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Topological gaps in quasiperiodic spin chains: A numerical and K-theoretic analysis
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Topological phases supported by quasiperiodic spin-chain models and their bulk-boundary principles are
investigated by numerical and K-theoretic methods. We show that for both the uncorrelated and correlated
phases, the operator algebras that generate the Hamiltonians are noncommutative tori, hence the quasiperiodic
chains display physics akin to the quantum Hall effect in two and higher dimensions. The robust topological edge
modes are found to be strongly shaped by the interaction and, generically, they have hybrid edge-localized and
chain-delocalized structures. Our findings lay the foundations for topological spin pumping using the phason of
a quasiperiodic pattern as an adiabatic parameter, where selectively chosen quantized bits of magnetization can
be transferred from one edge of the chain to the other.
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I. INTRODUCTION

Engineering topological gaps that host robust edge modes
based on aperiodic principles is an extremely active area of
research, spreading over several research fields such as con-
densed matter [1–20], photonics [21–36], acoustics [37–39],
and mechanics [40–50]. The basic working principles for all
these studies rest on the existence of an intrinsic degree of
freedom, the phason of the aperiodic pattern, which in many
instances is experimentally accessible and, as such, it can be
used as an adiabatic parameter in practical applications. For
example, the first experimental demonstration of unassisted
dynamical edge-to-edge Thouless pumping [39] has been
achieved with such principles. In general, the phason space
augments the physical space and supplies additional virtual
dimensions [3], hence enabling physical phenomena beyond
what can be ordinarily observed in our physical space. In
particular, it can enable two and higher dimensional quantum
Hall physics without the need of breaking the time-reversal
and this has spurred the vigorous experimental progress men-
tioned above on the investigation of topological uncorrelated
phases from class A of the classification table [51–54].

An interesting and important ongoing research is charac-
terizing the interplay between the aperiodicity, many-body
correlations, and topology in quantum systems or between
aperiodicity, nonlinear effects, and topology in classical sys-
tems [55–71]. Quantum spin chains have been successfully
used in the past to shed some light on this question, especially
because they can be simulated with modest computational
resources. In particular, a quasiperiodic spin system with
tunned first and second nearest neighbor interactions has
been used in Ref. [57] to stabilize a fractional quantum
Hall state. In Ref. [67], it was shown that some correlated
topological phases that emerged under aperiodicity can be
adiabatically connected to uncorrelated phases, hence proving
certain topological stability against correlations. The stability
of the topological phases against many-body disorder was
investigated in Ref. [68]. The main tool deployed in all these

works is the first Chern number. However, as we shall see,
quasiperiodic spin-chain systems host a plethora of higher
Chern topological phases.

Operator algebras and their K-theories emerged as natu-
ral frameworks for analyzing aperiodic systems [72–74] and
these are the tools we adopt in our study. The first task of such
general program consists in the identification of the algebra
that generates the quantum Hamiltonians. If this is success-
fully completed, then the K-theory of this algebra classifies
the spectral projections of the Hamiltonians into classes that
are invariant to continuous deformations of the models. In par-
ticular, every single spectral gap of the Hamiltonian receives
a set of K-theoretic labels, which represent all topological
invariants, both strong and weak, that can be associated with
a gap. As it was pointed out in Ref. [75], this K-theoretic
labels can be read off from certain maps of the integrated
density of states (IDS). Such maps can be used to confirm that
the algebra of the Hamiltonians was computed correctly or,
in the cases when the algebras are unknown, the IDS maps
can give hints on what the algebra might be. This general
program has been carried out for several important classes
of aperiodic uncorrelated systems such as quasiperiodic [42],
quasicrystalline [14], incommensurate [75], and twisted [50]
bilayers. The progress with the correlated systems has been,
however, very slow.

Working with quasiperiodic spin chains, where the z com-
ponent of the magnetization is conserved by the dynamics, we
demonstrate first that the uncorrelated Hamiltonians restricted
to a magnetization sector M = d , where d = 1, 2, 3, . . ., be-
long to the noncommutative d-torus. This is confirmed by
the numerically computed IDS maps and by the counts of
the edge modes which conform with the bulk-boundary cor-
respondence principles for these algebras. When a nearest
neighbor interaction potential is turned on, in the regime of
strong interaction, we observe a separation of the bulk en-
ergy spectrum in d spectral islands [76] and, for d up to
three, we compute numerically the corresponding IDS maps.
Surprisingly, every single feature seen in these maps can be
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explained by noncommutative tori. To explain the origins of
these findings, we compute explicitly the generators of some
of these algebras in the presence of strong interaction that
reveal the strongly correlated nature of the new topological
phases. The topological edge modes are also found to be
strongly shaped by the interaction. The analysis represents an
important example where K-theory combined with numerical
simulations are used to produce an extremely refined and com-
plete picture of the topological phases supported by strongly
interacting models and to establish quantitative bulk-boundary
correspondence principles.

The paper is organized as it follows. In Sec. II, we intro-
duce the aperiodic pattern which is populated by 1/2 spins and
discuss the associated phason and phason space. In particular,
we explain the special and general mechanism that allows
one to use the phason as an adiabatic parameter and generate
topological Thouless pumps. Also in Sec. II, we describe the
quantum spin models studied in our work. As we already
mentioned, the noncommutative tori will play a central role
in our analysis and, for this reason, we dedicate Sec. III to
a review of these operators algebras and their K-theories.
We discuss the K-theoretic gap labels, their relations to the
standard topological invariants, their quantized range and how
to compute them from the IDS maps. Sections IV and IV are
dedicated to the topological analysis of the uncorrelated and
strongly correlated spin chains, respectively. The last section
summarizes the main conclusions of our work.

II. APERIODIC SPIN CHAINS

Any aperiodic pattern has an intrinsic degree of freedom,
the phason, which lives on a smooth manifold when the pat-
tern is quasiperiodic. Our spin chain models are defined over
quasiperiodic patterns where the phason lives on a circle. In
this section, we describe these patterns as well as the quan-
tum spin models defined over them. Special attention is paid
to the covariant property of the spin Hamiltonians and its
implications.

A. The aperiodic lattice

We consider a spin-1/2 chain over a one-dimensional lat-
tice of points:

L = {pn}n=−L,L ⊂ R, (1)

whose points are labeled in their increasing order. We always
center the lattice such that p0 sits at the origin of the real
axis. The number of points, i.e., the cardinal of L, will be
denoted by |L| and this number will be assumed infinite in
our theoretical analysis but, of course, it will be finite in the
numerical simulations. The central assumption of our work is
that the points pn of the lattice are not rendered periodically.
Instead, they are generated with the algorithm

pn = n + r (sin[2π (nθ + ϕ)] − sin(2πϕ)), n ∈ Z, (2)

where the parameters belong to the circle, θ , ϕ ∈ R/Z. Our
main focus is on the cases when θ is fixed at irrational values
and the lattice is truly aperiodic. The parameter ϕ plays the
role of the phason for this pattern. The amplitude r will be
fixed at r = 0.45, such that the points remain ordered with

FIG. 1. A sample of a pattern generated with the algorithm (2),
using r = 0.45, θ = √

2, and ϕ = 0. The dots were given a finite size
for visualization and some appear as overlapping, but this is not the
actual case for the point pattern.

respect to n, pn < pn+1. In fact, the pattern of points should
be seen as a locally distorted perfect lattice. To fulfill our pre-
vious convention, the expression was carefully tailored such
that the point p0 corresponding to n = 0 sits at the origin for
all allowed values of the coefficients. A sample of such pattern
is shown in Fig. 1. As one can see, with the value r = 0.45,
the pattern is quite far from being periodic.

As it is the case with any aperiodic point pattern [77], the
analytic analysis rests on a certain natural dynamical system,
which we now describe. First, note that for an infinite chain,
there exists a natural action of the group Z on L on the point
patterns given by

Z � a �→ τaL = {p′
n}n∈Z, p′

n = pn+a − pa. (3)

Translated in words, this action shifts the lattice rigidly until
the point with the old index a sits at the origin. Note that after
the shift, all points are relabeled and the point labeled by n =
0 sits again at the origin. From Eq. (2), one can see that this
action is equivalent to the transformation

ϕ �→ ϕ + aθ, a ∈ Z. (4)

Since the phason ϕ leaves on the circle S = R/Z, we can
see that the rigid shifts of L translate into rotations by θ

of the phason space S. Let us point out that all the above
conclusions remain the same if the sine function in (2) is
replaced with any other continuous function on S. In fact, as
we shall see, our entire analysis rests on the dynamical system
(S, τ ) indentified as the phason space, hence it applies to an
extremely large family of patterns.

Another important observation is that if θ is irrational, then
the orbit {(ϕ + aθ ) mod 1, a ∈ Z} of any ϕ under the action
of Z fills the circle densely. In other words, the dynamical
system (S, τ ) is topologically ergodic or minimal. This ob-
servation plays an important role for the following reason.
Let f , g : S → C be any two continuous complex functions
over the circle and consider the Hilbert space �2(Z) of square-
summable sequences over Z. We associate to f the following
diagonal operator over �2(Z):

Wf �→ πϕ ( f ) =
∑
n∈Z

f (ϕ + nθ ) |n〉〈n|, (5)

where {|n〉}n∈Z is the canonical basis of �2(Z). If we repeat the
same construction for g as well as for the pointwise product
f g, then it is straightforward to verify that

Wf Wg = Wf g ↔ πϕ ( f )πϕ (g) = πϕ ( f g). (6)

In other words, πϕ is a representation of the algebra C(S) of
continuous functions over C. If θ is irrational, and only in this
case, the representation is faithful and, as such, the algebra
generated by the operators (5) is isomorphic to the algebra
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C(S). Furthermore, up to isomorphisms, the πϕ representa-
tions are independent of the parameter ϕ. As we shall see,
this has important consequences for the spectra of physical
operators, particularly, for their independence on ϕ. Let us
stress that none of these would be true if θ were rational.

B. The spin system defined

We will consider a quantum system where one 1/2 spin
sits on each point of the pattern L. Hence, the Hilbert space
for the spin systems over L is

HS =
⊗
x∈LL

C2 � MD×D(C2), D = 22L+1. (7)

For aperiodic patterns like the one shown in Fig. 1, it is
natural to assume that the spin-spin interaction depends on
the separation distance dn = pn+1 − pn between the spins. As
such, we consider spin Hamiltonians of the form

HS =
L∑

n=−L

[
J (dn)

(
Sx

nSx
n+1 + Sy

nSy
n+1

) + Jz(dn)Sz
nSz

n+1

]
, (8)

where

Sα
n = I ⊗ . . . ⊗ I ⊗ 1

2σα ⊗ I . . . ⊗ I, α = x, y, z, (9)

with the Pauli matrix σα sitting at position n ∈ {−L, . . . , L}.
Both, closed and open boundary conditions will be considered
and, to make a clear distinction, we will use Ĥ to indicate the
open boundary conditions.

Our methods can handle any functional form of J that is
asymptotically decaying and continuous. However, for con-
creteness, we made the choice

J (s) = e−|s|, s ∈ R, (10)

which is uniformly used in our numerical simulations. Let us
point out that if we introduce the function

f (ϕ) = J (|1 + r(sin[2π (ϕ + θ )] − sin[2πϕ])|), (11)

defined over the unit circle, then

J (dn) = f (ϕ + nθ ). (12)

This supplies one connection with the discussion at the end of
previous section. As for the Ising interaction strength Jz, we
chose them to be independent of dn in order to clearly separate
aperiodic from correlation effects.

To fix the notation, let us recall the following relevant
operators:

S±
n = Sx

n ± ıSy
n, n = −L, . . . , L, (13)

and the operator of z component of magnetization

M =
L∑

n=−L

(
Sz

n + 1

2

)
, (14)

which commutes with the Hamiltonian (8). Also, we recall
that the algebra of spin operators accepts the unique trace

TS

(⊗
x∈L

Ax

)
=

∏
x∈L

1

2
Tr(Ax ), (15)

where Tr is the ordinary trace on the 2 × 2 matrices. This trace
is normalized, TS (1 ⊗ . . . ⊗ 1) = 1.

We now focus on the covariant property of the Hamil-
tonians and its consequences. With parameter θ fixed, the
Hamiltonians have a functional dependency on ϕ, which is
now written out explicitly as H (ϕ). Then, if Ta with a ∈ Z
represent the usual translations of the spins, we have the
obvious covariance relation

TaH (ϕ)T †
a = H (ϕ + aθ ). (16)

Since the spectra are invariant under unitary transformations,
it follows that Spec(H (ϕ + aθ )) are all the same for all a ∈
Z. Recall that if θ takes an irrational value, then the orbit
{ϕ + aθ, a ∈ Z} fills the phason space S densely. These facts
together with the continuity of the spectrum with respect to
the phason for the aperiodic patterns [78] tells us that the
spectrum of H (ϕ) is completely independent of ϕ. We warn
the reader that this remarkable conclusion dose not hold if θ is
rational, a fact that can be easily verified numerically. Further-
more, the covariance relation breaks down in the presence of
a boundary, hence the boundary spectrum becomes dispersive
with respect to the phason.

