereas if Eq. (C5) is
used, rs,c ≈ 56.2.

For all rs > rs,c, we are forced to set 
 = ε, where ideally
ε = 0, but in practice ε = 10−14. This yields essentially a
double-delta function resonance at ω = ±2ωp(0), signaling
onset of a two-plasmon excitation. As seen in Fig. 13, the
value of 
(rs) abruptly falls to zero for rs > rs,c.

FIG. 14. Comparison of the dynamic structure factor S(q =
2.2kF, ω) for various model kernels for rs = 8 jellium, analogous
to Fig. 2 of Ref. [46]. The ghost exciton can be observed as a
double-peak structure in the 2p2h data and QV kernel only.

The QV kernel is able to capture excitonic excitations,
due to the Gaussian term in Eq. (C4), which reduces to a
delta-function resonance at low densities. Figure 14 shows
that the QV kernel predicts the emergence of a ghost exciton
in intermediate density jellium.

For reasons that have been described in the Introduction,
we have not fitted a QV-MCP07 kernel, where the frequency
dependence of the GKI kernel is replaced by that of the QV
kernel. Whereas we can easily deduce a parametrization of
the real part of the GKI kernel that is independent of rs, and
thus also a reasonable parametrization of its continuation to
imaginary frequencies, a similar procedure cannot be done
for the QV kernel. The GKI-like part of the QV kernel can
be expressed using Eq. (21), however, the real part of the
Gaussian term cannot be expressed in an rs-independent form,
nor can the real part be computed analytically. We found that
a low-order Taylor expansion of the real part of the kernel
rapidly breaks down for ω/ωp(0) � 1 and is thus not useful
in a Padé-like approximant.

The rMCP07 fitting involves only a three-dimensional inte-
gration that can be rapidly expedited using parallel computa-
tion. The QV-MCP07 fitting would involve a five-dimensional
numeric integration at each value of the interaction-strength–
scaled frequency, which cannot be as easily parallelized.

APPENDIX D: ULTRANONLOCALITY COEFFICIENT

As in Ref. [64], this section computes the ultranonlocality
coefficient α(ω) [65] :

lim
|q|→0

fXC(q, q, ω) = −4πα(ω)

q2
. (D1)

α(ω) is the frequency-dependent strength of the long-range
part of fXC. α(ω) vanishes for a uniform density. For a weakly
inhomogeneous density, such as that of a real simple metal,
we have computed α(ω) by the formula of Ref. [65]. This
α(ω) is plotted in Figs. 15 and 16. For an insulator, α(ω) has
significant effects on optical absorption.
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FIG. 15. The ultranonlocality coefficient α(ω) in face-centered
cubic Al, using the same pseudopotential density as was used in
Ref. [64]. The dynamic LDA refers to the GKI frequency-dependent
kernel, but using Eq. (21) to model the real part of fXC(q = 0, ω),
and with PW92 for the ALDA.

APPENDIX E: DENSITY FLUCTUATIONS

This section deals with frequency moments of the dynamic
structure factor

Mk
ω(q) =

∫ ∞

0
S(q, ω)ωkdω, k = 0, 1, 2, .... (E1)

Reference [13] suggested that the following frequency mo-
ments, weighted by the static structure factor M0

ω(q) = S(q):

〈ωp(q)〉 = M1
ω(q)

M0
ω(q)

, (E2)

〈�ωp(q)〉 =
[

M2
ω(q)

M0
ω(q)

− 〈ωp(q)〉2

]1/2

(E3)

could describe the average and standard deviation in the
frequency of a density fluctuation, respectively. Their anal-
ysis demonstrated that, in low density jellium, the average
frequency of a density fluctuation abruptly drops toward
zero for q ≈ 2kF. This would suggest the emergence of a
charge-density wave at low density within Anderson’s [66] in-

FIG. 16. The ultranonlocality coefficient α(ω) in body-centered
cubic Na, using the same pseudopotential density as was used in
Ref. [64].

