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Fermi arcs versus hole pockets: Periodization of a cellular two-band model
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It is still debated whether the low-doping Fermi surface of cuprates is composed of hole pockets or of
disconnected Fermi arcs. Results from cellular dynamical mean field theory (c-DMFT) support the Fermi
arcs hypothesis by predicting corresponding Fermi arcs for the Hubbard model. Here, we introduce a simple
parametrization of the self-energy, in the spirit of Yang-Rice-Zhang theory, and show that state of the art c-DMFT
calculations cannot give a definitive answer to the question of Fermi arcs vs hole pockets and this, independent
of the periodization (cumulant or Green’s function) used to display spectral weights of the infinite lattice. Indeed,
when our model is restricted to a cluster and periodized like in c-DMFT, only two adjustable parameters suffice
to reproduce the qualitative details of the frequency and momentum dependence of the low energy c-DMFT
spectral weight for both periodizations. In other words, even though our starting model has a Fermi surface
composed of hole and electron pockets, it leads to Fermi arcs when restricted to a cluster and periodized like in
c-DMFT. We provide a different periodization scheme, named compact tiling, to recover the hole and electron
pockets of our starting noninteracting lattice model, suggesting that better periodization schemes might exist.
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An ongoing debate about the pseudogap state of high
temperature superconductors (cuprates) is whether the Fermi
surface is composed of small holelike pockets, as often sug-
gested by transport experiments, or disconnected Fermi arcs,
as observed by angle-resolved photoemission spectroscopy
(ARPES) experiments [1]. Variants of the cluster perturbation
theory [2,3], and more specifically cellular dynamical mean
field theory (c-DMFT) [4,5], provide important theoretical
support for the existence of the experimental Fermi arcs:
they have found corresponding Fermi arcs in the ground state
of the Hubbard model [6–12]. However, one important step
leading to these theoretical Fermi arcs has long been debated:
an operation known as periodization [6,9,13–17]. The main
purpose of periodization is to recover a translation-invariant
lattice Green’s function G(k, ω) from the cluster self-energy
�c(ω) produced by c-DMFT. This step is necessary only to
access the lattice spectral weight and the Fermi surface. De-
spite periodization being debated [15], it is usually accepted
that c-DMFT leads to Fermi arcs for the Fermi surface of the
pseudogap in the Hubbard model, because of the two most
widely used periodization schemes: the cumulant periodiza-
tion (M scheme) [9] and the Green’s function periodization
(G scheme) [6] lead to Fermi arcs, as respectively reproduced
in Figs. 1(a) and 1(b). However, one question has not been
addressed: if the pseudogap of the Hubbard model had a
Fermi surface consisting of hole pockets, would c-DMFT cor-
rectly capture these hole pockets, given known periodization
schemes?

In this article, we explain how the Fermi arcs obtained
with c-DMFT are a consequence of neglecting the self-energy
between clusters and using the M- and G-periodization
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schemes. To do so, we start from a noninteracting lattice
model leading to a Fermi surface of hole and electron pockets,
but here we restrict it to a 2 × 2 cluster. We call this the cel-
lular two-band (c-2B) model. When periodized with the same
schemes as in c-DMFT, this minimal model reproduces the
spectral weight and associated density of states of the pseudo-
gap state of c-DMFT for the Hubbard model. This agreement
is not limited to the Fermi surface. Our model reproduces the
k dependence of the entire low-energy one-particle spectrum
obtained in c-DMFT for both the M and G schemes. We thus
identify multiple k-dependent structures which are produced
by the periodization schemes themselves rather than by many-
body correlations. These results bring important clarifications
regarding the limitations of current periodization schemes
used with cluster methods. We demonstrate that, contrary to
previous claims [9–12], c-DMFT cannot discriminate between
Fermi arcs and hole pockets.