The characteristics described above are ideal for topologi-
cal Thouless pumping. Let us recall that, in general, it is quite
difficult to design Hamiltonians that depend on a parameter
in such a way that at least one bulk gap does not close as
the parameter is cycled. The above discussion tells us that
all the bulk spectral gaps of H (ϕ) remain unchanged, hence
open, when the phason is varied. This is a remarkable property
unmatched by any other design method and this is why the
quasiperiodic systems are so valuable for practical applica-
tions.

C. Connections with fermionic models

We will use the Jordan-Wigner mapping [80], Sec. 5.1] to
make connections with fermionic aperiodic physical systems
already studied in the literature. We want to make clear from
the beginning, however, that the fermionic models will only
be used in the theoretical analysis. The numerical analysis is
always performed with the spin Hamiltonian (8).

For the reader’s convenience, we recall that the Jordan-
Wigner mapping is supplied by the operators

an = S−
n

n−1∏
j=−L

2Sz
j, a∗

n = S+
n

n−1∏
j=−L

2Sz
n, (17)

with n running from −L to L. These operators satisfy the
canonical anticommutation relations

aman + anam = 0, a∗
man + ana∗

m = δm,n. (18)

Together with the inverse formulas

S−
n = an

n−1∏
j=−L

(2a∗
j a j − 1), S+

n = a∗
n

n−1∏
j=−L

(2a∗
j a j − 1), (19)

these relations establish an isomorphism between the algebra
of spin operators and the algebra of fermionic creation and
annihilation operators over the lattice L. In particular, the
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magnetization operator is mapped into the particle number

M → N =
L∑

n=−L

a∗
nan, (20)

and the model Hamiltonian (8) into [80], p. 74]

HF =
L∑

n=−L

[
1

2
J (dn)(a∗

nan+1 + a∗
n+1an)

+ Jz

L∑
n=−L

(
a∗

nan − 1

2

)(
a∗

n+1an+1 − 1

2

)]
, (21)

The algebra of fermion operators also accepts a unique
normalized trace, to be denoted by TF . The Jordan-Wigner
transformation preserves the unique traces of the two algebras.

III. THE NONCOMMUTATIVE d-TORUS

There is a natural link between the point pattern in (2)
and the algebra called noncommutative torus [75]. In dimen-
sions d = 2 and 3, this algebra coincides with the algebra of
magnetic translations and this fact has been used to fabricate
patterned metamaterials that mimic the physics of the integer
quantum Hall effect [42].

As we shall see, when we restrict the spin model to the
invariant subspace of the magnetization operator, the reduced
algebra of physical observables can be computed explicitly
and it coincides with the noncommutative d-torus, where the
dimension d is determined by the value of the magnetization.
In this section, we review the basic facts about this algebra.

A. The noncommutative d-torus defined

Let 
 = {θi j}i, j=1,d be a d × d antisymmetric matrix with
entries from R/Z. The noncommutative d-torus associated to

 is the universal C∗-algebra

A
 = C∗(u1, . . . , ud ), (22)

generated by d-unitary elements satisfying the relations

uiu j = eı2πθi j u jui, i, j = 1, . . . , d. (23)

A generic element of the algebra can be presented in the
following form:

a =
∑
q∈Zd

aq uq, uq = uq1
1 . . . uqd

d , aq ∈ C, (24)

but other conventions are possible. When all entries of 


are irrational and rationally independent, the noncommutative
torus accepts a unique trace

T

⎛⎝∑
q∈Zd

aq uq

⎞⎠ = a0. (25)

The monomials un are orthonormal with respect to the scalar
product induced by the trace

〈un, un′ 〉 := T (u∗
nun′ ) = δn,n′ , n, n′ ∈ Zd , (26)

and (A
,+, 〈, 〉) becomes a Hilbert space on which the ele-
ments of the algebra act as

π (a)|a′〉 = |aa′〉, a, a′ ∈ A
. (27)

If we use the shorthand |n〉 for |un〉, then it is straightforward
to see that this Hilbert space is just �2(Zd ), the space of square
summable sequences labeled by Zd . Furthermore,

π (uq)|n〉 = |uqun〉 = e2π ı〈q|
+|n〉|uq+n〉, (28)

where 
+ is the upper diagonal part of 
. Equation (28) is
just the magnetic translation by q in ordinary tight-binding
solid state models, written in the Landau gauge. In this rep-
resentation, the entries θi j of 
 correspond to the flux of the
magnetic field through the facet {i, j} of the primitive cell,
expressed in half the quantum of flux unit h/2e.

The above representation, which is just the standard
Gelfand-Naimark-Segal representation [81] ofA
 induced by
the trace T , connects this algebra with the algebra of mag-
netic translations. In this work, however, we will encounter
different representations ofA
. Nevertheless, being the same
algebra, the spectra of the Hamiltonians, at least for d = 2,
resemble quite closely the Hofstadter butterfly [82] seen in
the spectrum of two-dimensional electrons in magnetic fields.

B. Elements of K-theory

In this work, we use the complex K-theory of operator
algebras [83], which is a natural extension of the K-theory
of vector bundles [84]. This theory supplies all independent
topological invariants that can be associated to projections and
unitary elements of an algebra.

The complex K-theory of the algebra A
 contains two K-
groups, which can be described as follows. The first one is the
K0(A
) group, which classifies the projections

p ∈M∞ ⊗A
, p2 = p∗ = p, (29)

with respect to the von Neumann equivalence relation

p ∼ p′ iff p = vv′ and p′ = v′v, (30)

for some partial isometries v and v′ fromM∞ ⊗A
. Above,
MN is the algebra of N × N matrices with complex entries
and M∞ is the direct limit of these algebras. For any pro-
jection p fromM∞ ⊗A
, there exists N ∈ N such that p ∈
MN ⊗A
, hence we do not really need to work with infinite
matrices. However, MN can be canonically embedded into
M∞ and this convenient, because it enables N to take flexible
values.

We need to answer two questions: (1) how does the equiva-
lence relation (30) supply topological information and (2) why
do we need the tensoring by M∞? Both questions find their
answers in the following remark. There are two additional
equivalence relations for projections [84], p. 18].

(1) Similarity equivalence:

p ∼u p′ iff p′ = upu∗ (31)

for some unitary element u fromM∞ ⊗A
.
(2) Homotopy equivalence:

p ∼h p′ iff p(0) = p and p(1) = p′ (32)
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for some continuous function p : [0, 1] →M∞ ⊗A
, which
always returns a projection.

The homotopy equivalence is certainly the topological
equivalence as understood by condensed matter physicists.
Now, in general, the three equivalence relations are different,
but tensoringA
 byM∞ makes them entirely equivalent. For
topological classification, ∼h is the most interesting relation,
but, as we shall see, the relation ∼ is essential for understand-
ing the spectral properties of Hamiltonians.

The equivalence class of a projection p will be denoted by
[p]0, hence, [p]0 is the set

[p]0 = {p′ ∈M∞ ⊗A
, p′ ∼ p}. (33)

If p ∈MN ⊗A
 and p′ ∈MM ⊗A
 are two projections,

then (
p 0
0 p′) is a projection fromMN+M ⊗A
 and one can

define the addition

[p]0 ⊕ [p′]0 =
[

p 0
0 p′

]
0

, (34)

which provides a semigroup structure on the set of equiva-
lence classes. Then K0(A
) is its enveloping group [83] and,
for the noncommutative d-torus,

K0(A
) = Z2d−1
, (35)

regardless of 
. As such, there are 2d−1 generators [eJ ]0,
which can be uniquely labeled by the subsets of indices J ⊆
{1, . . . , d} of even cardinality [85]. Throughout, the cardinal-
ity of a set will be indicated by | · |. Equation (35) assures us
that for any projection p fromM∞ ⊗A
, one has

[p]0 =
|J|=even∑

J⊆{1,...,d}
nJ [eJ ]0, (36)

where the coefficients nJ are integer numbers that do not
change as long as p is deformed inside its K0-class. Specif-
ically, two homotopically equivalent projections will display
the same coefficients, hence {nJ}|J|=even represent the complete
set of topological invariants associated to the projection p.
Furthermore, two projections that display the same set of
coefficients are necessarily in the same K0-class. Let us point
out that the coefficient nJ corresponding to J = {1, 2, . . . , d}
is called the top coefficient and is equal to the strong Chern
number associated to the projection p [85], Sec. 5.7].

The second group of the complex K-theory is K1(A
),
which classifies the unitary elements

u ∈M∞ ⊗A
, uu∗ = u∗u = 1, (37)

with respect to the homotopy equivalence relation. The class
of u ∈M∞ ⊗A
 will be denoted by [u]1. For the noncom-
mutative d-torus,

K1(A
) = Z2d−1
, (38)

regardless of 
. Again, there are 2d−1 generators [uJ ]1,
which can be uniquely labeled by the subsets of indices J ⊆
{1, . . . , d} of odd cardinality [85]. This assures us that for any
unitary u fromM∞ ⊗A
, one has

[u]1 =
|J|=odd∑

J⊆{1,...,d}
nJ [uJ ]1, (39)

and the coefficients nJ are again integer numbers that do not
change as long as u is deformed inside its class. Specifically,
two homotopic unitaries will display the same coefficients,
hence {nJ}|J|=odd represent the complete set of topological
invariants associated to u.

C. Relation to Chern numbers

We will use the uniform notation from [85] for the weak
and the strong Chern numbers of a gap projection, namely,
ChJ (PG), where J ⊂ {1, . . . , d} is a subset of directions. The
values of the Chern numbers on the K0-generators can be
found in Ref. [85], p. 141]:

ChJ ′[eJ ]0 =
⎧⎨⎩0 if J ′ � J,

1 if J ′ = J,

Pf(�J\J ′ ) if J ′ ⊂ J,

J, J ′ ⊂ {1, . . . , d}.

(40)
Since the Chern numbers are also linear maps, their values
on the gap projection [PG]0 = ∑

J nJ [eJ ]0 can be straightfor-
wardly computed from (40):

ChJ ′[PG]0 = nJ ′ +
∑
J ′�J

nJ Pf(�J\J ′ ). (41)

Let us point out that the top Chern number corresponding
to J ′ = {1, . . . , d} is always an integer, but the lower Chern
numbers may not be.

D. Spectral gap labeling

Let h ∈M∞ ⊗A
 be a Hermitian element and G a gap
in its spectrum. Depending on the context, the symbol G will
stand for the energy interval or for the center of this interval.
Let χ (s) be the step function which drops from 1 to 0 at
s = 0. Using functional calculus, we can define the gap pro-
jection pG ≡ χ (h − G). Being a projection fromM∞ ⊗A
,
it defines an equivalence class in K0(A
) and, per previous
discussion, we have the decomposition

[pG]0 =
|J|=even∑

J⊆{1,...,d}
nJ (G) [eJ ]0. (42)

If G′ is another spectral gap of h, then pG and pG′ cannot be
homotopically connected, hence they belong to different K0-
classes and, as such, the two projectors will display different
sets of integer coefficients {nJ}. The conclusion is that the
spectral gaps are uniquely labeled by the K0-group itself. This
principle was discovered by Jean Bellisssard in his pioneering
applications of K-theory to solid state physics [72,73].

To add more clarity to the above statement, let us recall
that when one enumerates the elements of a set, one actually
assigns labels using elements from the group Z. For the set
of spectral gaps in the Hofstadter butterfly (see Fig. 2), if one
tries to count, say, starting from the bottom of the spectrum,
one will soon realize that it is impossible, because between
any two spectral gaps there are an infinite number of addi-
tional spectral gaps. What we were asserting in the previous
paragraph was that one needs to count the spectral gaps not
by Z but by the K0-group. Furthermore, when looking at
the Hofstadter butterfly, what really jumps to ones eyes is
the structure and the pattern of the spectral gaps and not
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FIG. 2. Energy spectrum of Hamiltonian (8) inside the M = 1
sector as function of θ . The simulations were performed with for
Jz = 0, |L| = 501 and the range of parameter θ has been sampled at
rational values θn = n/|L| to accommodate closed boundary condi-
tions. Eight gaps are identified and color coded for future references.

the quantitative details. It is fair to say that when looking at
the spectrum of a class of Hamiltonians, more precisely at
the structure of the gaps, we literally see a representation of
the K0-group of the algebra which contains those Hamiltoni-
ans. By diagonalizing more and more Hamiltonians, we can
look at the K0-group from “different angles” and ultimately
we can identify it entirely.

