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Approach for noncollinear GGA kernels in closed-shell systems
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Exchange-correlation kernels in density functional theory are the second-order derivatives of the exchange-
correlation functionals with respect to the density matrix. For collinear functionals, the forms of kernels are
well known, and their applications in calculating responses of electrons to predict properties of molecules and
materials are mature. However, kernels of noncollinear functionals in closed-shell systems, except for LDA
(local density approximation), are generally unknown, at least mathematically ill-defined, suffering from the
indeterminate forms of 0 divided by 0. We find that such singularities in noncollinear GGA (generalized gradient
approximation) kernels can be removed by introducing a proper limit process and approaching the limit after the
calculations of derivatives have been done. Following this idea, mathematically well-defined noncollinear GGA
kernels for closed-shell systems emerge naturally. Theoretically, these kernels are shown to be numerically stable
and spin-rotational symmetry preserved. Numerical tests on excitation energies and spectroscopy parameters
present reasonable results, indicating the applicability of this methodology.

DOI: 10.1103/PhysRevB.105.035114

I. INTRODUCTION

Density functional theory (DFT), due to its opportune
balance between accuracy and efficiency, has become the
most popular method in calculating electronic structures of
molecules and materials. To treat spin polarization properly,
DFT has been extended to spin-density functional theory
(SDFT) [1,2]. Presently, the most commonly used spin func-
tionals are collinear functionals

E col
xc = E col

xc [n↑(r), n↓(r)], (1)

where n↑ and n↓ are the so-called “up(α)” and “down(β)”
spin densities, respectively. The exchange-correlation energy
functionals (1) can also be expressed in terms of density
n = n↑ + n↓ and spin-density s = n↑ − n↓, i.e.,

E col
xc = E col

xc [n(r), s(r)], (2)

and the spin-density s of a system is evaluated as the z com-
ponent of the spin magnetization vector m(r)

s(r) = mz(r). (3)

The adoption of Eq. (3) hints that collinear functionals can
only treat collinear spin systems properly, where m(r) at dif-
ferent spatial grids r is parallel to the same line without loss
of generality defined along the z axis.

Noncollinear spin systems, where the directions of m ev-
erywhere generally do not align on the same line, are common
in magnetic materials and systems significantly affected by
spin-orbit couplings. To describe noncollinear spin systems,
noncollinear SDFT

ENC
xc = ENC

xc [n(r), m(r)], (4)

*xiaoyl@pku.edu.cn

instead of collinear SDFT (2) should be used. Due to the dif-
ficulties of developing noncollinear functionals from the very
beginning, it is more practical to extend collinear functionals
to their noncollinear counterparts. In 1998, Kübler et al. pro-
posed an approach to realize the extension [3],

ENC
xc = E col

xc [n(r), s(r) = |m(r)|], (5)

in which only the length of m is adopted to evaluate the value
of noncollinear functional for the purpose of maintaining the
invariance of rotation in spin space. The kernel of noncollinear
LDA (local density approximation) [4] functional based on
Eq. (5) has achieved great success in predicting excitation en-
ergies [5] and magnetic properties [6]. Unfortunately, kernels
of noncollinear GGA (generalized gradient approximation)
[7,8] functionals

ENC
xc =

∫
f (n(r),∇n(r), s(r),∇s(r))dr, (6)

based on Eq. (5), suffer from numerical problems for both
open-shell and closed-shell systems. Comprehensive discus-
sions of noncollinear GGA kernels can be found in Ref. [9],
where it is claimed that this (numerical instability) holds
for all noncollinear ansatzes discussed in this work since
they all incorporate, in one way or another, a square-root
function, indicating that it is an unrealistic task to derive
stable noncollinear GGA kernels, strictly following the def-
inition of noncollinear SDFT. We cautiously analyze the
mathematically ill-defined terms in noncollinear GGA kernels
for closed-shell systems and propose the infinitesimal sphere
limit (ISL) approach to calculate the noncollinear GGA ker-
nels. Basically, a limit process, m → 0, is introduced in the
ISL approach, and m approaches the zero vector only after the
calculations of derivatives of functionals with respect to the
density matrix. In Section II, ISL will be compared with two
approaches, which also treat noncollinear GGA kernels for
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closed-shell systems, one proposed by Bast and co-workers
[10] and another by Egidi and co-workers [11].