Although our conclusions highlight fundamental limita-
tions of the periodization step within c-DMFT, let us stress
that most predictions from c-DMFT regarding the Hubbard
model do not rely on this step. Notably, c-DMFT allows one
to study the competition between d-wave superconductivity
and antiferromagnetism [18–20], the Mott insulating regime
and its interplay with superconductivity [11,21,22], the finite
temperature transition of the pseudogap [23–25], pairing dy-
namics [26], etc., all of which do not require periodization.1

These results are out of scope for the c-2B model presented

1Note also that many of these studies are consistent with the
dynamical cluster approximation (DCA), an alternative cluster ex-
tension of DMFT. DCA does not require periodization, but does not
provide sufficient k resolution to obtain the Fermi arcs discussed
here.
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here, since the latter cannot self-consistently determine the
amplitude of the Mott gap, the chemical potential, the renor-
malization of enegy scales, the electronic compressibility, the
double occupation, etc. The purpose of our c-2B model is to
explain the single-particle spectral weight of c-DMFT results,
not to capture strongly correlated effects. In that respect, this
work is similar to previous work using density wave models
to explain subgap structures in the superconducting state of
c-DMFT [16], except here we address the normal state pseu-
dogap of c-DMFT.

a. Lattice model. We start from the folowing two-band
Hamiltonian on a square lattice (lattice-2B), omitting spin for
simplicity,

H =
∑

k

[
ξk c†

kck + ξ
d
k d†

kdk + (�kc†
kdk + H.c.)

]
. (1)

Here, c†
k and ck are creation and annihilation operators of

electrons with momentum k and d†
k and dk are creation and an-

nihilation operators associated to a fermionic auxiliary field.
Both ck and dk are coupled through �k. We do not specify
the origin of the auxiliary field in this work. The electronic
dispersion ξk = εk − μ is given relative to chemical potential
μ with

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky

− 2t ′′(cos 2kx + cos 2ky), (2)

where t , t ′, and t ′′ are respectively first-, second-, and third-
neighbor hoppings. The auxiliary field dispersion ξ d

k = εd
k −

μd is defined equivalently with td , t ′
d , and t ′′

d . For the c†
k

band, the above lattice model leads to a single-particle Green’s
function G(k, ω) = [ω + iη − ξk − �(k, ω)]−1 with real fre-
quency ω, vanishing η → 0, and an effective k-dependent
self-energy

�(k, ω) = |�k|2
ω − ξ d

k

. (3)

This self-energy is actually a hybridization function with the
d†

k band. From the Green’s function, the spectral weight is
obtained as A(k, ω) = −2 Im{G(k, ω)}, with Fermi surface
A(k, ω = 0).

Special cases of the above model include antiferromag-
netism (AFM) and the Yang-Rice-Zhang (YRZ) theory, often
used to simulate a Fermi surface of hole pockets and explain
transport experiments on cuprates [27–33].

All results presented in this paper are for a specific case
parametrized with �k = � and ξ d

k = ξk+Q with Q = (π, π ).
We choose the values of � and μ so that this parametrization
leads to the same Fermi surface as an antiferromagnet, with
the hole and electron pockets shown in Fig. 1(c). However,
unlike an actual antiferromagnet, Hamiltonian (1) does not
break symmetry. This nuance is important since we compare
our results to the c-DMFT pseudogap, which does not break
symmetry.2 In the antiferromagnetic phase, 2 × 2 c-DMFT
correctly produces hole pockets.

2We also verified that YRZ parametrization ξ d
k = 2t (cos kx −

cos ky ) with �k = �(cos kx + cos ky ) yields equivalent results (not
shown).