The gap labels can be detected numerically by a variety
of methods. For example, there are precise relations between
the strong and weak Chern numbers and the gap labels [85],
Sec. 5.7], which generalize the well known Streda formula
[86]. However, one of the most effective tools is supplied by
the integrated density of states (IDS) of the Hamiltonians over
�2(Zd )

IDS(E ) = lim
V →Rd

|Spec(
V H 
V ) ∩ (−∞, E ]|
|V ∩ Zd | , (43)

where | · | denotes the cardinal of a set and 
V represents the
projection onto the sites q ∈ V . Translated in words, IDS(E )
is the number of eigenvalues below E of any finite-volume
representation of the Hamiltonian, divided by the number of
sites inside that volume, for large enough volumes. Note that

V H
V is just the bulk Hamiltonian restricted on V via
Dirichlet boundary condition, but any other boundary condi-
tion will do.

Definition (43) is very convenient for numerical evalua-
tions. However, the topological information encoded by IDS
is revealed by another expression. Indeed, when E belongs to
a spectral gap G, then IDS can be equivalently computed as

IDS(G) = TrV (PG), (44)

where PG is the gap projector and TrV is the trace per volume
over the Hilbert space �2(Zd ),

TrV (PG) = lim
V →Rd

Tr(PG)

|V ∩ Zd | . (45)

Now, if H is a physical representation of an element h ∈ A
,
H = π (h), then

TrV (PG) = T (pG), PG = π (pG), (46)

whereT is the trace introduced in Eq. (25). The above relation
is well known and is a direct consequence of Birkhoff er-
godic theorem [87]. Consider now a topological deformation
p′

G of pG, which can be induced by a deformation of the
Hamiltonian itself. Definitely, these two projections belong
to the same K0 classes, hence they are connected by two
partial isometries pG = vv′ and p′

G = v′v. Since any trace is
invariant to cyclic permutations of the entries, one finds that
T (pG) = T (p′

G). Hence, T is constant over the K0 classes.
Furthermore, being a linear map,

T ([pG]0) =
|J|=even∑

J⊆{1,...,d}
nJ (G)T ([eJ ]0). (47)

The values of the trace on the generators eJ were computed
in Ref. [88] (see also Ref. [85], Sec. 5.7]):

T
(
[eJ ]0

) = Pfaff (
J ), (48)

where on the right we have the Pfaffian of the matrix obtained
from 
 by restricting to the indices contained in the subset
J . The conclusion is that we can predict the range of the IDS
when evaluated inside the spectral gaps

IDS(G) = T ([pG]0) =
|J|=even∑

J⊆{1,...,d}
nJ (G) Pfaff (
J ). (49)

When the entries of 
 are rationally independent, all coeffi-
cients nJ (G) can be detected from the values of the IDS. In
fact, in such situations, the IDS supplies a group isomorphism
between K0(A
) and a dense but nevertheless countable sub-
group of R.

IV. TOPOLOGICAL GAPS: THE NONCORRELATED CASE

In this section, we set Jz = 0 and investigate the magneti-
zation sectors separately for up to M = 3. As we shall see,
for all cases, the energy spectrum of the spin Hamiltonian
(8) displays fractality and one of the goals is to label the
spectral gaps of the fractal butterfly by appropriate K-groups.
Another goal is to demonstrate the emergence of topological
edge modes when the parameter ϕ in Eq. (2) is varied.

A. The M = 1 sector

In Fig. 2, we report the spectrum of the Hamiltonian
defined in Eq. (8) as a function of the parameter θ from
Eq. (2), computed inside the M = 1 sector with closed bound-
ary conditions. The resemblance between that spectrum and
the Hofstadter spectrum of the electrons in a magnetic field
[82] is evident, which may appear strange at first sight given
the fact that no fine tunning was performed. Figure 3 reports
the spectrum of the same Hamiltonian computed with open
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FIG. 3. Energy spectrum of Hamiltonian (8) with open boundary
condition inside the M = 1 sector, plotted as function of parameter
ϕ from (2). The topological boundary spectrum is highlighted in
red and the spectrum with closed boundary conditions is overlaid
in black color. The computation was performed with Jz = 0, θ =
(1 + √

3)/5, and |L| = 473. The colored dots mark the same gaps
as in Fig. 2.

boundary conditions at a fixed θ , but a variable parameter
ϕ from Eq. (2). The observed chiral bands is an indication
that the spectral gaps are topological. This section supplies an
explanation of both observations based on an explicit com-
putation of the algebra of physical observables and of its
K-theory. In the process, we exemplify how the IDS can be
used to identify the topological labels of the spectral gaps and
how to work out the bulk-boundary correspondence.

The M = 1 sector of the spin system is very simple. A
basis for this sector consists of states with all spins down
and only one spin up. We denote such state as |n〉 if the
up-spin is located at site n and the Hilbert space generated
by these states byH1. Obviously,H1 � �2(Z). The operators
Sx

nSx
n+1 + Sy

nSy
n+1 act as simple hopping operators on �2(Z)

and the spin Hamiltonian reduces to the ordinary tight-binding
Hamiltonian

H1 = 1

2

∑
n∈Z

J (dn) (|n〉〈n + 1| + |n + 1〉〈n|). (50)

This expression, which also follows from the Jordan-Wigner
transformation, can be re-written in the following form:

H1 = 1

2
T

∑
n∈Z

f (ϕ + nθ ) |n〉〈n| (51)

+ 1

2
T ∗ ∑

n∈Z
f (ϕ + (n − 1)θ ) |n〉〈n|, (52)

where T is the lattice shift operator T |n〉 = |n + 1〉 and the
function f was supplied in Eq. (11). Without imposing con-

straints on the functional dependence J , one can see that H1

is generated by the translation operator T and by diagonal
operators of the form:

Wg =
∑
n∈Z

g(ϕ + nθ ) |n〉〈n|, g ∈ C(S), (53)

already introduced in Eq. (5). Furthermore, we have the fol-
lowing commutation relation:(∑

n∈Z
g(ϕ + nθ ) |n〉〈n|

)
T = T

(∑
n∈Z

g(ϕ + (n + 1)θ ) |n〉〈n|
)

,

(54)

or, more compactly:

Wg T = T Wg◦τθ
, (55)

where τθ is the rotation of the circle by θ .
Per discussion in Sec. II A, the algebra generated by the

operators (53) is isomorphic to the algebra C(S) of continuous
functions over the circle. Furthermore, any function f over
the circle can be Fourier decomposed. As such, the algebra of
continuous functions over S is generated by a single function:

u : R/Z → C, u(x) = eı2πx. (56)

Hence all the diagonal operators from Eq. (53) can be obtained
as linear combinations of powers of a single diagonal opera-
tor:

U = e−ı2πϕ
∑
n∈Z

u(ϕ + nθ ) |n〉〈n| =
∑
n∈Z

eı2πnθ |n〉〈n|. (57)

The conclusion is that regardless of the functional depen-
dence on dn of the coupling coefficients, the Hamiltonian H1

is drawn from the algebra C∗(T,U ) generated by T and U
and one can check from Eq. (54) the following commutation
relation:

UT = eı2πθ TU . (58)

Hence, the algebra of observables coincides with the noncom-
mutative 2-torusA
1 , with a θ -matrix:


1 =
(

0 θ

−θ 0

)
. (59)

In Fig. 4, we report the IDS for Hamiltonian H1, which has
been directly computed from the spectrum Spec(H1) reported
in Fig. 2, using the formula:

IDS(E ) = |Spec(H1) ∩ (−∞, E ]|
|L| . (60)

For lattice sizes large enough, this expression is equivalent to
Eq. (43) for d = 1. The IDS is represented as a function of θ

and energy, with the latter on the axis coming out of page. For
visualization, the energy values are encoded in the color map
and the striking features seen throughout this color map are
the sudden changes in color, which occur along straight lines.
These sudden changes in color correspond to the spectral
gaps. Indeed, since the IDS remains constant as the energy
is varied inside a spectral gap, the three-dimensional graph
in Fig. 4 must be aligned with the axis coming out of the
page. When viewed from the top, this variation of the graph
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FIG. 4. Numerical IDS as computed from the spectral butterfly reported in Fig. 2 for the M = 1 sector and Jz = 0. The K-theoretic IDS
values from Eq. (61), shown as light colored lines, are matched with the numerical IDS values inside the gaps marked in Fig. 2, identified here
by the abrupt changes in the color plot. The matching progresses in the order of the gap sizes. The tables list the gap labels (n, m) from Eq. (61)
as well as the corresponding gaps.

is hidden to the eye and the only thing we see is a sudden
change of color. Let us point out that the larger the gap the
stronger the sudden change in color. This simple phenomenon
enables us to determine the numerical values of the IDS inside
the prominent spectral gaps marked in Fig. 2. Indeed, Eq. (49)
predicts the following IDS values inside the gaps:

IDS(G) ∈ {n + mθ, n, m ∈ Z} ∩ [0, 1], (61)

which are all linear dependencies with respect to θ with inte-
ger coefficients. In Fig. 4, we show how the features seen in
the numerically computed IDS align with these predictions.
For this, the pair IDS = θ and IDS = 1 − θ of predicted val-
ues are laid in the second panel over the numerically computed
IDS and the strongest features are identified. Additional pre-
dicted IDS values are laid in the next panel and the remaining
strongest features are again identified, and similarly for the
last panel. Our conclusion is that every single feature seen in
the numerically computed IDS can be explained and matched
by the prediction in Eq. (61) derived from the K-theory of the
noncommutative 2-torus.

The process explained in Fig. 4 enabled us to determined
the K-theoretic labels attached to the spectral gaps. They are
reported in the tables in Fig. 4 for the gaps marked in Fig. 2.
Since the m-coefficient coincides with the first Chern number,
any gap carrying a nonzero m-label should display m topolog-
ical edge modes. This bulk-boundary correspondence is well
understood and it is indeed confirmed by Fig. 3 and the gap
labels mapped in Fig. 4. The simulations in Fig. 3 were carried
with open boundary conditions, hence, the chain displays two
edges and this is why the number of topological edge bands
are doubled in Fig. 3.

It will be useful for the following section to explain the
ϕ-dependence of the spectra in the algebraic framework ad-

vocated here. For this, let H1(0) be the spin Hamiltonian
corresponding to ϕ = 0, as projected onto the M = 1 sector.
It has an expansion:

H1(0) =
∑
q∈Z2

aq U q1 T q2 , (62)

where, for the sake of the argument, we included further
neighbor couplings (i.e., q2 is not restricted to just ±1). Now,
to obtain the expansion of H1(ϕ) for ϕ �= 0, we need to insert
the factor eı2πϕ , which was taken out in (57):

U �→ eı2πϕU, (63)

leading to

H1(ϕ) =
∑
q∈Z2

aq eı2q1πϕU q1 T q2 . (64)

When θ is irrational, all H1(ϕ), ϕ ∈ R/Z, are unitarily equiva-
lent. For example, this is why the bulk spectrum in Fig. 3 lacks
any dependence on ϕ. One can also convince oneself that the
situation is quite different when θ is rational. On the other
hand, the Hamiltonians Ĥ1(ϕ) for a semi-infinite spin-chain
are no longer unitarily equivalent, regardless of the rational or
irrational character of θ . This is why the boundary spectrum,
highlighted in red in Fig. 3, displays a dispersion with ϕ.

B. The M = 2 sector

In Fig. 5, we report the spectrum of the spin Hamiltonian
(8) as a function of parameter θ from Eq. (2), computed
inside the sector M = 2 and with closed boundary conditions.
Figure 6 reports the spectrum of the same Hamiltonian as
function of parameter ϕ from Eq. (2), computed at fixed θ

and with open boundary conditions. As one can see in Fig. 5,
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FIG. 5. Energy spectrum of the Hamiltonian (8) as a function of
θ for M = 2 sector and Jz = 0. The simulations were performed for
a chain with |L| = 201 and the range of parameter θ has been sam-
pled at rational values θn = n/|L| to accommodate closed boundary
conditions. Eight prominent gaps are identified and color-coded for
future references.

FIG. 6. Energy spectrum of the Hamiltonian (8) inside the M =
2 sector and with open boundary condition, plotted as a function of
parameter ϕ from (2). The topological boundary spectrum is high-
lighted in red and the spectrum with closed boundary condition is
overlaid in black color. The computation was performed with Jz = 0,
θ = (1 + √

2)/4, and |L| = 169. The colored dots mark the same
gaps as in Fig. 5.

the fractal nature of the bulk spectrum is still apparent and the
chiral edge bands are still present in Fig. 6. This section is
devoted to resolving the structure of the bulk spectrum, deter-
mining the K-theoretic labels associated with the spectral gaps
and formulating the bulk-boundary correspondence principle,
which quantitatively explains the observations in Fig. 6.