FIG. 17. Average density fluctuation 〈ωp(q)〉 in bulk jellium for
the MCP07 (dashed) and rMCP07 (solid) kernels. The curves essen-
tially coincide at rs = 4 but differ sharply at rs = 69.

terpretation of symmetry breaking: Fluctuations in the density
of a large number of electrons can abruptly freeze, signaling
the onset of an observable symmetry-broken phase that would
not be observable in a system of few electrons.

This behavior can be observed in Fig. 17 for the MCP07
kernel. Interestingly, the rMCP07 value of 〈ωp(q)〉 does not
drop to zero at rs = 69. Figure 18 displays 〈�ωp(q)〉.

Therefore, the rMCP07 kernel does not describe the low-
density fluctuations of jellium well, at least within our first
interpretation [13] of Anderson’s theory of symmetry break-
ing. It seems likely to us that the spectral weight at or near
the critical density and wave vector should drop to a small
frequency, but not to zero frequency.

This behavior of rMCP07 is due to the scaling function
p(q, rs ) of Eq. (30). p(q, rs ) decreases the rate at which
fXC(0,�) approaches its infinite frequency limit for rs < C ≈
4.35 bohr. Conversely, for rs > C, fXC(0,�) more rapidly
approaches its infinite frequency limit. This behavior, while
seemingly necessary for the recovery of accurate correlation
energies, introduces a questionable zero to the real part of the
effective dielectric function ε̃ at nonzero frequency, as seen in

FIG. 18. Standard deviation in the density fluctuation 〈�ωp(q)〉
in bulk jellium for the MCP07 (dashed) and rMCP07 (solid) kernels.
The curves mostly coincide at rs = 4 and differ in slope and concav-
ity at rs = 69.
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Fig. 11, and thus a questionable pole into S(q, ω) at the same
nonzero frequency.

This behavior can also be tied to the spectral function S(q)
at lower densities. Consider Fig. 12, which plots SQMC(q)
for the spin-polarized fluid phase. Although SrMCP07(q), plot-
ted in Fig. 3, and SMCP07(q), plotted in Fig. 2, are for the
spin-unpolarized fluid phase, it is clear that rMCP07 gives
a more realistic description of the g.s. S(q) than MCP07.
This is because the peak structure in SMCP07(q) is softened
dramatically in SrMCP07(q). This softening is also observed in
Fig. 17, where the average frequency of a plasmon is much
smoother in rMCP07, never dropping to zero frequency.

APPENDIX F: NOTE ON METHODS EMPLOYED HERE

All calculations were performed using libraries written by
the authors in PYTHON 3 and FORTRAN 90 [57]. The nu-
meric methods employed are varied, so we mention only a
few specific ones here. Kramers-Kronig and Cauchy principal
value integrals were evaluated using adaptive Gauss-Kronrod

quadrature. Multidimensional integrations and frequency mo-
ment integrations were performed with Gauss-Legendre
quadrature grids along each axis. For details of the frequency
moment calculations and the Gauss-Kronrod integrator, we
refer the reader to the Supporting Information of Ref. [13]. For
calculation of the right-hand side of Eq. (38) (third moment
sum rule), the static structure factor was tabulated at each
value of rs and interpolated using cubic splines.

The GKI kernel parameters (ci and ki) were fitted in two
steps: initial parameters were determined by a least-squares
search and these were further refined by a grid search. The
rMCP07 parameters (A, B, C, and D) were determined in a
similar fashion, however, the initial fit was determined by a
Nelder-Mead simplex algorithm.

Calculation of the critical wave vector for onset of a static
charge density wave was performed using a bisection root
finding algorithm. The plasmon dispersion curves were gen-
erated using a Newton-Raphson root-finding method; a full
discussion is given in Appendix A. For a discussion of the
ultranonlocality coefficient calculation, we refer the reader to
Ref. [64].
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