II. THEORY

Exchange-correlation energy (4) is a functional of density
n(r) and spin magnetization vector m(r), also a function of
the density-matrix D. To calculate responses of systems to
perturbations, derivatives of the exchange-correlation energy
with respect to the density matrix need to be calculated.

The matrix element of the noncollinear GGA exchange-
correlation potential V xc for closed-shell systems is the
first-order derivative of Exc with respect to the element of
density-matrix D (responses of closed-shell systems generally
involve nonvanishing spin density, which explains why SDFT
is needed),

V xc
pq = ∂Exc

∂Dqp
=

∫
∂ f

∂γi

∂γi

∂Dqp
dr, (7)

where p, q are indexes of the one-electron basis set, and γi(i =
1, 2, . . . , 8) stands for n,∇xn,∇yn,∇zn, s,∇xs,∇ys,∇zs, re-
spectively. The Einstein summation convention over repeated
indexes is always used. Equation (7) involves ∂s

∂Dqp
= m

s · ∂m
∂Dqp

,

which has the possibility of triggering 0
0 singularities, and

also ∂∇s
∂Dqp

. Thanks to the time-reversal symmetry for closed-

shell systems, the latent 0
0 singular term vanishes and has no

contribution to exchange-correlation potential.
However, the singularities in the noncollinear GGA kernel,

the second-order derivative of Exc, cannot be eliminated by
time-reversal symmetry. The noncollinear GGA kernel for
closed-shell systems reads

Kpqrs =
∫

∂2 f

∂Dqp∂Drs
dr, (8)

which can be divided into three terms,

Kpqrs = Knn
pqrs + Kns

pqrs + K ss
pqrs. (9)

The first term in Eq. (9), Knn
pqrs = ∑4

i=1

∑4
j=1

∫
∂2 f

∂γi∂γ j

∂γi

∂Dqp

∂γ j

∂Drs
dr, is spin independent and numerically sta-

ble. The second term in Eq. (9), Kns
pqrs = (

∑4
i=1

∑8
j=5 +∑8

i=5

∑4
j=1)

∫
∂2 f

∂γi∂γ j

∂γi

∂Dqp

∂γ j

∂Drs
dr, vanishes due to time-reversal

symmetry in closed-shell systems. Singularities of the non-
collinear GGA kernel only exist in K ss

pqrs, the third term of
Eq. (9),

K ss
pqrs =

8∑
i=5

8∑
j=5

∫
∂2 f

∂γi∂γ j

∂γi

∂Dqp

∂γ j

∂Drs
dr

+
8∑

i=5

∫
∂ f

∂γi

∂2γi

∂Dqp∂Drs
dr

=
8∑

i=5

8∑
j=5

∫
∂2 f

∂γi∂γ j

∂γi

∂Dqp

∂γ j

∂Drs
dr

+
8∑

i=5

8∑
j=5

∫
∂2 f

∂γi∂γ j
γ j

∂2γi

∂Dqp∂Drs
dr, (10)

FIG. 1. ISL treatment in a two-dimensional system; due to the
time-reversal symmetry, magnetization vector m is 0 everywhere
for closed-shell systems. A regular treatment of the response on
0 is singular. In ISL, m is represented by a set of vectors λu(�)
(for a two-dimensional system, � is the polar angle θ ; for a three-
dimensional system, � is the solid angle with parameters (θ, φ) in
spherical coordinates), with length controlled by λ, approaching zero
in the end, and direction controlled by u in an isotropic distribution.

which can be further divided into three terms,

K ss
pqrs = KLDA

pqrs + Kmix
pqrs + Kgrd

pqrs. (11)

The first term of Eq. (11), KLDA
pqrs = ∫

∂2 f
∂s2

∂m
∂Dqp

· ∂m
∂Drs

dr is the
pure spin contribution, which is numerically stable and shares
the same form as its LDA counterpart [5]. The second term of
Eq. (11), Kmix

pqrs = ∫
∂2 f

∂s∂∇s · ∇( ∂m
∂Dqp

· ∂m
∂Drs

)dr, describes a mixed
second-order response from spin and its gradient, which is
also numerically stable. The last term of Eq. (11), the pure
gradient contribution,

Kgrd
pqrs =

∫
1

2

∂2 f

∂∇αs∂∇βs

(
∂2[(∇αs)(∇βs)]

∂Dqp∂Drs

)
dr, (12)

with the Greek alphabet for x, y, z, is the only singular term
in the noncollinear GGA kernel owing to the 0

0 indetermi-
nate forms inside parentheses analogous to noncollinear GGA
potential but unable to be removed by time-reversal symme-
try. The 0

0 indeterminate forms can only be evaluated in a
limit process, m(r) → 0 in this specific problem. However,
when the function m(r) goes to zero vector, different limit
processes generally provide different results. A sensible limit
process should be avoiding singularities, preserving spin-
rotation symmetry, and simple. Based on these guidelines, the
ISL approach is proposed and outlined below.