FIG. 1. Typical Fermi surface obtained from c-DMFT on hole-
doped Hubbard model with (a) the cumulant periodization (M
scheme) [9,10] and (b) the Green’s function periodization (G
scheme) [8,19]. (c) Fermi surface resulting from lattice self-energy
(3), equivalent to an antiferromagnet without broken symmetry.
(d) Fermi arc obtained from the c-2B self-energy (4) using the M
scheme (6), (e) the G scheme (7), and (f) the compact tiling scheme
(proposed at the end of this work). The band parameters are t = 1,
t ′ = −0.3, t ′′ = 0.2, and η = 0.1 in all cases. The c-2B parameters
μ = −0.3 and � = 0.4 were chosen to match the c-DMFT Fermi
surfaces obtained at interaction U = 8 and doping p = 0.06 in the
normal state pseudogap (without broken symmetry).

b. Cluster model. We now introduce our cellular two-band
(c-2B) model, which is the same model as above, but limited
to a small cluster with open boundary condition instead of a
lattice. The effective cluster self-energy is then

�c-2B
c (ω) = �†

c

1

ω − td
c

�c, (4)

where the coupling � and hopping tc are now matrices in the
cluster site positions R and R′ (see the Appendix).

Here we consider the case of a 2 × 2 square cluster in
order to compare to 2 × 2 c-DMFT results. With positions
enumerated counterclockwise, we use hopping and coupling
matrices

td
c =

⎛
⎜⎝

−μ t −t ′ t
t −μ t −t ′

−t ′ t −μ t
t −t ′ t −μ

⎞
⎟⎠, �c =

⎛
⎜⎝

� 0 0 0
0 � 0 0
0 0 � 0
0 0 0 �

⎞
⎟⎠.

(5)

This model (c-2B) is equivalent to the two-band lattice model
[lattice-2B, Eq. (1)] leading to the hole and electron pockets
of Fig. 1(c), but restricted to a 2 × 2 cluster.3

3The cellular version of YRZ theory (c-YRZ) is obtained with

td
c =

⎛
⎜⎜⎝

0 t 0 t
t 0 t 0
0 t 0 t
t 0 t 0

⎞
⎟⎟⎠, �c =

⎛
⎜⎜⎝

0 � 0 −�

� 0 −� 0
0 −� 0 �

−� 0 � 0

⎞
⎟⎟⎠.

Note that YRZ theory usually includes Gutzwiller factors that modify
the band structure as a function of doping, but using (t, t ′, t ′′) =
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c. c-DMFT. We compare the above model with standard
results from c-DMFT [8–12,15,18,19,22]. Our implementa-
tion uses an exact diagonalization impurity solver of a 2 × 2
cluster with local interactions (U = 8) and eight noninter-
acting baths. Details of our implementation are described
in Ref. [20], under the name “simple bath parametriza-
tion,” and leads to state-of-the-art results [19,20,34–42]. The
band structure used for our c-DMFT calculations (t, t ′, t ′′) =
(1,−0.3, 0.2) is the same as in our c-2B model, and hole
doping is chosen at p = 0.06, in the pseudogap regime. We do
not allow for broken symmetries such as antiferromagnetism
and superconductivity, in order to study the normal state
pseudogap. In the end, c-DMFT yields a cluster self-energy
�c-DMFT

c (ω) expressed in the same basis as �c-2B
c (ω).

d. Periodization. Recovering a translation-invariant lattice
Green’s function G(k, ω) from a cluster self-energy �c(ω)
is a task known as periodization. The two most widely used
periodization schemes for c-DMFT are the M scheme, or cu-
mulant periodization, and the G scheme, or Green’s function
periodization.

e. M scheme. With the cumulant defined as Mc(ω) = [ω +
iη + μ − �c(ω)]−1, the cumulant periodization [9,43] is

M(k, ω) = 1

Nc

∑
R,R′

e−ik(R−R′ )
[

1

ω + iη + μ − �c(ω)

]
R,R′

,

(6)

where Nc = 4 is the size of the cluster. From there, the
M-scheme Green’s function is obtained as GM(k, ω) =
[M(k, ω)−1 − ε(k)]−1. Figures 1(a) and 1(d) show the cor-
responding Fermi surfaces which consist of Fermi arcs, both
for c-DMFT (�c → �c-DMFT

c ) and for our c-2B model (�c →
�c-2B

c ).
f. G scheme. The Green’s function periodization [6,44] is

GG(k, ω) = 1

Nc

∑
R,R′

e−ik(R−R′ )
[

1

ω + iη − t(k) − �c(ω)

]
R,R′

.