We will work directly with the fermionic representation
(21) of the model, which needs to be projected on the two-
particle antisymmetric Fock space F (−)

2 = H1 ∧H1 spanned
by vectors of the form

1√
2

(|n〉 ⊗ |m〉 − |m〉 ⊗ |n〉)), n, m ∈ Z. (65)

Since the Hamiltonian is quadratic, this restriction is simply
given by

H2 = H1 ⊗ I + I ⊗ H1. (66)

A key point in our strategy is to view this Hamiltonian as
acting on the full two-particle Fock spaceF2 spanned by |n〉 ⊗
|m〉, n, m ∈ Z. If we do so, then H2 belongs to the algebra
generated by just four elements

C∗(U ⊗ I, T ⊗ I, I ⊗ U, I ⊗ T ), (67)

which can be straightforwardly shown to be the noncommuta-
tive 4-torus. Indeed, let Vi, i = 1, 4, be the operators appearing
in Eq. (67), respecting that order. Then the following commu-
tation relations descend directly from Eq. (58):

V1V2 = eı2πθV2V1, V3V4 = eı2πθV4V3, (68)

and for all the remaining cases, ViVj = VjVi. As such, we
are dealing with the noncommutative 4-torus A
2 , with the
θ -matrix:


2 =

⎛⎜⎝ 0 θ 0 0
−θ 0 0 0
0 0 0 θ

0 0 −θ 0

⎞⎟⎠. (69)

Let us specify that the Vi generators do not preserve the
antisymmetric Fock space, while H2 obviously does. So H2

is generated from the symmetrized version of A2 but, un-
fortunately, that algebra does not accept a finite number of
generators and relations. This is the main reason we worked
with a larger algebra that nevertheless, generates all possible
H2 Hamiltonians over the pattern L.

We computed the IDS corresponding to the spectrum
Spec(H2) reported in Fig. 5 using the following formula:

IDS(E ) = |Spec(H2) ∩ (−∞, E ]|
|L|2 , (70)

and the results are reported in Fig. 7. As one can see, the lines
where the color changes abruptly are now curved instead of
being linear. Using the same argument as before, these lines
are identified with the values of the IDS inside the spectral
gaps. For those cases, Eq. (70) can be shown to be equivalent
to T (pG) and the predictions spelled in (49) apply. With the

 from (69), these predictions translate to

IDS(G) ∈ {n + mθ + kθ2, n, m, k ∈ Z} ∩ [0, 1]. (71)

Using the same strategy as for the case of M = 1, we demon-
strate in Fig. 7 that the curves mentioned above match most
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FIG. 7. Numerical IDS as computed from the spectral butterfly reported in Fig. 5 for the M = 2 sector and Jz = 0. The K-theoretic IDS
values from Eq. (71), shown as light colored curves, are matched with the numerical IDS values inside the gaps marked in Fig. 5, identified
here by the abrupt changes in the color map. The matching progresses in the order of the gap sizes. The tables list the gap labels (n, m, k) from
Eq. (71) as well as the corresponding gaps.

of the features seen in the numerically computed IDS. In fact,
further investigations, which are not reported here, convinced
us that we can match all the features seen in the numerical
IDS. The process used in Fig. 7 enabled us to identify the
K-theoretic labels for the spectral gaps, which are reported in
the tables of Fig. 7. As one can see, the top index k is nonzero
for all identified spectral gaps.

We now turn our attention to the bulk-boundary princi-
ple. In Fig. 6, one can see bundles of chiral bands of both
positive and negative slope. Our next goal is to explain,
quantitatively, the structure of these chiral bands. The stan-
dard bulk-boundary correspondence for the noncommutative
4-torus was worked out in details in [85]. However, for the
spin system, the bulk-boundary correspondence is more com-
plicated but also more interesting. Indeed, note that

H2(ϕ) = H1(ϕ) ⊗ I + I ⊗ H1(ϕ). (72)

If we could engineer the Hamiltonian

H2(ϕ1, ϕ2) = H1(ϕ1) ⊗ I + I ⊗ H1(ϕ2), (73)

with independent control on ϕ1 and ϕ2, then Eq. (72) would
have been entirely equivalent to a topological insulator from
class A in d = 4. Indeed, ϕ1,2 will represent two virtual mo-
menta and the fermionic system will have 2 physical and 2
virtual dimensions. However, the two identical fermions expe-
rience the same underlying pattern so the two virtual momenta
are bound to be the same. The consequence is that we will not
be able to explore the full dispersion of the boundary states but
only the diagonal sector ϕ1 = ϕ2. Furthermore, when a phys-
ical edge is imposed on the spin chain, both virtual fermions
experience the boundary. In other words, the Hamiltonian with

a boundary becomes

Ĥ2(ϕ) = Ĥ1(ϕ) ⊗ I + I ⊗ Ĥ1(ϕ), (74)

where Ĥ1(ϕ) is the Hamiltonian mentioned in Sec. IV A, and
the physical edge of the 1-dimensional spin-chain becomes a
hinge for the virtual four-dimensional system. The boundary
states seen in Fig. 6 are not related to the hinge states studied
in Ref. [89], which are stabilized by a point symmetry, nei-
ther to the ones studied in Ref. [90], which require gapped
boundaries. Corner-following states in a hinged geometry
were studied in Ref. [91], but the boundary states observed
in Fig. 6 are not related to such states either, because Fig. 6
is about the dispersion of the boundary modes with respect to
momenta in planes perpendicular to the boundaries.

In the following, we adapt the bulk-boundary formalism
from [85] to the new setting, with the goal of deriving a quan-
titatively precise bulk-boundary principle for the spin chain.
First, we will establish the bulk-boundary correspondence for
the pair (H2, Ĥ2) on the full Fock space F2 and we will project
onto the antisymmetrized sector F (−1)

2 at the end. We start
by noticing that topologically, the diagonal path inside the
(ϕ1, ϕ2)-torus of Eq. (73) is equivalent to the concatenation
of two paths

{(ϕ, ϕ), ϕ ∈ [0, 1]} � {(ϕ1, 0), ϕ1 ∈ [0, 1]}
∪ {(1, ϕ2), ϕ2 ∈ [0, 1]}. (75)

Since, the net number N [92] of chiral bands traversing the
bulk gap G does not change under such deformations, we re-
duced the problem to counting the chiral modes of Ĥ (ϕ1, ϕ2)
emerged when varying ϕ1 with ϕ2 kept constant plus the ones

035115-10



TOPOLOGICAL GAPS IN QUASIPERIODIC SPIN … PHYSICAL REVIEW B 105, 035115 (2022)

TABLE I. Bulk-boundary principle for M = 2 sector and Jz = 0,
tested for a chain with open boundary conditions, |L| = 31 and θ =
1 − (1 + √

2)/4.

Gap N/|L| by direct count Prediction from Eq. (78)

• 0.3548 0.3964
• −0.193548 −0.18934
• 0.193548 0.18934
• −0.3548 −0.3964

emerged when varying ϕ2 with ϕ1 kept constant. Due to the
particular form of the Hamiltonian (73), this count is given by

N/|L| = Ch{1,2}(PG) + Ch{3,4}(PG), (76)

which is expected to hold for large |L|. Note that we ex-
cluded Ch{2,3}(PG) from the count, on the basis that an edge in
the third direction (i.e., on the second fermion) will produce
disperseless boundary modes with respect to ϕ1. For similar
reasons, we have also excluded Ch{1,4}(PG) from the count.
Finally, the projection onto F (−1)

2 should reduce this count by
a factor of 2.

Using (41), we now can state a quantitative bulk-boundary
principle:

lim
|L|→∞

N

|L| = 1

2
[n{1,2} + n{3,4} + n{1,2,3,4}

× (Pf(
{1,2}) + Pf(
{3,4}))], (77)

which further simplifies if we use the relation between the
(n, m) gap labels and the coefficients nJ in Sec. III B:

lim
|L|→∞

N

|L| = 1

2
(m + 2kθ ). (78)

In Table I, we supply a comparison between the left side
of Eq. (78), as computed by a direct count of the edge modes,
and the righ side of Eq. (78), as computed from the gap labels
listed in Fig. 7. The matching between the two is remarkable,
given the relatively small size of the system [93].

C. The M = 3 sector

The spectrum of the spin Hamiltonian (8) inside the M = 3
sector and with closed boundary conditions is reported in
Fig. 8 as a function of θ . As one can see, there is still strong
evidence of fractality, but the number of open gaps is much
reduced when compared with the previous cases. Further-
more, when we open the boundary conditions, chiral edge
modes are again observed in Fig. 9 and clear features in the
numerical IDS reported in Fig. 10 can be again identified. By
following closely the analysis for the M = 2, we show again
that the spectral features can be completely explained by the
K-theory. Furthermore, it will be shown that the gaps seen in
the spectrum carry strong topological numbers and that they
display nontrivial boundary spectrum.

Working directly with the fermionic representation and re-
stricting HF from Eq. (21) to the three-particle antisymmetric
Fock space F (−)

3 = H1 ∧H1 ∧H1, the Hamiltonian becomes

H3 = H1 ⊗ I ⊗ I + I ⊗ H1 ⊗ I + I ⊗ I ⊗ H1. (79)

FIG. 8. Energy spectrum of the Hamiltonian (8) as a function of
θ , for the M = 3 sector and Jz = 0. The simulation was completed
for a chain with |L| = 81 and range of the parameter θ has been
sampled at rational values θn = n/|L| to facilitate the closed bound-
ary conditions. Twelve spectral gaps are identified and color-coded
for future references.

FIG. 9. Energy spectrum of Hamiltonian (8) inside the M = 3
sector and with open boundary condition, plotted as a function of
parameter ϕ from Eq. (2). The topological boundary spectrum is
highlighted in red and the spectrum with closed boundary conditions
is overlaid in black color. The computation was performed with
Jz = 0, θ = (1 + √

2)/3, and a chain size of 41. The colored dots
mark the same gaps as in Fig. 8.
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FIG. 10. Numerical IDS as computed from the spectral butterfly reported in Fig. 8 for the M = 3 sector and Jz = 0. The K-theoretic IDS
values from Eq. (83), shown as light colored curves, are matched with the numerical IDS values inside the gaps marked in Fig. 8, identified by
the abrupt changes in the color map. The matching progresses in the order of the gap sizes. The tables list the values of the integer parameters
(n, m, k, l ) from Eq. (83) as well as the corresponding gaps.

Each of the terms in H3 can be generated from the following
set of operators:

V1 = U ⊗ I ⊗ I, V2 = T ⊗ I ⊗ I,

V3 = I ⊗ U ⊗ I, V4 = I ⊗ T ⊗ I, (80)

V5 = I ⊗ I ⊗ U, V6 = I ⊗ I ⊗ T,

acting on the full three-particle Fock space F3. Hence, the
Hamiltonian belongs to the algebra C∗(Vi, i = 1, 6) generated
by the Vi’s, which can be straightforwardly shown to be the
noncommutative 6-torusA
3 , with the θ -matrix:


3 =

⎛⎜⎜⎜⎜⎜⎝
0 θ 0 0 0 0

−θ 0 0 0 0 0
0 0 0 θ 0 0
0 0 −θ 0 0 0
0 0 0 0 0 θ

0 0 0 0 −θ 0

⎞⎟⎟⎟⎟⎟⎠. (81)

The IDS reported in Fig. 10 was computed from the spec-
trum Spec(H3) reported in Fig. 8 using the formula

IDS(E ) = |Spec(H3) ∩ (−∞, E ]|
|L|3 , (82)

which can be shown again to coincide with T (pG) when the
energy takes values inside the spectral gap G. As such, the
prediction from Eq. (49) applies, which together with the 


reported above, lead to the prediction

IDS(G) ∈ {n + mθ + kθ2 + lθ3, n, m, k, l ∈ Z} ∩ [0, 1].

(83)

In Fig. 10, we demonstrate that these predictions match most
of the features seen in the numerical IDS. In the process,
we were able again to identify the K-theoretic labels of the
spectral gaps. Interestingly, we find again that all gaps carry a
nonzero top index l , which is equal to the top Chern number
in dimension 6. As such, topological boundary spectrum is
expected when the boundary conditions are opened.

Our next goal is to explain, quantitatively, the structure of
the chiral bands in Fig. 9. Writing out the ϕ dependency, we
have

H3(ϕ) = H1(ϕ) ⊗ I ⊗ I + I ⊗ H1(ϕ) ⊗ I + I ⊗ I ⊗ H1(ϕ).