First, for any vector m, its proximity vector m(λ,�) is
introduced,

m(λ,�) = m + λu(�), (13)

where λ is a small real number to indicate how close m and
m(λ,�) are, and u(�) is a unit vector directing to the orien-
tation described by solid-angle �. For closed-shell systems,
m(λ,�) reads

m(λ,�) = λu(�), (14)
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as depicted in Fig. 1. With note 〈· · · 〉� to be the average over
all directions �, it is evident that

m = lim
λ→0

〈m(λ,�)〉�. (15)

Actually, two stronger conditions, m = 〈m(λ,�)〉� and m =
limλ→0 m(λ,�), hold. Regular treatment of noncollinear
GGA reads

O = O[m] = O
[

lim
λ→0

〈m(λ,�)〉�
]
, (16)

through the proximity vector, with O[· · · ] denoting an ex-
pression depending on derivatives of the exchange-correlation
functional with respect to the density matrix, which is still
a functional of m(r). In Eq. (16), the regular treatment, λ

approaches zero before the calculations of derivatives. Instead
of Eq. (16), in ISL approach, λ approaches zero after the
calculations of derivatives in O,

OISL[m] = lim
λ→0

〈O[m(λ,�)]〉�, (17)

which becomes

K ISL = lim
λ→0

〈K[m(λ,�)]〉�, (18)

when the kernel is concerned.
The noncollinear kernel in the ISL approach (18) is

formally calculated as follows: (1) Replace m by its prox-
imity vector m(λ,�), as described in Eq.(13); (2) calculate
s(λ,�) = |m(λ,�)| and its derivatives with respect to D,
(∇s)(λ,�) = ∇(s(λ,�)) and its derivatives with respect to
D, and the kernel K[m(λ,�)]; (3) calculate K ISL according to
Eq. (18).

In our program, the limit process described in Eq. (18) is
realized analytically instead of numerically. The numerically
stable Knn

pqrs and Kns
pqrs in Eq. (9), KLDA

pqrs and Kmix
pqrs of K ss

pqrs
in Eq.(11) remain in their original forms unchanged in ISL
treatment (18), but the numerically singular term Kgrd

pqrs (12)
becomes numerically stable in ISL, reading

Kgrd,ISL
pqrs (λ,�)

=
∫

∂2 f

∂∇αs∂∇βs
uδ (�)uω(�)

∂∇αmδ

∂Dqp

∂∇βmω

∂Drs
dr. (19)

By noticing the identity 〈uα (�)uβ (�)〉� = 1
3δαβ , one reaches

the final analytic expression of Kgrd
pqrs in ISL treatment,

Kgrd,ISL
pqrs =

∫
1

3

∂2 f

∂∇αs∂∇βs

∂∇αmδ

∂Dqp

∂∇βmδ

∂Drs
dr, (20)

which is numerically stable and spin-rotation symmetry
conserved. In summary, the noncollinear GGA kernel for
closed-shell systems in the ISL approach reads

K ISL
pqrs = Knn

pqrs +
∫

∂2 f

∂s2

∂m
∂Dqp

· ∂m
∂Drs

dr

+
∫

∂2 f

∂s∂∇s
· ∇

(
∂m

∂Dqp
· ∂m
∂Drs

)
dr

+
∫

1

3

∂2 f

∂∇αs∂∇βs

∂∇αmδ

∂Dqp

∂∇βmδ

∂Drs
dr. (21)

Let us now turn to the comparison of existing formula-
tions of noncollinear GGA kernels in closed-shell systems.
Compared with the formulation proposed by Bast and co-
workers, the only difference is the factor 1

3 in the last term of
Eq. (21). The formulation proposed by Bast and co-workers
directly extending from the collinear GGA formulation has
the correct collinear limit. However, K ISL

pqrs derived directly
from Eq. (18) may maintain more nature of the noncollinear
GGA functional. Nevertheless, this advantage of ISL should
not be overstated since different limit processes may lead to
different results. Egidi and co-workers [11] proposed another
formulation for GGA kernels, suggesting evaluating the scalar
spin-density s in Eq. (5) as

s = 1
3 (mx + my + mz ), (22)

at girds with small m (like |m| < 10−12). Such a treatment
slightly breaks the rotational symmetry but can be uniformly
used for closed-shell and open-shell systems. Equation (17)
hints that ISL can be used for open-shell systems. However,
when |m| is very small but |m| �= 0, there is no correction from
ISL; thus the ISL approach for noncollinear GGA kernels
inherits the numerical instabilities from regular treatment and
is not advocated for open-shell systems.