(7)

This is equivalent to building a superlattice of clusters con-
nected by the intercluster hoppings contained in the lattice
dispersion ξk [3,6]. The hopping matrix t(k) is the clus-
ter representation of ξk, with elements given by tR,R′ (k) =∑

a e−ik·ata+R,R′ and a spanning all superlattice vectors (see
the Appendix). Figures 1(b) and 1(e) show the G-scheme
Fermi surfaces, which also consist of Fermi arcs, both for
c-DMFT (�c → �c-DMFT

c ) and for our c-2B model (�c →
�c-2B

c ).
g. Finite frequency. The correspondence between the spec-

tral weights of c-2B and c-DMFT for both periodization
schemes is striking and not limited to the Fermi level; it
extends in the low-energy regime. By fixing μ and �, and
with slight adjustments of frequencies, we get a c-2B spectral
weight for which the momentum dependence maps almost
perfectly to that of c-DMFT. This mapping can be seen in

(1, −0.35, 0) approximates these effects reasonably well for the dop-
ings studied here.

Fig. 2 for both periodization schemes. For the M scheme, the
c-2B and c-DMFT spectral weights are compared at large η in
Figs. 2(a) and 2(d) and at small η in Figs. 2(b) and 2(e). For
the G scheme, they are compared at large η in Figs. 2(f) and
2(i), and at small η in Figs. 2(g) and 2(j). Although such small
η is rarely used in the litterature, it unveils the subtle struc-
tures contained in the c-DMFT spectral weight. We observe
that these structures are correctly reproduced by our c-2B
model. The frequencies at which matching spectral weights
are found are indicated in Figs. 2(c) and 2(h) along their
respective density of states, N (ω) = ∫

d2k A(k, ω). Compar-
ing the density of states further reveals that the sequence of
k-dependent structures observed as a function of ω is the
same in c-DMFT and c-2B. As expected from a comparison
between a noninteracting model (c-AF) and a strongly cor-
related method (c-DMFT), this qualitative agreement is not
perfect; notably, the energy scales are renormalized by a factor
of approximately 0.18 between the two models. Note that
the frequencies shown in Fig. 2 were chosen because of the
complexity of the k structures they present at very low η, but
equally good fits can be found for all frequencies. Note also
that the parameters μ and � in Figs. 1 and 2 are different.
Figure 1 highlights that Fermi arcs can be obtained from a
system which should have hole and electron pockets, whereas
Fig. 2 focuses on the agreement of the periodized spectral
features between c-DMFT and c-2B.

The full mathematical details of the c-2B model are de-
scribed in the Appendix and the source code of the program
used to produce the c-2B results of Figs. 1 and 2 can be found
in the Supplemental Material [45].

h. Discussion. It is remarkable that identical sequences of
structures are obtained with c-DMFT and the c-2B model
with both periodization schemes, especially considering that
the c-2B model has only two adjustable parameters μ and �.
This indicates that neglecting the self-energy between clusters
and periodizing with the M and G schemes is what causes
these complex structures, not the strongly correlated physics.
Moreover, it is these complex structures at small η that blur
with those of neighboring frequencies to form the Fermi arcs
at large η.

Despite these caveats, the Fermi arcs of these methods
might have a physical interpretation. They are obtained at
larger values of η, which can be interpreted as a large elec-
tronic scattering rate, and although the G scheme does not
restore the spectral weight of our starting model, it does
produce the correct spectral weight for a superlattice of dis-
connected cluster self-energies (see Sec. II D of Ref. [16]).
Therefore, high scattering rate (high η) and broken transla-
tion invariance (disconnected self-energies) seem to be key
ingredients leading to Fermi arcs in c-DMFT and our c-2B
model. Yet, for these arcs to manifest, a primordial pseudogap
mechanism must already be in place, as embodied by � in our
c-2B model.

