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The impact of leading collective electronic fluctuations on a free energy of a prototype 1D model for molecular
systems is considered within the recently developed fluctuating local field (FLF) approach. The FLF method is
a nonperturbative extension of a mean-field theory, where a self-consistent effective constant field is replaced by
a fluctuating one. Integrating the fluctuating field out numerically exactly allows one to account for collective
electronic fluctuations mediated by this field without any assumptions on their magnitude, degree of nonlinearity,
etc. Using a half-filled Hubbard ring as a benchmark system, we find that the FLF method noticeably improves
a mean-field estimation for the free energy, in particular below the mean-field Neél temperature. We further
demonstrate that the mean-field result can be even more improved introducing a multimode FLF scheme that
additionally takes into account subleading fluctuations. Possible applications for the thermodynamics of real
molecules are also discussed.
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I. INTRODUCTION

Recent developments in the field of nano- and molecular
electronics rely on finding effective low-dimensional sys-
tems that can be exploited to miniaturize electronic devices
[1–4]. The most prominent examples of such systems are
quantum dots [5–10], carbon nanotubes [11–14], grain bound-
aries, and line defects in 2D systems like graphene [15–18],
as well as single molecules, polymers, and atomic chains
[19–22]. These nanoscale systems exhibit strong quantum ef-
fects and collective electronic fluctuations, which complicates
their accurate theoretical description. For instance, periodic
one-dimensional (1D) systems possess collective modes such
as solitons, polarons, and bipolarons [23,24], as well as the
Peierls instability, which appears already for an arbitrarily
small electron-lattice interaction [25–28].

A theoretical description of infinite interacting electronic
systems is usually based on the notion of the free energy. In
particular, it allows to describe various phase transitions, such
as the transition to magnetically ordered or superconducting
states [29–31]. In the context of finite systems, an accurate
estimation of the free energy of molecules is one of the central
tasks for the quantum chemistry. For instance, free energies
of the reagents determine the equilibrium concentrations in
chemical reactions. A similar problem arises when calculating
preferred molecular conformations, etc. While the free energy
of small molecules can be obtained directly via the exact
diagonalization or quantum Monte Carlo methods, the use of
approximate calculation schemes for larger systems becomes
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unavoidable. The most popular state-of-the-art approach used
in material science and chemistry is the density functional the-
ory (DFT) [32]. DFT can be seen as a mean-field like method.
By saying this we mean that within DFT a many-body prob-
lem of interacting electrons is mapped on an ensemble of
noninteracting electrons living in an effective self-consistent
potential. The latter is adjusted to reproduce the density of
the original interacting electronic problem. The accuracy of
DFT is based on the construction of density functionals. Un-
fortunately, the exact form of the functionals is not known
commonly, and usually the exchange-correlation part is the
most challenging one. In practice it leads to approximations,
such as the local density approximation (LDA) [33]. Despite
the considerable success of the method in describing mean-
field effects, this effective noninteracting approximation does
not allow to capture collective many-body phenomena. For
instance, DFT cannot capture formation of excitonic bands
that appear as the result of electron-hole binding and can
be revealed in optical spectra of molecules [34]. A more
sophisticated approximation for a many-body electronic prob-
lem relies on combining DFT with the dynamical mean-field
theory (DMFT) [35]. This allows for the exact numerical
description of local many-body effects in the system includ-
ing the local magnetic moment formation [36] and the local
renormalization of the spin-orbit coupling [37–39] and of
the crystal-field splitting [40–43]. However, this approach is
not very suitable for effective 1D systems, because DMFT
approximation becomes exact only in the limit of infinite
spacial dimensions or connectivity of the lattice [44]. In some
cases, when the realistic 1D system can be approximated
by the Hubbard model neglecting nonlocal electronic inter-
actions, the exact solution for the effective 1D problem can
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be obtained exactly [45,46]. At the same time, the Coulomb
interaction in low-dimensional systems is usually long-ranged
and weakly-screened, which imposes physical restrictions on
this approximation. In addition, collective electronic modes
in molecular systems are essentially non-local. Typically, they
involve a significant number of single-electron degrees of
freedom and can be associated either with spin fluctuations,
which is the case for molecular magnets, or with charge cor-
relations seen, for example, in organic systems with π bonds
[47–49]. DMFT neglects all nonlocal correlations by con-
struction and thus does not allow to capture these collective
electronic effects.