At the end of this section, we address why this particular
proximity vector (13) is chosen. For a given �, u(�) is con-
stant in the spatial space, respecting the translation invariance
of spatial space. In addition, different � values share the
same weight, indicating that the spin-polarization directions,
u(�), are isotropically (spherically) distributed to preserve
the spin-rotation symmetry. Other distributions can also be
adopted, such as an ellipsoidal distribution. For simplicity, we
only consider the case in which two principal semiaxes, along
the x and y axis, approach zero. In this case, the proximity
vector, the counterpart of Eq. (13), is

m(λ) = m + λuz, (23)

and the kernel, the counterpart of Eq. (20), is

Kgrd
pqrs =

∫
∂2 f

∂∇αs∂∇βs

∂∇αmz

∂Dqp

∂∇βmz

∂Drs
dr. (24)

It is evident that the kernel (24) breaks the spin-rotation
symmetry. Furthermore, the degeneracy of triplet excitation
energies, in the absence of spin-orbit couplings, will be broken
by the kernel (24).

III. NUMERICAL RESULTS AND DISCUSSION

A. Implementation and computational details

Kernels play an important role in the LR-TDDFT (linear-
response time-dependent DFT) [12] and CPKS (coupled
perturbed Kohn-Sham) [6] equation. In this work, we im-
plement ISL kernels for both LR-TDDFT and CPKS in
the BDF package [13]. To cover the spin-orbit couplings
with high precision, a four-component relativistic framework
[14] is adopted with the restricted kinetically balanced ba-
sis [15] used for the small component of four-component
spinors.
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TABLE I. Calculated excitation energies (ns2 → ns1np1) (in eV) of Zn, Cd, and Hg with different noncollinear kernels.

Formulation by Bast et al.a ISL

Atom Term symbol LDA BLYP BP86 PBE BLYP BP86 PBE Expt. [31]

Zn 3P0 4.33(4.32) 4.23(4.22) 4.03(4.02) 3.98(3.76) 4.26 4.08 3.81 4.01
3P1 4.35(4.35) 4.25(4.25) 4.06(4.04) 4.00(3.78) 4.28 4.11 3.83 4.03
3P2 4.41(4.40) 4.30(4.30) 4.11(4.09) 4.05(3.83) 4.33 4.16 3.88 4.08
1P1 5.76(5.76) 5.59(5.61) 5.66(5.67) 5.58(5.58) 5.59 5.66 5.58 5.80

Cd 3P0 3.95(3.95) 3.86(3.85) 3.66(3.66) 3.64(3.47) 3.87 3.69 3.46 3.73
3P1 4.02(4.02) 3.92(3.92) 3.73(3.73) 3.71(3.54) 3.93 3.76 3.53 3.80
3P2 4.17(4.17) 4.06(4.06) 3.88(3.88) 3.85(3.69) 4.07 3.91 3.67 3.95
1P1 5.34(5.34) 5.17(5.18) 5.21(5.22) 5.14(5.14) 5.17 5.21 5.14 5.42

Hg 3P0 4.87(4.87) 4.74(4.74) 4.63(4.63) 4.60(4.45) 4.74 4.65 4.44 4.67
3P1 5.08(5.08) 4.94(4.94) 4.85(4.84) 4.81(4.66) 4.94 4.86 4.66 4.89
3P2 5.66(5.67) 5.47(5.48) 5.41(5.42) 5.34(5.21) 5.46 5.42 5.19 5.46
1P1 6.52(6.53) 6.29(6.30) 6.40(6.42) 6.33(6.32) 6.29 6.40 6.33 6.70

MAEb 0.16 0.02 −0.08 −0.13 0.03 −0.05 -0.25
MRE(%)c 4.03 1.20 −1.41 -2.45 1.44 −0.85 -5.49
MEd 0.33 −0.41 −0.30 −0.37 −0.41 −0.30 −0.37

aThe data outside the parentheses are the excitation energies calculated by the formulation proposed by Bast and collaborators implemented in
this work. The data in parentheses are the results reported by Bast et al. [10].
bMAE: Mean absolute error.
cMRE: Mean relative error.
dME: Maximum error.