It is important to stress that, although the Fermi surface of
our starting lattice model is the same as that of an antiferro-
magnet, our results do not imply that the c-DMFT pseudogap
is a cellularized antiferromagnet. Other parametrizations give
very similar results. For example, we verified that a YRZ
parametrization yields qualitatively equivalent results (not
shown) to those presented here. Moreover, multiple lattice
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FIG. 2. Spectral weight of the c-2B model with μ = −0.85 and � = 1.1 (blue) obtained with (a) the M-scheme periodization for η = 0.5
and (b) η = 0.005. The frequencies shown are indicated along (c) the corresponding density of states (DOS) for η = 0.005. The latter is
juxtaposed to the c-DMFT DOS obtained from the M-scheme periodization (red) for η = 0.001. The corresponding c-DMFT spectral weight
is shown at other indicated frequencies for (d) η = 0.1 and (e) η = 0.001. A factor of 0.18 between two energy axis justifies using different η.
Panels (f)–(j) show the same comparison between c-2B results and c-DMFT results, but for the G-scheme periodization.

models could match the c-DMFT results, as it seems that only
a few poles (the eigenvalues of td

c ) in the cluster self-energy
are necessary to get this agreement. This is why our starting
lattice model was left general.

The one thing we can conclude from our results is that,
with the current periodization schemes, 2 × 2 c-DMFT is not
equipped to discriminate between a Fermi surface consisting
of Fermi arcs and one consisting of hole and electron pockets.
Indeed, the question that guided our work is “if the pseudo-
gap of the Hubbard model had a Fermi surface consisting
of hole pockets, would c-DMFT correctly capture these hole
pockets, given known periodization schemes?” and the answer
is no. As we showed, the M and G schemes, arguably the
most reliable periodizations [15], both produce Fermi arcs
[Figs. 1(d) and 1(e)] even when hole pockets are built in
the lattice model from which the cluster model is derived
[Fig. 1(c)]. The main goal of this article was to answer the
above question; however, it would be interesting to explore
how versatile the c-2B model is by looking at other cluster
geometries and parametrizations that predict Fermi arcs in
future investigations.

Finally, although the correct periodization for c-DMFT
is an open question, the right periodization to recover our
starting lattice model is quite obvious. What is lacking from
cluster self-energy (4) to recover the lattice self-energy (3) is
the intercluster coupling δ�(k) = �(k) − �c and interclus-
ter hoppings δtd (k) = td (k) − td

c (see the Appendix). These
intercluster quantities can be estimated from �c-2B

c (ω), but
only if there is a way to access td

c and �c separately. In
such a case, we can “tile” each element of td

c and �c to fill
the space between clusters as described in Fig. 3. We call
this operation compact tiling. Note that we cannot recover
δtd (k̃) perfectly, because t ′′ is absent from td

c . The results of
compact tiling are new k-dependent matrices td

c (k) and �c(k)
that allow one to define a k-dependent self-energy matrix
�c-2B

c (k) = �c(k)†[ω − td
c (k)]−1�c(k). This self-energy can

then be used in the M- and G-periodization schemes [setting
�c → �c-2B

c (k) in (6) and (7)]. Interestingly, when applied
to �c-2B

c (k) (already translation invariant), these periodization
formulas amount to simple unitary transformations, and both
the M and G schemes lead to the same spectral weight. The
corresponding Fermi surface, illustrated in Fig. 1(f), presents
hole and electron pockets similar to those of the starting lattice

035117-4



FERMI ARCS VERSUS HOLE POCKETS: PERIODIZATION … PHYSICAL REVIEW B 105, 035117 (2022)

FIG. 3. Example of compact tiling for the components of td
c

and �c. (a) The k-dependence of matrix components with R −
R′ = (1, 0) is obtained as [td

c (k)]R,R′ ≈ (1 + e2ikx )[td
c ]R,R′ , (b) that

of components with R − R′ = (1, 1) is obtained as [td
c (k)]R,R′ ≈

(1 + e2ikx + e2iky + e2i(kx+ky ) )[td
c ]R,R′ , and so on for all components

of td
c and with identical expressions for the components of �c. This

operation results in new matrices td
c (k) and �c(k) that are invariant

under translation.

model in Fig. 1(c). The only differences are due to t ′′ being
absent from the compactly tiled self-energy. Note, however,
that, although this approach is simple when applied to our
c-2B model, it is not clear yet how it could be generalized
to c-DMFT, even if some impurity solvers provide a relation
between td

c , �c and �c-2B
c (ω).4 Nevertheless, it suggests that

better solutions than the M and G schemes might exist to
perform periodization.