The existing set of theoretical tools for ab initio description
of collective electronic fluctuations consists of calculating
diagrammatic series for corresponding susceptibilities. The
minimal approach yielding collective modes in weakly cor-
related systems is the random phase approximation (RPA)
[50–52]. More advanced approximations handle collective de-
grees of freedom performing diagrammatic calculations on
the basis of DMFT [53]. Nevertheless, even these advanced
methods cannot perform calculations well below the phase
transition point predicted by DMFT [54]. A common problem
of all diagrammatic schemes is an implicit assumption that
collective fluctuations are small and linear, which allows to
determine the leading (usually two-particle ladder-like) subset
of diagrams. This assumption works rather well above the
mean-field estimation for the transition temperature. Lower-
ing the temperature, the strength of collective fluctuations
increases, and they become strongly nonlinear. In particular
this nonlinearity can be explained by the fact that different col-
lective modes start to interact with each other, which strongly
affects the diagrammatic expansion [55–58].

Recently, an alternative technique to handle collective
modes dubbed “fluctuation local field” (FLF) method [59,60]
has been proposed. Within this approach, one or several col-
lective modes can be accounted for numerically exactly. An
advantage of the proposed scheme is that no assumption about
the magnitude and/or statistical properties of these fluctua-
tions is made. Therefore, the FLF theory is expected to work
well for systems, where the major part of strong fluctuations
is comprised of several pronounced modes. In order to de-
termine the leading modes in the system, one can use other
(simpler) methods, such as the random phase approximation
(RPA) [52,61], the GW approach [62–64], or the fluctuation
exchange (FLEX) method [65]. Once defined by means of
these methods, leading collective modes can be successfully
captured by the FLF approach. In this regard, the FLF method
looks promising for application to molecules, clusters, and
nanostructures with developed collective modes. In Ref. [60],
some of us have presented the FLF calculations of the mag-
netic susceptibility for small Hubbard plaquettes. Within these
calculations the antiferromagnetic (AFM) mode, which rep-
resents the leading instability in the considered systems, has
been accounted for by the FLF. It has been demonstrated that
the FLF scheme describes the static response of the considered
systems in a good agreement with the exact solution of the
problem in the broad range of temperatures well below the
limit of applicability of existing mean-field theories. However,
other quantities of interest, e.g., thermodynamic potentials,
have not been considered yet. In this paper we present the

FLF calculations for a free energy of a prototypical molecular
system that exhibits strong collective fluctuations, namely
the half-filled periodized Hubbard chain. For simplicity, we
restrict ourselves to a weakly-interacting case, so that the
result of the Hartree-Fock (HF) method can be used for a
comparison. We show that FLF method indeed improves the
HF prediction for the free energy. Further, we demonstrate that
increasing the number of fluctuating modes accounted for the
FLF theory leads to a rapid improvement of the result.

II. VARIATIONAL PRINCIPLE FOR THE HUBBARD
CHAIN IN THE MEAN-FIELD APPROXIMATION

In this paper, we consider a Hubbard chain of N lattice sites
as a prototypical 1D molecular system. The corresponding
Hamiltonian reads:

Ĥ = t
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ + U

∑
j

(
n̂ j↑ − 1

2

)(
n̂ j↓ − 1

2

)
. (1)