(84)

As before, because the virtual fermions experience the same
potential, we can only explore the diagonal sector of the fully
general Hamiltonian

H3(ϕ1, ϕ2, ϕ3) = H1(ϕ1) ⊗ I ⊗ I + I ⊗ H1(ϕ2) ⊗ I

+ I ⊗ I ⊗ H1(ϕ3). (85)

Nevertheless, we observe again that topologically, the diag-
onal path inside the (ϕ1, ϕ2, ϕ3) torus is equivalent to the

035115-12



TOPOLOGICAL GAPS IN QUASIPERIODIC SPIN … PHYSICAL REVIEW B 105, 035115 (2022)

TABLE II. Bulk-boundary principle for M = 3 sector and Jz =
0, tested for a chain with open boundary conditions, |L| = 41 and
θ = (1 + √

2)/3.

Gap N/|L| by direct count Prediction from Eq. (89)

• 0.1249 0.1906
• −0.1249 −0.1906

concatenation of three paths

{(ϕ, ϕ, ϕ), ϕ ∈ [0, 1]}
� {(ϕ1, 0, 0), ϕ1 ∈ [0, 1]}
∪ {(1, ϕ2, 0), ϕ2 ∈ [0, 1]}
∪ {(1, 1, ϕ3), ϕ3 ∈ [0, 1]}. (86)

As for the case M = 2, since the net number of chiral edge
bands do not change under such deformations, we can use
these three simpler paths to conclude that

N/|L|2 = Ch1,2(PG) + Ch3,4(PG) + Ch5,6(PG). (87)

Projection onto the antisymmetric Fock space F (−)
3 should

reduce the count by a factor of 3!. Then, using (41), we can
state a quantitative bulk-boundary principle

lim
|L|→∞

N

|L|2 = 1

6
[n{1,2} + n{3,4} + n{5,6} + (n{1,2,3,4}

+ n{1,2,5,6} + n{3,4,5,6})2θ + n{1,2,3,4,5,6}3θ2].
(88)

which further simplifies if we use the relation between the
(m, k, l ) gap labels and the coefficients nJ in Sec. III B:

lim
|L|→∞

N

|L|2 = 1

6
(m + 2kθ + 3lθ2). (89)

In Table II, we supply a comparison between the left side
of Eq. (89), as computed by a direct count of the edge modes,
and the righ side of Eq. (89), as computed from the gap labels
listed in Fig. 10. We atribute the slight difference on the slow
convergence to the thermodynamic limit, which we plan to
further investigate in the future.

V. TOPOLOGICAL GAPS: THE CORRELATED CASE

The evolution of the spectral butterflies with the strength Jz

of the interaction is reported in Fig. 11 for both sectors M = 2
and 3. As one can see, the fractal nature of the spectrum
persists and interesting islands of spectrum separate at strong
Jz. Furthermore, as shown in Fig. 12, when computed with
open boundary conditions at a fixed θ , the spectra continue to
display a rich structure of chiral edge bands as the parameter
ϕ is varied. This section is devoted to understanding these
spectra through the prism of generating algebras and their
K-theories.

A. The M = 2 sector

We will take first a closer look at the case Jz = 2.1, which is
the interaction strength where the spectral islands are already
separated in Fig. 11. The top spectral butterfly, computed
with closed boundary conditions, is shown in more details in
Fig. 13, with the energy referenced from the bottom of this
top spectral island. When the boundary condition is opened
and the spectrum is computed as function of ϕ at fixed θ ,

FIG. 11. Energy spectrum of the Hamiltonian (8) with closed boundary conditions, plotted as a function of parameter θ from Eq. (2) and
for the specified values of interaction strength Jz. The top row corresponds to the M = 2 sector and for these simulations |L| = 101. The
bottom row corresponds to the M = 3 sector and for these simulations |L| = 31. In all panels, the energies are referenced from |L|

4 Jz.
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FIG. 12. Energy spectrum of Hamiltonian (8) with closed/open boundary conditions, plotted as a function of parameter ϕ from Eq. (2)
and for specified values of interaction strength Jz. The top row corresponds to the M = 2 sector and for these simulations θ = (1 + √

2)/4
and |LL| = 59, while the bottom row corresponds to the M = 3 sector and for these simulations θ = (1 + √

2)/7 and |LL| = 29. To facilitate
comparisons, the energies are referenced from the bottom of the spectra in all panels.

FIG. 13. A refined representation of the top spectral butterfly
identified in Fig. 11 for the M = 2 sector. The simulation parameters
are r = 0.45, Jz = 2.1 and |L| = 151. The red vertical line indicates
the value of θ = (2 + √

5)/5 where the bulk-boundary correspon-
dence will be probed. The spectral gaps are labeled by colored dots
for future reference.

clear chiral bands develop as shown in Fig. 14. Furthermore,
the IDS corresponding to spectral butterfly in Fig. 13, shown
in Fig. 15, displays the same straight lines seen in the non-
correlated (Jz = 0) M = 1 case. It becomes evident that in
Fig. 13, we are seeing a highly distorted but nevertheless a
Hofstadter butterfly, hence, we are dealing again with the non-
commutative 2-torus. The first part of the section is devoted to
understanding this empirical observation.

When restricted to the M = 2 sector, the interaction poten-
tial in (8), reduces to

Jz

∑
n

Sz
nSz

n+1 �→ �1P1 + �2(I − P1), (90)

where P1 is the projection onto the subspace spanned by the
states

|ψn〉 = 1√
2

(|n〉 ⊗ |n + 1〉 − |n + 1〉 ⊗ |n〉) ∈ F (−)
2 , (91)

with n running over all integer values, and

�1 = −Jz, �2 = −2Jz, (92)

when the energy is referenced from |L|
4 Jz, as it was already

done in Fig. 11. In the limit of strong interaction, the potential
(90) dominates and, as such, it dictates the global structure of
the spectrum. In particular, it separates the energy spectrum in
two spectral islands, as already seen in Fig. 11. For example,
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FIG. 14. Top spectral island of Hamiltonian (8) computed with
open boundary condition as function of ϕ at fixed θ = (2 + √

5)/5
(see vertical line in Fig. 13), and chain length |L| = 61. The colored
dots labeling the gaps are correlated with the ones in Fig. 13. The
spectra were computed in two ways, with (red lines) and without
(black lines) a defect potential on the left edge of the chain. This
enabled us to identify the chiral bands located at the left edge of the
chain, which are the ones for which the black and the red simulations
do not overlap. Specifically, the gaps •/•/• display 1/2/3 positively
sloped chiral bands localized at the left edge, respectively, while the
gaps •/• display 1/2 negatively sloped chiral bands localized at the
left edge. This is in perfect agreement with the gap labels derived in
Fig. 15.

we have verified that the spectral gap G0 that separates these
islands becomes assymptotically equal to Jz when Jz → ∞.

An immediate consequence of the simple form of the
many-body potential in (90) is that in the presence of in-

teraction, the algebra A
2 identified in Sec. IV B has been
enhanced by precisely one projection and the correlated
Hamiltonian belongs to the new algebra C∗(A
2 , P1). For
reasons explained shortly, we are going to investigate first the
corner subalgebra

P1 C∗(A
2 , P1) P1, (93)

and we start by identifying a few special elements. The first
one is the unitary element

W1 = 2

α
P1(U ⊗ I )P1 = 2

α
P1(I ⊗ U )P1, (94)

with α = 1 + eı2πθ . More explicitly, W1 is the unitary operator
[94]

W1 =
∑

n

eı2πnθ |ψn〉〈ψn|. (95)

Equivalently, W1 can be defined as

W1 = 1

α
(U ⊗ I + I ⊗ U )P1 = 1

α
P1(U ⊗ I + I ⊗ U ). (96)

Let us point out that the projections of the following elemen-
tary operators cancel out:

P1(U n ⊗ U m − U m ⊗ U n)P1 = 0. (97)

The second element is

W2 = P1(T ⊗ T )P1 = P1(T ⊗ T ) = (T ⊗ T )P1. (98)

Note that W2 can be equivalently expressed as

W2 = P1(T ⊗ T ) = (T ⊗ T )P1, (99)

FIG. 15. Numerical IDS as computed from the spectral butterfly reported in Fig. 13 for the M = 2 sector and Jz = 2.1. The K-theoretic
IDS values from Eq. (61), shown as light colored lines, are matched with the numerical IDS values inside the gaps marked in Fig. 13, identified
by the abrupt changes in the color plot. The matching progresses in the order of the gap sizes. The tables list the values of the two integer
parameters (n, m) from Eq. (61) as well as the corresponding gaps.
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FIG. 16. Visualization of the chiral edge modes associated to the top spectral island of the Hamiltonian (8) in the M = 2 sector. The
eigenvalues and the corresponding wave functions are color-coded. The simulation parameters are r = 0.45, θ = (2 + √

5)/5, Jz = 3, and
|L| = 41. The intensity maps represent the probabilities for two spins at locations n and m along the chain to be flipped. The numbers seen
in some of the panels represent the coordinates (n, m) where the probabilities take significant values. The colored dots labeling the gaps are
correlated with the ones in Fig. 13.

because P1 and T ⊗ T commute. Furthermore, the projection
of the following elementary operators cancel out:

P1(T n ⊗ T m)P1 = 0, m �= n, (100)

hence, they do not contribute with any useful elements to the
corner subalgebra. Now, by using Eqs. (96) and (99), it is
straightforward to verify that

W1W2 = eı2πθW2W1. (101)

The conclusion is that the noncommutative 2-torus is embed-
ded in the corner subalgebra

C∗(W1,W2) ↪→ P1C
∗(A
2 , P1)P1. (102)

We now establish the connection between the corner sub-
algebra investigated above and the top spectral butterfly
reported in Fig. 13. For this, let PTop = I − PG0 be the spectral
projection onto the whole top island of the spectrum. Then, all
the projections associated with the gaps seen in the spectrum
reported in Fig. 13 belong to the corner subalgebra

PTopC
∗(A
2 , P1)PTop. (103)

By re-scaling the Hamiltonian (8) by Jz, one sees that in
the limit Jz → ∞, the noninteracting part becomes a small
perturbation and, as such,

PTop → P1 as Jz → ∞. (104)

This means that for Jz large enough, ‖PTop − P1‖ � 1, in
which case there exists a unitary operator � ∈ C∗(A
2 , P1)
such that PTop = �P1�

∗ [84], p. 18]. As a consequence,

PTop C∗(A
2 , P1) PTop = (�P1�
∗)C∗(A
2 , P1)(�P1�

∗).
(105)

Since � is a unitary operator from the algebra C∗(A
2 , P1),
we automatically have

�∗ C∗(A
2 , P1) � = C∗(A
2 , P1) (106)

as sets and algebras, and

PTop C∗(A
2 , P1) PTop = � (P1C
∗(A
2 , P1)P1) �∗. (107)

The conclusion is that the corner subalgebra P1C∗(A
2 , P1)P1

analyzed above and the subalgebra PTop C∗(A
2 , P1) PTop

which supplies the gap projection for the spectrum in Fig. 13
are isomorphic.

At this point, we established that the noncommutative 2-
torus sits inside PTop C∗(A
, P1) PTop but is there anything else
inside this algebra? The cancelations stated in Eqs. (97) and
(100) suggest that there is nothing else. For confirmation, we
turn our attention on the IDS data reported in Fig. 15. To
generate this plot, we used the spectra Spec from Fig. 13 and
the formula

IDS(E ) = |Spec ∩ [0, E ]|
|Spec| . (108)

The results in Fig. 15 demonstrate that the IDS values in-
side every visible gap in Fig. 13 can be explained by the
K-theoretic predictions (61) derived from the noncommuta-
tive 2-torus. Furthermore, the K-Theoretic indices derived in
Fig. 15 are in perfect agreement with the count and the slopes
of the chiral edge bands reported in Fig. 14. As such, we can
state with confidence that the subalgebra PTopC∗(A
2 , P1)PTop

is in fact the noncommutative 2-torus.
Representations of the wave functions corresponding to

the chiral edge modes emerged in the top spectral island are
supplied in Fig. 16. The intensity maps seen there render the
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FIG. 17. Bottom spectral island of the Hamiltonian (8) as a
function of θ , for the M = 2 sector and Jz = 2.1. The range of the
parameter θ has been sampled at rational values θn = n/|L| with
|L| = 151. The spectral gaps have been labeled exactly as in Fig. 5.

probabilities |αn,m|2 for two spins to be flipped at position
n and m along the chain as functions of n, m ∈ {1, . . . ,L}.
Equivalently, αn,m are the coefficients appearing in the expan-
sion |�〉 = ∑

n,m αn,mS+
n S+

m |M = 0〉 of the wave functions. As
expected, the two flipped spins always occupy neighboring
sites and, as a consequence, the wave functions are concen-
trated on two neighboring diagonals. Furthermore, when the
eigenvalues are inside a bulk spectral gap, clear localizations
at either the righ or left edges of the chain are observed,
depending on the chirality of the bands.