The ISL kernel is implemented in the LR-TDDFT mod-
ule in the BDF package to calculate excitation energies of
closed-shell systems based on the work by Gao et al. [16,17].
Quadruple zeta all-electron 4 polarization Slater-type orbitals
[18], further augmented in an even-tempered fashion for the
convergence of excitation energies, are used.

The ISL kernel is implemented in the CPKS module, also
in the BDF package, to calculate two magnetic properties,
the nuclear magnetic resonance (NMR) shielding constant
[19,20] and nuclear-spin rotation (NSR) coupling tensor
[21,22], based on the work in Refs. [23] and [21]. In both
NMR and NSR calculations, very large Gaussian-type or-
bitals, initially developed for rare gas atoms in the same
periods [24], are used to guarantee the convergence of the
basis set. In calculations of the NMR shielding constants, the

uniform external magnetic field brings two additional com-
plexities. The first one is the uncertainty of gauge origin,
which can be handled by gauge-including atomic orbitals
(GIAO) [25]. The second one is the dramatic changes in
the relation between the large and the small components
of four-component spinors, which can be efficiently de-
scribed via the magnetically balanced basis set [14,26]. In
this work, we adopt the external field-dependent unitary trans-
formation [20] basis set, one of the magnetically balanced
basis sets, further combined with the GIAO, as described
in Ref. [23].

The geometry of the linear uranyl (VI) ion UO2+
2 is taken

from Ref. [11] with a bond length of 1.708 angstrom. The
bond lengths of HF to HI are 0.9169, 1.2746, 1.4145, and
1.6090 angstrom, respectively, taken from Ref. [21]. The bond

TABLE II. Calculated lowest excitation energies (in eV) of UO2+
2 with different noncollinear kernels.

Reported by Egidi et al.a ISL

BLYP PBE BLYP BP86 PBE CASPT2b LR-CCSDc

1.22 1.18 1.46 1.44 1.42 2.38 2.83
1.40 1.37 1.58 1.57 1.56 2.49 2.85
1.83 1.76 2.07 2.03 2.01 2.51 2.96
2.06 2.00 2.26 2.23 2.21 2.77 3.13
2.15 2.11 2.34 2.32 2.31 3.15 3.45
2.41 2.37 2.49 2.50 2.51 3.26 3.60
2.42 2.45 2.52 2.52 2.52 3.61 4.01
2.46 2.50 2.53 2.53 2.55 3.88 4.30

aCorresponds to Eq. (22); see Ref. [11].
bCASPT2: Complete active space second-order perturbation theory; see Ref. [32].
cLR-CCSD: Linear-response coupled-cluster theory including single and double excitations; see Ref. [33].
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TABLE III. Calculated isotropic NMR shielding constants (in p.p.m.) of H and X in HX with noncollinear kernels.

Formulation by Bast et al. [10] ISL

Molecule LDA BLYP BP86 PBE BLYP BP86 PBE Expt.a

Isotropic shielding constants of H
HBr 35.10 37.51 36.59 36.49 36.91 36.03 36.07 34.64
HI 42.92 47.81 45.67 45.50 45.99 43.98 44.18 42.88
HAt 59.47 69.33 64.39 64.38 64.86 60.36 61.03
MAR 0.25 3.90 2.37 2.23 2.69 1.24 1.37
MRE(%) 0.71 9.90 6.08 5.72 6.90 3.28 3.58
ME 0.46 4.93 2.79 2.62 3.11 1.39 1.43

Isotropic shielding constants of X
HBr 2921.17 2865.99 2893.27 2903.62 2863.30 2890.42 2902.30 2961.03
HI 5784.06 5677.61 5734.03 5757.54 5667.24 5722.79 5753.94 5829.97
HAt 17550.98 17395.32 17533.63 17614.21 17332.57 17462.60 17614.19
MAR −42.88 −123.70 −81.85 −64.92 −130.23 −88.89 −67.38
MRE(%) −1.07 −2.91 −1.97 −1.59 −3.05 −2.11 −1.64
ME −45.91 −152.36 −95.94 −72.43 −162.73 −107.18 −76.03

aMapped from experimental NSR coupling constants [21].

length of HAt is 1.7485 angstrom, taken from Ref. [22]. In this
work, three GGA functionals, BLYP [8,27,28], BP86 [8,29],
and PBE [30], are chosen for numerical tests.