Here, ĉ†
jσ (ĉ jσ ) is the creation (annihilation) operator for

an electron at the lattice site j = 0, . . . N − 1 with the spin
projection σ = {↑,↓}. t is the hopping amplitude between
nearest-neighbor lattice sites i and j on which we impose
the periodic boundary condition ĉN ≡ ĉ0. U is the on-site re-
pulsive interaction between fermionic densities n jσ = ĉ†

jσ ĉ jσ
with opposite spin projections. At half-filling the considered
system exhibits strong AFM fluctuations, but the true order-
ing is never realized due to thermal and quantum zero-point
fluctuations. In 1D these fluctuations are particularly impor-
tant and have to be taken into account. As anticipated in
the Introduction, our goal is to obtain a free energy of the
system, which can be expressed through the partition function
Z = Tre−βĤ as F = −β−1 lnZ . In the following we will
also use the Lagrangian formalism, so one can write that
Z = ∫

D[c∗, c]e−S[c∗,c], where S[c∗, c] is the corresponding
action for the initial Hamiltonian (1). In order to estimate the
free energy of the system, we introduce a trial action Str[c∗, c].
Then, F can be approximated by its first-order expansion in
terms of the deviation of the initial problem form the trial
action S − Str:

F � −β−1 lnZtr + β−1〈S − Str〉tr. (2)

Here, the average 〈. . .〉tr is taken with respect to the trial Ztr

partition function. Should the trial action depend on some
adjustable parameters, they can be chosen in such a way
that their variation does not affect the free energy (δF = 0)
(2). For a Hamiltonian trial system, this criterion represents
the Gibbs-Bogoliubov-Feynman minimization principle [66].
Indeed, in this case it can be shown that the approximate
free energy (2) reduces to F = 〈H〉tr + β−1〈ln ρtr〉tr , where
ρtr is the density matrix of the trial system. Then, the exact
result Str = S provides the lowest free energy limit for any
approximate solution with Str 	= S . When the trial system is
non-Hamiltonian, e.g., is nonlocal in time, the condition δF =
0 corresponds to the Peierls-Feynman-Bogoliubov variational
principle [67–69]. As we shall see below, in this case the free
energy of the trial system is not necessarily higher than the
exact one.
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In this paper we focus on the weakly interacting case,
which allows to use the Hartree method as a parental one
for the FLF approach. Following the mean-field idea, we
first consider the simplest trial Hamiltonian where electrons
interact only with an effective classical field h:

Ĥh = t
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ −

∑
j,l

hl
js

l
j (3)

where sl
j = ∑

σ,σ ′ ĉ†
jσ σ l

σσ ′ ĉ jσ ′ is the l = {x, y, z} component
of the spin density operator. Since leading collective elec-
tronic fluctuations in the initial problem (1) are related to
spin degrees of freedom, we consider only a site-dependent
magnetic field hl

j . In this case, the minimization criterion
δF = 0 leads to a well-known mean-field result:

hl
j = U

2

〈
sl

j

〉
(4)

that can be obtained self-consistently. For the considered half-
filled trial problem (3), this procedure predicts the SU(2)
symmetry breaking below Neél temperature TN = β−1

N . The
latter is associated with the formation of the AFM spin order
and results in the following pattern h j = (−1) j hAFM of the
effective static AFM field hAFM. At higher temperatures the
system remains paramagnetic, i.e., h = 0. As a matter of fact,
this AFM ordering is an artifact of the approximation. As
discussed above, a finite 1D system cannot possess a sponta-
neous symmetry breaking, which should be cured by a proper
accounting for strong nonlinear collective fluctuations.

III. FLUCTUATING AFM LOCAL FIELD

Following the FLF idea presented in Refs. [59,60], a mean-
field artifact, namely the spontaneous symmetry breaking,
can be avoided by considering fluctuations of the effective
magnetic field. To this aim we introduce a trial ensemble of
mean-field problems (3) subjected to different effective fields
h j described by the following partition function:

ZFLF =
√

det
βN

�

∫
D[h j]Zh exp

{
−βN

2

∑
i, j

hi�
−1
i j h j

}
.

(5)

Here, Zh is the partition function that corresponds to the
mean-field problem (3), where now the effective magnetic
field h j is considered as a variable. In general, this vector field
h j may be different at different sites j, hence the integration is
taken by D[h j] = (2π )3N/2 ∏

j d3h j with N being the number
of lattice sites. The magnitude of fluctuations, as well as the
spatial pattern of the field h j , is governed by the tensor �i j ,
which will be determined later.