A refined representation of the bottom spectral butterfly
separated by the interaction and already identified in Fig. 11
is shown in Fig. 17. Its corresponding IDS map is reported
in Figs. 18. The resemblance between this data and the one
reported in Figs. 5 and 7 is very strong and it leaves little doubt
that the spectral projections from the bottom spectral islands
are generated from the noncommutative 4-torus. To confirm,
we have verified that, indeed, the K-theoretic labels derived in
Fig. 7 apply identically to the IDS reported in Fig. 18.

The spectral gaps in the bottom island of the spectrum
remain topological and the bulk boundary principle stated in
(78) continues to apply. In Fig. 19, we show the chiral modes
that emerge in one of the large bulk spectral gaps from Fig. 17
when open boundary conditions are considered. As expected,
we see not just one but a bundle of chiral bands. For the
particular simulation in Fig. 19, there are five bands in this
bundle, but, in general, their will increase proportionally to
|L|, which is a consequence of (78). Figure 19 also reports
the profiles of the chiral modes and, in contrast to what we
have seen for the top spectral island, this time only one of the
flipped spins is localized at the edge of the chain and the other
one is delocalized throughout the chain.

ID
S

0

1

0 1θ

4

1

2

3

0

FIG. 18. Numerical IDS as computed with Eq. (70) using the
spectrum reported in Fig. 17, as a function of θ and energy. The
details of the simulation are the same as in Fig. 17. The features
associtated to the abrupt changes in collors are correlated with the
gaps marked in Fig. 17. They give the IDS values inside the spectral
gaps, which can be fit exactly as in Fig. 7.

B. The M = 3 sector

Refined representations of the three spectral islands ob-
served in Fig. 11 for the M = 3 sector are supplied in Fig. 20
and their corresponding IDS maps are reported in Fig. 21.
Clear straight lines can be identified in the IDS maps of the
top and middle spectral butterflies, while the IDS map for the
bottom spectral butterfly is identical to the one in Fig. 10 for
the uncorrelated case. Furthermore, when the spectral islands
are computed with open boundary conditions as a function of
ϕ and at fixed θ , topological chiral modes emerge. Explaining
and quantifying these empirical observations are the main
goals of this section.

The interaction potential in the Hamiltonian (8), when re-
stricted to the M = 3 sector, reduces to

Jz

∑
n

Sz
nSz

n+1 �→ �1P1 + �2P2 + �3(I − P1 − P2), (109)

where this time P1 is the projection onto the subspace spanned
by the states

|ψn〉 = 1√
3!

∑
ρ

(−1)ρ |n + ρ1〉 ⊗ |n + ρ2〉

⊗ |n + ρ3〉 ∈ F (−)
3 , (110)

with the sum running over the permutations ρ of the set
{0, 1, 2}, and P2 is the projection onto the subspace spanned
by the states

|ψn,k〉 = 1√
3!

∑
ρ

(−1)ρ |n + ρ1〉 ⊗ |n + ρ2〉

⊗ |n + ρ3〉 ∈ F (−)
3 , (111)

with the sum running over the permutations ρ of the set
{0, 1, k} with k ∈ Z \ {−1, 0, 1, 2}. When the energy is ref-
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FIG. 19. Visualization of the chiral edge modes associated to the bottom spectral island of the Hamiltonian (8) in the M = 2 sector. The
eigenvalues picked from different values of ϕ and the corresponding wave functions are color-coded. The simulation parameters are r = 0.45,
θ = (2 + √

5)/5, Jz = 3, and |L| = 41. The intensity maps represent the probabilities for two spins at locations n and m to be flipped along
the chain. The colored dot label of the gap is correlated with the one in Fig. 17.

erenced from |L|
4 Jz, the above eigenvalues are

�1 = −Jz, �2 = −2Jz, �3 = −3Jz. (112)

As one can see, the interaction potential becomes dominant
for large Jz and the eigenvalues �i start to separate from
each other, which explains why the spectrum breaks into three
islands at large Jz’s, as we have already seen in Fig. 11.

An immediate consequence of the simple spectral decom-
position (109) is that in the presence of interaction, the algebra
A
3 identified in section IV C has been enhanced by precisely
two projections. Hence, the interacting Hamiltonian in the
M = 3 sector belongs to the algebra C∗(A
3 , P1, P2). For

reasons similar to the ones stated in Sec. V A, we investigate
first the corner subalgebra

P1 C∗(A
3 , P1, P2) P1, (113)

and we start again by identifying a few special elements. The
following relations identifies the first element W1:

P1(U ⊗ I ⊗ I )P1 = P1(I ⊗ U ⊗ I )P1

= P1(I ⊗ I ⊗ U )P1 = α

3
W1, (114)

FIG. 20. Top spectral island of Hamiltonian (8) as a function of θ , for M = 3 and Jz = 4. The simulation parameters are r = 0.45 and
|L| = 71. The red vertical line indicates the value θ = 1+√

3
3 , where the bulk-boundary correspondence is probed. Several spectral gaps have

been labeled for future reference.
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FIG. 21. Numerical IDS maps of the top, middle and bottom spectra displayed in Fig. 20. The IDS values inside the spectral gaps marked
in Fig. 20 are indicated with arrows and colored dots. K-theoretic gap labels are displayed in the first panel.

with α = 1 + eı2πθ + eı4πθ . More explicitly, W1 is the unitary
operator

W1 =
∑

n

eı2πnθ |ψn〉〈ψn|. (115)

One can also verify that

W1 = 1

α
(U ⊗ I ⊗ I + I ⊗ U ⊗ I + I ⊗ I ⊗ U )P1

= 1

α
P1(U ⊗ I ⊗ I + I ⊗ U ⊗ I + I ⊗ I ⊗ U ). (116)

Note that any antisymmetric combinations of terms like U m ⊗
U n ⊗ U k cancel when sandwiched between P1’s, hence such
combinations do not contribute with elements in the corner
algebra.

The second element is

W2 = P1(T ⊗ T ⊗ T )P1. (117)

One can verify that P1 commutes with T ⊗ T ⊗ T , hence W2

can be also expressed as

W2 = P1(T ⊗ T ⊗ T ) = (T ⊗ T ⊗ T )P1. (118)

Note that the projection of the following elementary operators
cancel out:

P1(T n ⊗ T m ⊗ T k )P1 = 0, (119)

if n, m k are not all equal. Hence, they do not contribute with
any useful elements for the corner algebra.

Now, using the representations (116) and (118) for W1 and
W2, respectively, it is straightforward to verify that

W1W2 = eı2πθW2W1. (120)

The conclusion is that the noncommutative 2-torus A
1 is
embedded in the subalgebra P1C∗(A
3 , P1, P2)P1. As before,
we denote by PTop the spectral projection onto the top spec-
tral island of the Hamiltonian. Since PTop → P1 in the limit
Jz → ∞, we can use the same arguments as in Sec. V A
to conclude that the corner algebra PTopC∗(A
3 , P1, P2)PTop

is isomorphic to P1C∗(A
3 , P1, P2)P1. As such, the algebra
PTopC∗(A
3 , P1, P2)PTop, which supply all spectral projections

for the top island of the spectrum, contains a copy of the
noncommutative 2-torusA
1 .

The cancelations mentioned in Eq. (119) and the ones
related to the U operator suggest that PTopC∗(A
3 , P1, P2)PTop

is in fact identical to the 2-torus. This is further supported by
the fact that all features identified in the IDS map in Fig. 21
can be explained by the predictions from Eq. (61) based on
the K-theory of the noncommutative 2-torus. Furthermore, the
topological chiral bands emerging in the top spectrum when
open boundary conditions are used, shown in Fig. 22, are in
perfect agreement with the gap labels derived from the IDS
map in Fig. 21.

Representations of the top edge modes emerged in the top
island of the spectrum under open boundary conditions are
reported in the top row of Fig. 23. As expected, when the
eigenvalues are located on the positively sloped chiral band
occuring in the spectral •-gap with index m = −1, all three
flipped spins are localized on the right edge of the chain
and quite the opposite when the eigenvalue is located on
the negatively sloped chiral band. The transition between the
two occurs through a delocalization of the mode when the
eigenvalue dives in the bulk spectrum.

The IDS map for the middle spectral butterfly in Fig. 21
shows that the dominant gaps seen in the middle panel of
Fig. 20 have linear IDS dependency on θ , which is charac-
teristic of the noncommutative 2-torus. In the following, we
demonstrate that the corner algebra PMidC∗(A
3 , P1, P2)PMid,
which supplies the spectral projections for the middle spectral
butterfly, contains a copy of the noncommutative 2-torusA
1 .
Here, PMid is the spectral projector onto the full middle spec-
tral island. Since PMid → P2 in the limit Jz → ∞, it is again
enough to show that the corner algebra P2C∗(A
3 , P1, P2)P2

contains a copy ofA
1 . We will actually show that each sub-
algebras P2(k)C∗(A
3 , P1, P2)P2(k) contains a copy of A
1 ,
where P2(k) is the projection onto the subspace spanned by
|ψn,k〉, with n ∈ Z and fixed k. For this, one observes that

(U ⊗ I ⊗ I + I ⊗ U ⊗ I + I ⊗ I ⊗ U )|ψn,k〉 (121)

= (1 + eı2πθ + eı2kπθ ) eı2nπθ |ψn,k〉.
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FIG. 22. Top spectral island of Hamiltonian (8) computed with open boundary condition as function of ϕ at fixed θ = 1+√
3

3 (see vertical
line in Fig. 20), and chain length |L| = 41. The colored dots labeling the gaps are correlated with the ones in Fig. 20. The spectra were
computed in two ways, with (red lines) and without (black lines) a defect potential on the left edge of the chain. This enabled us to identify the
chiral bands located at the left edge of the chain, which are the ones for which the black and the red simulations do not overlap. Specifically,
the gaps •/•/• display 1/2/3 positively sloped chiral bands localized at the left edge, respectively, while the •-gap displays one negatively
sloped chiral bands localized at the left edge. This is in perfect agreement with gap labels derived in Fig. 21.

FIG. 23. Visualization of the chiral edge modes associated to three spectral islands (top, middle, and bottom island from top to bottom,
respectively) of the Hamiltonian (8) in the M = 3 sector. The eigenvalues and the corresponding wave functions are color-coded. The
simulation parameters are r = 0.45, θ = (1 + √

2)/3, and |L| = 41. The value of Jz is 4 for top and bottom islands, and 8 for middle one.
The size of the points in the 3D renderings represents the probabilities for three spins at locations n, m and l along the chain to be flipped.
The numbers seen in some of the panels represent the coordinates (n, m, l ) where the probabilities take significant values. The colored dots
labeling the gaps are correlated with the ones in Fig. 20.
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As such, U ⊗ I ⊗ I + I ⊗ U ⊗ I + I ⊗ I ⊗ U is a diagonal
operator in our standard basis, hence it commutes with P2(k)
and we can define

W1(k) = 1

αk
(U ⊗ I ⊗ I + I ⊗ U ⊗ I + I ⊗ I ⊗ U )P2(k)

(122)

with αk = 1 + eı2πθ + eı2kπθ , which is a unitary element from
P2(k)C∗(A
3 , P1, P2)P2(k). Then, if we consider

W2(k) = P2(k)(T ⊗ T ⊗ T )P2(k), (123)

one can easily verify that they obey the commutation relations

W1(k)W2(k) = eı2πθW2(k)W1(k), (124)

for all allowed k’s.
This finding may be the explanation for the existence of

the dominant spectral gap with linear IDS dependency on θ .
However, further studies are needed to decided if the algebra
associated to the middle states contain elements that are out-
side the noncommutative tori found above. The topological
boundary spectrum and the associated modes emerged under
open boundary conditions in the middle island of the spectrum
are reported in the middle row of Fig. 23. As one can see, the
•-gap with index m = −1 contains an entire bundle of chiral
bands and the edge modes, whose eigenvalues are located on a
positively sloped chiral band, have one flipped spin localized
on the right edge of the chain while the other two flipped spins
are constraint to neighboring sites (x, x + 1) throughout the
chain. The situation is quite the opposite when the eigenvalues
are located on a negatively sloped chiral band. These findings
are entirely consistent with the bulk-boundary correpsondence
of the noncommutative 2-tori found above.