ACKNOWLEDGMENTS

This research was undertaken thanks in part to funding
from the Canada First Research Excellence Fund, the Natural
Sciences and Engineering Research Council (Canada) under
Grants No. RGPIN-2014-04584, No. RGPIN-2015-05598,
No. RGPIN-2019-05312, and No. RGPIN-2021-04043, the
Research Chair in the Theory of Quantum Materials, and post-
doctoral research scholarship (B3X) of Fonds de recherche
du Québec. Computing resources were provided by Compute
Canada and Calcul Québec.

APPENDIX: COMPLETE DERIVATION

a. Lattice. We consider a lattice of N sites with the follow-
ing definition for the Fourier transforms:

cr = 1√
N

∑
k

eik·rck, ck = 1√
N

∑
r

e−ik·rcr. (A1)

4Exact diagonalization provides such a relation via a continued
fraction or a Lehmann representation of the Green’s function and
thus self-energy for example. However, having access to this relation
is necessary, but potentially not sufficient. This remains an open
question.

With spin omitted, the Hamiltonian (1) can thus be written in
position space or in momentum space as

H =
∑
r,r′

[tr,r′c†
rcr′ + t d

r,r′d†
r dr′ + (�r,r′c†

rdr′ + H.c.)] (A2)

=
∑

k

[ξk c†
kck + ξ

d
k d†

kdk + (�kc†
kdk + H.c.)]. (A3)

The hoppings tr,r′ , t d
r,r′ and coupling �r,r′ are the Fourier

transforms of ξk , ξ
d
k , and �k, respectively.

The Hamiltonian can also be written as

H =
∑

k

(c†
k d†

k )

(
ξk �k

�∗
k ξ d

k

)(
ck
dk

)
, (A4)

from which we can write a matrix Green’s function

Gk(z) =
(

z − ξk −�k

−�∗
k z − ξ d

k

)−1

(A5)

=

⎛
⎜⎝

1

z−ξk− |�k |2
z−ξd

k

�k

(z−ξk )(z−ξ d
k )−|�k|2

�∗
k

(z−ξk )(z−ξ d
k )−|�k|2

1

z−ξ d
k − |�k |2

z−ξk

⎞
⎟⎠, (A6)

where z is used as shorthand for ω + iη with η → 0. The
first element of this matrix is the lattice Green’s function
associated with the ck operator,

G(k, ω) = 1

ω + iη − ξk − |�k|2
ω−ξ d

k

, (A7)

which is the time Fourier transform of GR(k, t ) =
−i〈{ck(t ), c†

k}〉θ (t ). The last term in the denominator can
be interpreted as a k-dependent self-energy:

�(k, ω) = |�k|2
ω − ξ d

k

. (A8)

b. Superlattice. In quantum cluster methods [35,44,46],
another way to write Hamiltonian (1) is to represent it on a
superlattice of clusters, using the Fourier transform

cr = cr̃+R =
√

Nc

N

∑
k̃

eik̃·r̃cR(k̃). (A9)

Here, Nc is the number of sites in each cluster and the position
r of a lattice site is expressed as r = r̃ + R, where r̃ is the
position of the cluster (vector of the superlattice) and R is the
position of the site within the cluster. The corresponding sepa-
ration in momentum space is k = k̃ + K, defined to satisfy the
condition eK·r̃ = 1. In this basis, Hamiltonian (A2) becomes

H=
∑

k̃

∑
RR′

(c†
R(k̃) d†

R(k̃))
(

tRR′ (k̃) �RR′ (k̃)
�∗

RR′ (k̃) t d
RR′ (k̃)