Since an exact accounting for many different fluctuating
modes is numerically expensive, we consider only leading
modes in actual calculations. In this case it is convenient to
rewrite the partition function in momentum-space represen-
tation performing a Fourier transform h j = N−1 ∑

q hqeiqr j .
We also take into account the translational symmetry of the
Hubbard ring, which allows one to write that �i j = �i− j . It

gives

ZFLF =
∫

D[h̃q]Zh exp

{
−1

2

∑
q

h̃qh̃−q

}
. (6)

Here, D[hq] = (2π )3Nq/2 ∏
q d3h̃q, where Nq is the number of

considered modes. Also, we rescaled the effective magnetic
field as h̃q = hq

√
βN�−1

q to absorb the prefactor in Eq. (5).
Note that the partition function Zh in this expression is written
in terms of the original field h j . For a considered periodized
chain (1) leading magnetic fluctuations correspond to wave
vectors q ≈ π . Keeping only a single AFM mode with q = π ,
one arrives at the simplest FLF realization considered in the
previous paper [60]. In the present paper, we extend the
FLF approach to a multimode case and additionally consider
two wave vectors q = π − π/N and q = −π + π/N that are
nearest to the AFM mode. This allows to take into account
long-range spatial fluctuations of the AFM polarization, both
in the magnitude and direction.

It turns out that the resulting FLF problem (6) being writ-
ten in terms of only fermionic variables is not local in time
and thus is non-Hamiltonian. Indeed, integrating out effective
magnetic fields hj gives the following form for the partition
function of the FLF problem:

ZFLF =
∫

D[c∗, c]e−SFLF[c∗,c] (7)

with an effective trial action [60]

SFLF[c∗, c] = S0[c∗, c] − 1

2βN

∑
q,l

∫
dτ1dτ2 �qsl

τ1,qsl
τ2,−q

(8)

where S0[c∗, c] is the noninteracting part of the initial action
S[c∗, c], and sl

q is a Fourier transform of sl
j . We note that

both, the initial and the trial FLF actions differ only in the
interaction term. Therefore, to obtain the free energy (2) one
only needs to calculate averages of these interaction terms
with respect to the FLF partition function ZFLF. For calcu-
lating the average of the interaction part of the initial action is
convenient to take the partition function in the form of Eq. (6).
Then, the average over the FLF ensemble can be obtained
as [60]

〈. . .〉FLF =
∫

D[h̃q]〈. . .〉h ph (9)

where ph = Zh
ZFLF

e− 1
2

∑
q h̃qh̃−q . The 〈. . .〉h stands for the average

over Hh, which is easy to calculate, because Hh is Gaussian
in terms of fermionic variables. Then, the average of the
Hubbard interaction term of the initial problem (1) reads [60]

U
∑

j

〈(
n̂ j↑ − 1

2

)(
n̂ j↓ − 1

2

)〉
FLF

= −UN

4

∫
D[h̃q]

∑
q

〈sq〉2
h ph

= − U

4β2N

∫
D[h̃q]

∑
q

∣∣∂hq lnZh

∣∣2
ph (10)

035118-3



LYAKHOVA, STEPANOV, AND RUBTSOV PHYSICAL REVIEW B 105, 035118 (2022)

The partial derivative that appears in this expression means

∂hq lnZh = ∂ lnZh
∂hq

|hq=0. The average of the interaction part of
the FLF action (8) is convenient to take over the corresponding
partition function (7) as

− 1

2βN

∑
q,l

∫
dτ1dτ2 �q

〈
sl
τ1,qsl

τ2,−q

〉
FLF

=
∑

q

�q ∂�q lnZFLF (11)

The estimation for the free energy (2) for the FLF trial action
becomes

F � − 1

β

(
1 +

∑
q

�q∂�q

)
lnZFLF

− U

4β2N

∫
D[h̃q]

∑
q

∣∣∂hq lnZh

∣∣2
ph. (12)

Parameters �q that enter the derived expression will be de-
fined below.