The structure of the gaps seen in the bottom spectral butter-
fly in Fig. 20 as well as the features seen in the corresponding
IDS map reported in Fig. 21 are very similar to the ones
for the uncorrelated case. In fact, we can confirm that the
prediction (83) based on the K-theory of the noncommutative
3-torus explains all the features resolved in the numerical IDS
map. The chiral bands and the corresponding modes emerged
under open boundary conditions are reported in the last row of
Fig. 23. As one can see, there is a thick bundle of chiral edge
bands, which is consistent with the bulk-boundary principle
stated in Eq. (89) saying that the count of the chiral modes
should be proportional with |L|. The corresponding wave
functions have one flipped spin localized at one edge of the
chain and the remaining flipped spins are delocalized over the
entire length of the chain.

VI. CONCLUSIONS

Even though the algebras generating the interacting Hamil-
tonians were found to be noncommutative tori, the topological
states identified in Sec. V are correlated and have no equiva-
lent in the noninteracting case. This is the case because the
generators of these algebras contain the spectral projections
corresponding to the different islands of the spectrum and they
are outside of the algebra that generates the noninteracting

Hamiltonians. As such, it is impossible to generate the gap
projection analyzed in Sec. V using the algebras analyzed in
Sec. IV.

Although we have only analyzed the M = 2 and M = 3
sectors in the strongly correlated regime, we can already con-
jecture what is going to happen for a generic magnetization
sector M = d with d finite. While these predictions do not
cover yet the case of a finite magnetization density, they can
be of interest for practical applications that perhaps, can be
implemented with cold atom systems.

By extrapolating the cases analyzed in Secs. V A and V B,
we predict that in such generic magnetization sector, the spec-
trum will split into d islands for large enough Jz’s. The top
island will always be characterized by a single noncommu-
tative 2-torus whose generators can be computed explicitly.
Under open boundary conditions, boundary modes will appear
with energies inside the bulk gaps and these modes have d
flipped spins localized close to a boundary. These clusters of
flipped spins can be adiabatically transferred from one edge
of the chain to the other by simply changing the phason, more
precisely, the shape of the underlying pattern. Hence, we have
uncovered a simple Thouless pump where, by selecting the
magnetization sector, one can transfer quantized amounts of
magnetization between the edges of a system, as we have seen
in Figs. 16 and 23. As is the case with any Thouless pump, this
process will be robust against moderate disorder.

We conjecture that the bottom spectral island in a generic
M = d sector is characterized topologically by the noncom-
mutative d-torus. The boundary modes will have a hybrid
character with one flipped spin pinned at one boundary and
the reset of the flipped spins delocalized throughout the chain.

We also conjecture that the intermediate islands will be
all characterized by families of noncommutative 2-tori, whose
generators can be computed explicitly as it was already done
in the present study. The boundary modes will have a hybrid
character with one flipped spin pinned at one boundary and
the rest of the flipped spins delocalized along the chain. The
latter, however, will cluster into tight formations of d − k + 1
of flipped spins for the kth spectral island, as we have already
seen for the middle spectral island in Fig. 23.

It remains a completely open question how to apply the
K-theoretic ideas to the case of finite magnetization density,
that is, when the conserved value of the magnetization grows
linearly with the length of the chain. The difficulty is that
in such situations, the algebras we already identified change
as one takes the thermodynamic limit. As such, one needs to
identify the correct relations between these algebras in order
to resolve the limit. This will definitely be part of our future
investigations.

ACKNOWLEDGMENTS

E.P. and Y.L. are supported by the NSF Grant No. DMR-
1823800. L.F.S. is supported by the NSF Grant No. DMR-
1936006. E.P. acknowledges additional financial support from
the W.M. Keck Foundation.

035115-21



YIFEI LIU, LEA F. SANTOS, AND EMIL PRODAN PHYSICAL REVIEW B 105, 035115 (2022)

[1] B. Yoshida, Exotic topological order in fractal spin liquids,
Phys. Rev. B 88, 125122 (2013).

[2] J. He, Y. Liang, S.-P. Kou, Topological hierarchy insulators
and topological fractal insulators, Europhys. Lett. 112, 17010
(2015).

[3] E. Prodan, Virtual topological insulators with real quantized
physics, Phys. Rev. B 91, 245104 (2015).

[4] D. T. Tran, A. Dauphin, N. Goldman, P. Gaspard, Topological
Hofstadter insulators in a two-dimensional quasicrystal, Phys.
Rev. B 91, 085125 (2015).

[5] J. N. Fuchs, J. Vidal, Hofstadter butterfly of a quasicrystal,
Phys. Rev. B 94, 205437 (2016).

[6] I. C. Fulga, D. I. Pikulin, T. A. Loring, Aperiodic Weak Topo-
logical Superconductors, Phys. Rev. Lett. 116, 257002 (2016).

[7] L. C. Collins, T. G. Witte, R. Silverman, D. B. Green, K. K.
Gomes, Imaging quasiperiodic electronic states in a synthetic
Penrose tiling, Nat. Commun. 8, 15961 (2017).

[8] A. Agarwala, V. B. Shenroy, Topological Insulators in Amor-
phous Systems, Phys. Rev. Lett. 118, 236402 (2017).

[9] H. Huang, F. Liu, Quantum Spin Hall Effect and Spin Bott
Index in a Quasicrystal Lattice, Phys. Rev. Lett. 121, 126401
(2018).

[10] C. Bourne, E. Prodan, Non-commutative chern numbers for
generic aperiodic discrete systems, J. Phys. A: Math. Theor. 51,
235202 (2018).

[11] D. Varjas, A. Lau, K. Poyhonen, A. R. Akhmerov, D. I. Pikulin,
I. C. Fulga, Topological Phases Without Crystalline Counter-
parts, Phys. Rev. Lett. 123, 196401 (2019).

[12] T. Devakul, Classifying local fractal subsystem symme-
try protected topological phases, Phys. Rev. B 99, 235131
(2019).

[13] S. Pai, A. Prem, Topological states on fractal lattices, Phys. Rev.
B 100, 155135 (2019).

[14] J. Kellendonk, E. Prodan, Bulk-boundary principle in sturmian
Kohmoto type models, Annals of Henri Poincare 20, 2039
(2019).

[15] J. P. Chen and R. Guo, Spectral decimation of the magnetic
Laplacian on the Sierpinski gasket: Solving the Hofstadter-
Sierpinski butterfly, Commun. Math. Phys. 380, 187 (2020).

[16] A. A. Iliasov, M. I. Katsnelson, S. Yuan, Hall conductivity of
Sierpinski carpet, Phys. Rev. B 101, 045413 (2020).

[17] M. Fremling, M. van Hooft, C. M. Smith, L. Fritz, The existence
of robust edge currents in Sierpinsky fractals, Phys. Rev. Res.
2, 013044 (2020).

[18] H. Huang, Y. S. Wu, F. Liu, Aperiodic topological crystalline
insulators, Phys. Rev. B 101, 041103(R) (2020).

[19] R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, D. H. Xu, Higher-
Order Topological Insulators in Quasicrystals, Phys. Rev. Lett.
124, 036803 (2020).

[20] C. W. Duncan, S. Manna, A. E. B. Nielsen, Topological mod-
els in rotationally symmetric quasicrystals, Phys. Rev. B 101,
115413 (2020).

[21] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, O. Zilberberg,
Topological States and Adiabatic Pumping in Quasicrystals,
Phys. Rev. Lett. 109, 106402 (2012).

[22] M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, Y. Silberberg,
Observation of Topological Phase Transitions in Photonic Qua-
sicrystals, Phys. Rev. Lett. 110, 076403 (2013).

[23] Z. V. Vardeny, A. Nahata, A. Agrawal, Optics of photonic
quasicrystals, Nat. Photonics 7, 177 (2013).

[24] D. Tanese, E. Gurevich, F. Baboux, T. Jacqmin, A. Lemaitre, E.
Galopin, I. Sagnes, A. Amo, J. Bloch, E. Akkermans, Fractal
Energy Spectrum of a Polariton Gas in a Fibonacci Quasiperi-
odic Potential, Phys. Rev. Lett. 112, 146404 (2014).

[25] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, Y. Silberberg,
Topological pumping over a photonic Fibonacci quasicrystal,
Phys. Rev. B 91, 064201 (2015).

[26] W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, Y. D. Chong,
Measurement of a Topological Edge Invariant in a Microwave
Network, Phys. Rev. X 5, 011012 (2015).

[27] M. A. Bandres, M. C. Rechtsman, M. Segev, Topological
Photonic Quasicrystals: Fractal Topological Spectrum and Pro-
tected Transport, Phys. Rev. X 6, 011016 (2016).

[28] A. Dareau, E. Levy, M. B. Aguilera, R. Bouganne, E.
Akkermans, F. Gerbier, J. Beugnon, Revealing the Topology of
Quasicrystals with a Diffraction Experiment, Phys. Rev. Lett.
119, 215304 (2017).

[29] F. Baboux, E. Levy, A. Lemaitre, C. Gomez, E. Galopin, L. L.
Gratiet, I. Sagnes, A. Amo, J. Bloch, E. Akkermans, Measuring
topological invariants from generalized edge states in polari-
tonic quasicrystals, Phys. Rev. B 95, 161114(R) (2017).

[30] O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P. Chen,
Y. E. Kraus, M. C. Rechtsman, Photonic topological bound-
ary pumping as a probe of 4D quantum Hall physics, Nature
(London) 553, 59 (2018).

[31] A. J. Kollár, M. Fitzpatrick, A. A. Houck, Hyperbolic lattices
in circuit quantum electrodynamics, Nature (London) 571, 45
(2019).

[32] A. J. Koll’ar, M. Fitzpatrick, P. Sarnak, A. A. Houck, Line-
graph lattices: Euclidean and non-Euclidean flat bands, and
implementations in circuit quantum electrodynamics, Commun.
Math. Phys. 376, 1909 (2020).

[33] I. Carusotto, A. A. Houck, A. J. Kollár, P. Roushan, D. I.
Schuster, J. Simon, Photonic materials in circuit quantum elec-
trodynamics, Nat. Phys. 16, 268 (2020).

[34] V. H. Schultheiss, S. Batz, U. Peschel, Light in curved two-
dimensional space, Adv. Phys.: X 5, 1759451 (2020).

[35] Z. Yang, E. Lustig, Y. Lumer, M. Segev, Photonic Floquet
topological insulators in a fractal lattice, Light: Sci. Appl. 9,
128 (2020).

[36] P. Zhou, G.-G. Liu, X. Ren, Y. Yang, H. Xue, L. Bi, L. Deng,
Y. Chong, B. Zhang, Photonic amorphous topological insulator,
Light: Sci. Appl. 9, 133 (2020).

[37] D. J. Apigo, W. Cheng, K. F. Dobiszewski, E. Prodan, C.
Prodan, Observation of Topological Edge Modes in a Quasi-
Periodic Acoustic Waveguide, Phys. Rev. Lett. 122, 095501
(2019).

[38] X. Ni, K. Chen, M. Weiner, D. J. Apigo, C. Prodan, A. Alù, E.
Prodan, A. B. Khanikaev, Observation of Hofstadter butterfly
and topological edge states in reconfigurable quasi-periodic
acoustic crystals, Commun. Phys. 2, 55 (2019).

[39] W. Cheng, E. Prodan, C. Prodan, Demonstration of Dynamic
Topological Pumping Across Incommensurate Acoustic Meta-
Crystals, Phys. Rev. Lett. 125, 224301 (2020).

[40] N. P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, W. T.
Irvine, Amorphous topological insulators constructed from ran-
dom point sets, Nat. Phys. 14, 380 (2018).

[41] A. J. Martinez, M. A. Porter, P. G. Kevrekidis, Quasiperiodic
granular chains and Hofstadter butterflies, Philos. Trans. R. Soc.
London A 376, 20170139 (2018).