)(
cR′ (k̃)
dR′ (k̃)

)
(A10)

≡
∑

k̃

(c†(k̃) d†(k̃))

(
t(k̃) �(k̃)

�†(k̃) td (k̃)

)
︸ ︷︷ ︸

≡H(k̃)

(
c(k̃)
d(k̃)

)
, (A11)

where the sum on k̃ spans the Brillouin zone associated with
the superlattice. Note that c(k̃) and d(k̃) define spinors of
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length Nc. Thus the 2 × 2 Hamiltonian matrix above is in fact
of dimension 2Nc × 2Nc,

H(k̃) =
(

t(k̃) �(k̃)
�†(k̃) td (k̃)

)
. (A12)

The elements of the hopping blocks t(k̃), td (k̃) and gap block
�(k̃) can be obtained as

tR,R′ (k̃) =
∑

r̃

e−ik̃·r̃tr̃+R,R′ , (A13)

t d
R,R′ (k̃) =

∑
r̃

e−ik̃·r̃t d
r̃+R,R′ , (A14)

�R,R′ (k̃) =
∑

r̃

e−ik̃·r̃�r̃+R,R′ , (A15)

with the sum over r̃ spanning all vectors of the superlattice.
In this basis, the lattice Green’s function G(k̃, ω) associated
with the c(k̃) spinor [the Fourier transform of GR(k̃, t ) =
−i〈{c(k̃, t ), c†(k̃)}〉θ (t )] is obtained by taking the Schur com-
plement of the block [z − td (k̃)] from the matrix [z − H(k̃)]:

G(k̃, ω) = 1

ω + iη − t(k̃) − �†(k̃) 1
ω−td (k̃)

�(k̃)
. (A16)

This yields a matrix representation of the lattice self-energy

�(k̃, ω) = �†(k̃)
1

ω − td (k̃)
�(k̃). (A17)

c. Single cluster. When restricting the above Hamiltonian
to a single cluster, all matrices lose their dependence on k̃.
Formally, this corresponds to taking only the cluster at r̃ = 0,
which is equivalent to

Hc = Nc

N

∑
k̃

H(k̃). (A18)

Starting from that cluster Hamiltonian Hc, the same steps as
above lead to the cluster Green’s function

Gc(ω) = 1

ω + iη − tc − �†
c

1
z−td

c
�c

, (A19)

with cluster self-energy

�c(ω) = �†
c

1

ω − td
c

�c, (A20)

which is Eq. (4) in the main text. Note that, although tc, td
c ,

and �c can all be obtained as

tc = Nc

N

∑
k̃

t(k̃), (A21)

td
c = Nc

N

∑
k̃

td (k̃), (A22)

�c = Nc

N

∑
k̃

�(k̃), (A23)

this is not the case for Gc(ω) and �c(ω),

Gc(ω) 
= Nc

N

∑
k̃

G(k̃, ω), (A24)

�c(ω) 
= Nc

N

∑
k̃

�(k̃, ω). (A25)

This is one of the fundamental reasons why the standard peri-
odization schemes cannot recover the original lattice Green’s
function (A16), as explained in what follows.

d. Compact tiling. Periodization tries to reverse the “clus-
terization” or “coarse graining” realized in (A18). Since the
latter is applied to the Hamiltonian, it is the Hamiltonian
which should be reconstructed, not the Green’s function,
self-energy, or cumulant. Furthermore, to reverse (A18), one
cannot simply Fourier transform back from representation
(A9) as done in the M and G schemes. One must also rebuild
the lost intercluster elements

δt(k̃) = t(k̃) − tc, (A26)

δtd (k̃) = td (k̃) − td
c , (A27)

δ�(k̃) = �(k̃) − �c. (A28)

To do so, we propose the compact tiling procedure illustrated
at Fig. 3 for the 2 × 2 case. Let us now justify this procedure.