It is worth noting that a straightforward justification of the
Gibbs-Bogoliubov-Feynman minimization criterion does not
apply in this case, because the FLF trial action (8) does not
correspond to any Hamiltonian. Consequently, (2) cannot be
rewritten as an average with some positive-defined density
matrix, and F ′ does not appear to be lower-bounded by F .
However, our numerical analysis presented below shows that
the function F (�) still has a minimum. We argue that choos-
ing � at or near this minimum provides a good estimation for
the free energy of the system.

IV. NUMERICAL PROCEDURE AND RESULTS

Let us turn to numerical results of the FLF approach. We
perform calculations for periodic Hubbard chains of N = 8,
10, and 12 sites within single- and multimode FLF schemes.
Results for the free energy are compared with the mean-field
(MF) estimation and the reference data obtained via the exact
diagonalization (ED) method. For the sake of applicability
of the mean-field approximation we consider the regime of
moderate electronic correlations and set t = U = 1, so that
the value of the on-site Coulomb potential is equal to the
quarter of the bandwidth.

In the framework of the single-mode FLF scheme that
involves only one adjustable parameter �π ≡ λ the partition
function ZFLF can be obtained by the grid integration over the
single hπ variable. In the multimode case that accounts for
three classical vector fields the integration is taken over the
9-dimensional space, and the grid scheme is not applicable
anymore. Instead, we randomly distribute about 107 points
in the hq-space and estimate the integral by a sum over all
these points with proper weighting factors. The same value
of �q = λ was taken for all three modes q = π, π ± π/N ,
which is a reasonable choice for π/N  π . The partial deriva-
tive with respect to �q in Eq. (12) was calculated numerically
in both, single- and multimode cases.

Let us first analyze the dependence of the free energy (12)
on �. Figure 1 shows the result for the free energy of the
N = 8 site system obtained within single- (solid-red line) and

FIG. 1. Free energy F normalized by the number of sites N = 8
obtained for t = U = 1 and β = 10 as a function of λ parameter. In
the single-mode case (red-solid line) this parameter coincides with
�π . In the multimode case (black-solid line) we take the same value
�q = λ for all three considered modes q = π, π ± π/N . Vertical
dashed-black line indicates the saddle point estimation λ = U/2.
Horizontal dashed blue and bold green lines correspond to MF and
ED results, respectively.

multimode (solid-black line) FLF schemes, as well as from
the MF estimation (dashed-blue line) and the ED method
(dashed-green line). It is worth noting that calculations have
been performed for a relatively low temperature (β = 10, MF
transition point corresponds to β∗ � 12), so that we expect
that the system exhibits well-developed collective fluctua-
tions. We observe that the F (�) function has a minimum at
�min ≈ 1/2, and the corresponding minimal value lies closer
to the reference ED result than to the MF estimation. Although
it has been pointed out that the Gibbs-Bogoliubov-Feynman
criterion does not apply here, one can still find physical argu-
ments to fix � = �min. Generally speaking, it is expected that
a “good” approximation that involves some free parameters
should provide a result that weakly depends on these param-
eters. Remarkably, our theory satisfies this criterion, because
the function F (�) shows a small change in its value within a
relatively broad interval near �min, in particular in the multi-
mode case. If our theory was exact, the curve F (�) would be
perfectly flat and � would be a gauge field. Following this line
of argumentation, the requirement � = �min ensures that F
is at least locally independent of �. However, taking another
value of � that is close but not exactly equal to �min will yield
nearly to the same result.

A particularly simple way to choosing � can be found
considering a saddle-point approximation for the integral over
h in Eq. (5) as shown in Ref. [60]. Within this approximation
the FLF ensemble of fields becomes replaced by a single
constant field h = �〈s〉, as it follows from the variation of the
integrand in Eq. (5). The requirement δF (�) = min in this
case yields h = �min〈s〉 = U

2 〈s〉, which remarkably coincides
with the MF solution (4). The latter way of fixing � is tech-
nically much simpler than finding an exact minimum and, as
we observe from Fig. 1, leads to almost the same result for the
free energy.
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FIG. 2. Free energy F as a function of the inverse temperature β computed via ED (dotted-green line), MF (dashed-blue line), single-mode
FLF (solid red line), and multimode FLF (black points) methods. Vertical dashed black lines indicate the transition temperature to the AFM
ordered state predicted by MF approach.