035115-22

https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1209/0295-5075/112/17010
https://doi.org/10.1103/PhysRevB.91.245104
https://doi.org/10.1103/PhysRevB.91.085125
https://doi.org/10.1103/PhysRevB.94.205437
https://doi.org/10.1103/PhysRevLett.116.257002
https://doi.org/10.1038/ncomms15961
https://doi.org/10.1103/PhysRevLett.118.236402
https://doi.org/10.1103/PhysRevLett.121.126401
https://doi.org/10.1088/1751-8121/aac093
https://doi.org/10.1103/PhysRevLett.123.196401
https://doi.org/10.1103/PhysRevB.99.235131
https://doi.org/10.1103/PhysRevB.100.155135
https://doi.org/10.1007/s00023-019-00792-5
https://doi.org/10.1007/s00220-020-03850-w
https://doi.org/10.1103/PhysRevB.101.045413
https://doi.org/10.1103/PhysRevResearch.2.013044
https://doi.org/10.1103/PhysRevB.101.041103
https://doi.org/10.1103/PhysRevLett.124.036803
https://doi.org/10.1103/PhysRevB.101.115413
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.110.076403
https://doi.org/10.1038/nphoton.2012.343
https://doi.org/10.1103/PhysRevLett.112.146404
https://doi.org/10.1103/PhysRevB.91.064201
https://doi.org/10.1103/PhysRevX.5.011012
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevLett.119.215304
https://doi.org/10.1103/PhysRevB.95.161114
https://doi.org/10.1038/nature25011
https://doi.org/10.1038/s41586-019-1348-3
https://doi.org/10.1007/s00220-019-03645-8
https://doi.org/10.1038/s41567-020-0815-y
https://doi.org/10.1080/23746149.2020.1759451
https://doi.org/10.1038/s41377-020-00354-z
https://doi.org/10.1038/s41377-020-00368-7
https://doi.org/10.1103/PhysRevLett.122.095501
https://doi.org/10.1038/s42005-019-0151-7
https://doi.org/10.1103/PhysRevLett.125.224301
https://doi.org/10.1038/s41567-017-0024-5
https://doi.org/10.1098/rsta.2017.0139


TOPOLOGICAL GAPS IN QUASIPERIODIC SPIN … PHYSICAL REVIEW B 105, 035115 (2022)

[42] D. J. Apigo, K. Qian, C. Prodan, E. Prodan, Topological edge
modes by smart patterning, Phys. Rev. Mater. 2, 124203 (2018).

[43] M. I. N. Rosa, R. K. Pal, J. R. F. Arruda, M. Ruzzene, Edge
States and Topological Pumping in Spatially Modulated Elastic
Lattices, Phys. Rev. Lett. 123, 034301 (2019).

[44] R. K. Pal, M. I. N. Rosa, M. Ruzzene, Topological bands and
localized vibration modes in quasiperiodic beams, New J. Phys.
21, 093017 (2019).

[45] D. Zhou, L. Zhang, X. Mao, Topological Boundary Floppy
Modes in Quasicrystals, Phys. Rev. X 9, 021054 (2019).

[46] Y. Xia, A. Erturk, M. Ruzzene, Topological Edge States in
Quasiperiodic Locally Resonant Metastructures, Phys. Rev.
Appl. 13, 014023 (2020).

[47] E. Riva, M. I. N. Rosa, M. Ruzzene, Edge states and topological
pumping in stiffness-modulated elastic plates, Phys. Rev. B 101,
094307 (2020).

[48] E. Riva, V. Casieri, F. Resta, F. Braghin, Adiabatic pumping via
avoided crossings in stiffness-modulated quasiperiodic beams,
Phys. Rev. B 102, 014305 (2020).

[49] Y. Xia, E. Riva, M. I. N. Rosa, G. Cazzulani, A. Erturk, F.
Braghin, M. Ruzzene, Experimental Observation of Temporal
Pumping in Electro-Mechanical Waveguides, Phys. Rev. Lett.
126, 095501 (2021).

[50] M. Rosa, M. Ruzzene, E. Prodan, Topological gaps by twisting,
arXiv:2006.10019 (2020).

[51] A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Clas-
sification of topological insulators and superconductors in three
spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[52] X.-L. Qi, T. L. Hughes, and Shou-Cheng Zhang, Topological
field theory of time-reversal invariant insulators, Phys. Rev. B
78, 195424 (2008).

[53] A. Kitaev, Periodic table for topological insulators and su-
perconductors, in Advances In Theoretical Physics: Landau
Memorial Conference Chernogolokova (Russia), 22–26 June
2008, AIP Conf. Proc. No. 1134 (AIP, New York, 2009), p. 22.

[54] S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig,
Topological insulators and superconductors: tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[55] A. Barelli, J. Bellissard, P. Jacquod, D. L. Shepelyansky, Dou-
ble Butterfly Spectrum for Two Interacting Particles in the
Harper Model, Phys. Rev. Lett. 77, 4752 (1996).

[56] K. He, L. F. Santos, T. M. Wright, M. Rigol, Single-particle and
many-body analyses of a quasiperiodic integrable system after
a quench, Phys. Rev. A 87, 063637 (2013).

[57] H. Hu, H. Guo, and S. Chen, Fractional topological states in
quantum spin chains with periodical modulation, Phys. Rev. B
93, 155133 (2016).

[58] T.-S. Zeng, W. Zhu, D. N. Sheng, Fractional charge pumping of
interacting bosons in one-dimensional superlattice, Phys. Rev.
B 94, 235139 (2016).

[59] Y.-H. Li, H. Chen, X. C. Xie, Dipolar interaction driven phase
transitions in a one-dimensional optical lattice with a synthetic
dimension, Europhys. Lett. 117, 43001 (2017).

[60] Y. Kuno, K. Shimizu, I. Ichinose, Various topological Mott
insulators and topological bulk charge pumping in strongly-
interacting boson system in one-dimensional superlattice, New
J. Phys. 19, 123025 (2017).

[61] P. Marra, R. Citro, Fractional quantization of charge and spin in
topological quantum pumps, Eur. Phys. J.: Spec. Top. 226, 2781
(2017).

[62] L. Taddia, E. Cornfeld, D. Rossini, L. Mazza, E. Sela, R.
Fazio, Topological Fractional Pumping with Alkaline-Earth-
Like Atoms in Synthetic Lattices, Phys. Rev. Lett. 118, 230402
(2017).

[63] Y. Ke, X. Qin, Y. S. Kivshar, C. Lee, Multiparticle Wannier
states and Thouless pumping of interacting bosons, Phys. Rev.
A 95, 063630 (2017).

[64] M. Nakagawa, T. Yoshida, R. Peters, N. Kawakami, Breakdown
of topological Thouless pumping in the strongly interacting
regime, Phys. Rev. B 98, 115147 (2018).

[65] S. Sarkar, Quantization of geometric phase with integer and
fractional topological characterization in a quantum Ising chain
with longrange interaction, Sci. Rep. 8, 5864 (2018).

[66] H. Hu, S. Chen, T.-S. Zeng, C. Zhang, Topological Mott insu-
lator with bosonic edge modes in one-dimensional fermionic
superlattices, Phys. Rev. A 100, 023616 (2019).

[67] J. L. Lado, O. Zilberberg, Topological spin excitations in
Harper-Heisenberg spin chains, Phys. Rev. Research 1, 033009
(2019).

[68] T. Orito, Y. Kuno, I. Ichinose, Topological order versus many-
body localization in periodically modulated spin chains, Phys.
Rev. B 100, 214202 (2019).

[69] Z.-W. Zuo, D.-W. Kang, L. Li, Topological end states in a one-
dimensional spatially modulated interaction spinless fermion
model, New J. Phys. 22, 083057 (2020).

[70] Y.-L. Chen, G.-Q. Zhang, D.-W. Zhang, S.-L. Zhu, Simulating
bosonic Chern insulators in one-dimensional optical superlat-
tices, Phys. Rev. A 101, 013627 (2020).

[71] M. Rösner, J. L. Lado, Coulomb-engineered topology, Phys.
Rev. Res. 3, 013265 (2021).

[72] J. Bellissard, K-theory of C∗-algebras in solid state physics,
Lect. Notes Phys. 257, 99 (1986).

[73] J. Bellissard, Gap labeling theorems for Schroedinger operators,
in From Number Theory to Physics, edited by M. Waldschmidt,
P. Moussa, J.-M. Luck, and C. Itzykson (Springer, Berlin,
1995).

[74] J. Kellendonk, Noncommutative geometry of tilings and gap
labelling, Rev. Math. Phys. 7, 1133 (1995).

[75] E. Prodan, Y. Shmalo, The K-Theoretic bulk-boundary princi-
ple for dynamically patterned resonators, J. Geom. Phys. 135,
135 (2019).

[76] K. Joel, D. Kollmar, L. F. Santos, An introduction to the spec-
trum, symmetries, and dynamics of spin-1/2 Heisenberg chains,
Am. J. Phys. 81, 450 (2013).

[77] A. Forrest, J. Hunton, and J. Kellendonk, Topological invariants
for projection method patterns, in Mem. AMS, AMS, Provi-
dence, 2002.

[78] This is not the case for the quasicrystalline patterns [79]!
[79] J. Bellissard, B. Iochum, D. Testard, Continuity properties of

the electronic spectrum of 1D quasicrystals, Commun. Math.
Phys. 141, 353 (1991).

[80] P. Coleman, Introduction to Many-Body Physics (Cambridge
Univ. Press, Cambridge, 2015).

[81] K. R. Davidson, C∗-Algebras by Example (AMS, Providence,
1996).

[82] D. R. Hofstadter, Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields, Phys. Rev. B
14, 2239 (1976).

[83] B. Blackadar, K-Theory for Operator Algebras (Cambridge
Univ. Press, Cambridge, 1998).

035115-23

https://doi.org/10.1103/PhysRevMaterials.2.124203
https://doi.org/10.1103/PhysRevLett.123.034301
https://doi.org/10.1088/1367-2630/ab3cd7
https://doi.org/10.1103/PhysRevX.9.021054
https://doi.org/10.1103/PhysRevApplied.13.014023
https://doi.org/10.1103/PhysRevB.101.094307
https://doi.org/10.1103/PhysRevB.102.014305
https://doi.org/10.1103/PhysRevLett.126.095501
http://arxiv.org/abs/arXiv:2006.10019
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevLett.77.4752
https://doi.org/10.1103/PhysRevA.87.063637
https://doi.org/10.1103/PhysRevB.93.155133
https://doi.org/10.1103/PhysRevB.94.235139
https://doi.org/10.1209/0295-5075/117/43001
https://doi.org/10.1088/1367-2630/aa99d0
https://doi.org/10.1140/epjst/e2017-70012-4
https://doi.org/10.1103/PhysRevLett.118.230402
https://doi.org/10.1103/PhysRevA.95.063630
https://doi.org/10.1103/PhysRevB.98.115147
https://doi.org/10.1038/s41598-018-24136-1
https://doi.org/10.1103/PhysRevA.100.023616
https://doi.org/10.1103/PhysRevResearch.1.033009
https://doi.org/10.1103/PhysRevB.100.214202
https://doi.org/10.1088/1367-2630/aba651
https://doi.org/10.1103/PhysRevA.101.013627
https://doi.org/10.1103/PhysRevResearch.3.013265
https://doi.org/10.1007/3-540-16777-3_74
https://doi.org/10.1142/S0129055X95000426
https://doi.org/10.1016/j.geomphys.2018.10.005
https://doi.org/10.1119/1.4798343
https://doi.org/10.1007/BF02101510
https://doi.org/10.1103/PhysRevB.14.2239


YIFEI LIU, LEA F. SANTOS, AND EMIL PRODAN PHYSICAL REVIEW B 105, 035115 (2022)

[84] E. Park, Complex Topological K-Theory (Cambridge University
Press, Cambridge, UK, 2008).

[85] E. Prodan and H. Schulz-Baldes, Bulk and Boundary Invariants
for Complex Topological Insulators: From K-Theory to Physics,
(Springer, Berlin, 2016).

[86] P. Streda, Theory of quantized Hall conductivity in two dimen-
sions, J. Phys. C 15, L717 (1982).

[87] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Natl. Acad.
Sci. USA 17, 656 (1931).

[88] G. A. Elliott, On the K-theory of the C∗-algebra gener-
ated by a projective representation ofa torsion-free discrete
abelian group, in Operator Algebras and Group Represen-
tations: Proceedings of the International Conference Held
in Neptun (Romania) September 1–13, 1980, Monographs
and Studies in Mathematics Vol. 17 (Pitman, Boston, 1984),
p. 157184.

[89] W. A. Benalcazar, B. A. Bernevig, T. L. Hughes, Electric mul-
tipole moments, topological multipole moment pumping, and
chiral hinge states in crystalline insulators, Phys. Rev. B 96,
245115 (2017).

[90] S. Hayashi, Topological invariants and corner states for Hamil-
tonians on a three-dimensional lattice, Commun. Math. Phys.
364, 343 (2018).

[91] G. C. Thiang, Edge-following topological states, J. Geom. Phys.
156, 103796 (2020).

[92] The positively/negatively sloped bands are counted with ±
signs, respectively, and only the bands localized at the left end
of the chain are included in the count.

[93] The size of the system was kept small to facilitate the count of
the edge modes.

[94] The unitarity is considered inside the corner algebra, where P1

stands for the unit.

035115-24

https://doi.org/10.1088/0022-3719/15/22/005
https://doi.org/10.1073/pnas.17.2.656
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1007/s00220-018-3229-2
https://doi.org/10.1016/j.geomphys.2020.103796