In general, reversing a sum like (A18) is a fundamentally
ill-defined task. However, with the hypothesis of translation
invariance, the sum in (A18) removes information in a very
structured way, as we can see, for example, by substituting
(A14) in (A22)

[
td
c

]
R,R′ = Nc

N

∑
k̃

t d
R,R′ (k̃) (A29)

= Nc

N

∑
k̃

∑
r̃

e−ik̃·r̃t d
r̃+R,R′ (A30)

=
∑

r̃

(
Nc

N

∑
k̃

e−ik̃·r̃
)

t d
r̃+R,R′ (A31)

=
∑

r̃

δr̃=0t d
r̃+R,R′ (A32)

= t d
R,R′ . (A33)

The above equations relate the components of the cluster
operator td

c to the lattice t d
r,r′ . Our procedure of compact tiling

can be seen as rewinding this sequence, starting from the
cluster operator (A33) and adding back the phase factors to
rebuild the lattice operator t d

R,R′ (k̃) under the sum in (A29).
Components not contained within one cluster cannot be re-
constructed (e.g., t ′′ is lost in the 2 × 2 case). Note that, since
the equivalent of (A29)–(A33) also relates �c to the lattice
�r,r′ , we can use compact tiling to reconstruct �R,R′ (k̃) as
well. Clearly, compact tiling works best when hoppings are
short ranged.
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However, if we used compact tiling in an attempt to rebuild

δG(k̃, ω) = G(k̃) − Gc(ω), (A34)

δ�(k̃, ω) = �(k̃) − �c(ω), (A35)

it would fail because of (A24) and (A25). We suspect that sim-
ilar procedures suggested in earlier works for the self-energy
and the cumulant [14,43] also failed because of (A24) and
(A25).

e. 2 × 2 case. The specific example considered in the main
text is the 2 × 2 cluster, a geometry often studied with c-
DMFT. In this case, the spinor reprepresentation is

c†
k̃

= (
c†

R1
(k̃) c†

R2
(k̃) c†

R3
(k̃) c†

R4
(k̃)

)
, (A36)

where the Ri are the four positions of the cluster, enumerated
from 1 to 4, counterclockwise. In our example, we used a local
coupling only,

�(k̃) = �c =

⎛
⎜⎝

� 0 0 0
0 � 0 0
0 0 � 0
0 0 0 �

⎞
⎟⎠. (A37)

The dispersion t(k̃) can be written as t(k̃) = tc + δt(k̃) with
intracluster hoppings,

tc = −

⎛
⎜⎝

μ t t ′ t
t μ t t ′
t ′ t μ t
t t ′ t μ

⎞
⎟⎠, (A38)

and intercluster hoppings,

δt(k̃)

= −

⎛
⎜⎜⎜⎝

2t ′′[cos(2k̃x ) + cos(2k̃y)] t e−2ik̃x t ′(e−2ik̃x + e−2ik̃y + e−2i(k̃x+k̃y ) ) t e−2ik̃y

t e2ik̃x 2t ′′[cos(2k̃x ) + cos(2k̃y)] t e−2ik̃y t ′(e2ik̃x + e−2ik̃y + e2i(k̃x−k̃y ) )
t ′(e2ik̃x + e2ik̃y + e2i(k̃x+k̃y ) ) t e2ik̃y 2t ′′[cos(2k̃x ) + cos(2k̃y)] t e2ik̃x

t e2ik̃y t ′(e−2ik̃x + e2ik̃y + e2i(−k̃x+k̃y ) ) t e−2ik̃x 2t ′′[cos(2k̃x ) + cos(2k̃y)]

⎞
⎟⎟⎟⎠.

(A39)

The auxiliary dispersion ξ d
k = ξk+Q with Q = (π, π ) leads to

matrices td
c and δtd (k̃) identical to the above with t replaced

by −t , as seen for td
c at Eq. (5). By observation of (A38) and

(A39) we see that δt(k̃) can be rebuilt from tc, except for the
term with t ′′, as discussed in the main text. This “reconstruc-
tion by observation” corresponds to the compact tiling scheme
suggested at Fig. 3.
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