Now we turn to the temperature dependence of the free
energy obtained within the FLF method. Figure 2 shows cor-
responding results obtained for Hubbard chains with N = 8,
10, and 12 sites using the single- and multimode FLF schemes
with �q = U/2. We find that accounting for collective fluc-
tuations always improves the MF result, but the degree of
the improvement at low temperatures is drastically better for
systems with N = 8 and N = 12 sites than for the N = 10
case. This fact has a simple physical explanation. For N being
a multiple of 4, a discrete momentum grid of the Brillouin
zone includes points q = ±π/2. At these points the electronic
spectral function of the considered model (1) appears exactly
at the Fermi level. As a consequence, this results in a reso-
nance in the density of states, which enhances the intensity of
two-particle excitations that in our case correspond to AFM
fluctuations. On the contrary, in the system of N = 10 sites
the Fermi level falls between the q = 2π/5 and q = 3π/5
points of the momentum grid, which reduces the strength of
the AFM fluctuations. This conclusion is also supported by
the MF calculations that predict the transition to the AFM
ordered state for N = 8 and N = 12 at certain temperatures
marked by vertical lines in Fig. 2, but does not reveal such
a transition for the case of N = 10 sites. AFM fluctuations
that are captured by the FLF method are particularly strong
below the transition point predicted by the MF theory. On
the contrary, at high temperatures the effects of a discrete
spectrum are smeared out, and we observe no essential dif-
ference between the results obtained for different number of
lattice sites. We also note that for some temperatures the result
obtained within the multimode FLF scheme lies below the
reference ED data. This observation confirms our statement
that the Peierls-Feynman-Bogoliubov variational principle is
indeed not directly applicable to the FLF trial ensemble.

As can also be seen from Fig. 2, taking into account
multiple fluctuating modes results in a remarkable change of
the FLF result, shifting it closer to the reference ED data.
Introducing these additional modes allows one to account
for different polarizations in different parts of the system.
Our results suggest that this effect can be important even for
relatively small molecules. In the current paper we limited
ourselves to the three leading q modes. Including a larger
number of fluctuating modes is, in principle, possible for
the cost of heavier numerical efforts. However, it should be

noted that the choice �q ≈ U/2 is justified only for a few
modes lying near the q = π point. For other FLF schemes the
problem of choosing a proper � should be revisited.

V. CONCLUSIONS AND OUTLOOK

To conclude, we demonstrated that the fluctuating local
field method significantly improves the mean-field results for
the free energy of a 1D Hubbard chain that models molecular
systems. The multimode version of the FLF theory was in-
troduced to simultaneously account for different fluctuations
of the order parameter in different parts of the system. We
showed that including subleading modes has a noticeable
effect on the free energy even for the case of small-sized sys-
tems. It can be expected that including more collective modes
would lead to a further improvement of the results. This is
especially important for larger systems, where the subleading
fluctuating modes also become significantly important. At the
same time, increasing the number of the modes tremendously
rises computational costs. For this reason, considering a ther-
modynamic limit within the FLF approach can be seen as the
future perspective.

In this paper we restricted ourselves to a simple 1D
model that allow to compare the FLF result with the ex-
act solution provided by the exact-diagonalization method.
Density-functional theory (DFT) calculations for real molec-
ular systems operate with multi-orbital Hamiltonians. In this
case an exponential increase of the dimensionality of the Fock
space makes the numerically exact solution of the problem
impossible. On the contrary, the numerical costs of the single-
mode FLF calculations is comparable to the mean-field ones
regardless of the number of orbitals. This opens a perspective
for a combined DFT+FLF treatment of molecular systems
with strong collective modes.
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