B. Excitation energy calculations

Table I lists the excitation energies (ns2 → ns1np1) of Zn,
Cd, and Hg in ISL and the formulation proposed by Bast
and co-workers. Excitation energies calculated by formula-
tion proposed by Bast and co-workers reported in Ref. [10]
and implemented in BDF are in good agreement, except for
the PBE functional. However, our results for PBE functional
coincide with the results in Ref [9], reported by Komorovsky
et al., hinting at the correctness of our implementation.

It is found that the ISL formulation and formulation pro-
posed by Bast and co-workers are close in values, and the
agreements between two formulations compared with experi-

ments [31] depend on systems and functionals, but in general
are similar. For instance, ISL affords results closer to the
experiment for BP86, while the formulation proposed by Bast
and co-workers affords closer results for BLYP. Nevertheless,
both formulations can afford more reasonable results for these
excited states than LDA.

The LR-TDDFT calculations of UO2+
2 are listed in Ta-

ble II. For UO2+
2 , ISL provides comparable results with the

formulation proposed by Egidi and co-workers [11]. All the
excitation energies are underestimated compared with post-
Hartree-Fock methods [32,33].

C. Second-order magnetic property calculations

Table III lists the isotropic shielding constants of hydrogen
halides. The numerical results obtained by ISL and the for-

TABLE IV. Calculated NSR coupling constants (in atomic unit) of H and X at the equilibrium geometry with noncollinear kernels.

Formulation by Bast et al. [10] ISL

Molecule LDA BLYP BP86 PBE BLYP BP86 PBE Expt.a

NSR constants of H
HF −74.75 −77.38 −76.94 −76.87 −77.31 −76.86 −76.82 −72.188(24)
HCl −43.00 −44.93 −44.16 −44.03 −44.64 −43.88 −43.83 −42.227(139)
HBr −43.14 −47.55 −45.63 −45.46 −46.06 −44.23 −44.44 −41.00(31)
HI −49.21 −57.68 −53.70 −53.43 −53.86 −50.15 −50.71 −48.19(22)
MAE −1.63 −5.99 −4.21 −4.04 −4.57 −2.88 −3.05
MRE(%) 3.18 12.32 8.47 8.12 9.23 5.59 5.96
ME −2.57 −9.49 −5.51 −5.24 −5.67 −4.67 −4.63

NSR constants of X
HF 297.00 336.44 329.80 327.23 336.56 329.93 327.26 278.557(20)
HCl 53.92 60.53 57.60 56.60 60.58 57.65 56.62 51.299(52)
HBr 301.60 335.53 319.93 313.50 336.70 321.18 313.79 278.95(8)
HI 365.11 404.69 385.15 376.58 407.99 388.73 377.41 340.44(30)
MAE 17.09 46.99 35.81 31.16 48.15 37.06 31.46
MRE(%) 6.77 19.48 14.63 12.70 19.86 15.04 12.80
ME 24.67 64.25 51.24 48.67 67.55 51.37 48.70

aExperimental values at the equilibrium geometry [21], and the experimental uncertainty is in parentheses.
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mulation proposed by Bast and co-workers are close to each
other and in good agreement with the experimental data.

Table IV lists the calculated NSR coupling constants of
hydrogen halides. Similarly, compared with the experimental
data, results obtained from both formulation proposed by Bast
and co-workers and the ISL formulation are reasonable.

We also observed that for both NMR and NSR, ISL pro-
vides slightly better agreement with the experimental data
for H atom but slightly worse for heavy atoms than the
formulation proposed by Bast and co-workers. Generally,
their agreements with the experimental data are at the same
level. Unlike LR-TDDFT calculations for excitation energies
where GGA functionals provide better results than LDA, in
NMR shielding and NSR tensor calculations, the LDA func-
tional displays better agreement with experimental data than
GGA.

IV. SUMMARY

ISL, an approach for noncollinear GGA kernels in closed-
shell systems, is proposed in this work. Numerical stability,
rotational symmetry conserving, and numerical tests hint that
ISL is a potential candidate in noncollinear calculations for
closed-shell systems. However, ISL does not have the correct
collinear limit. In addition, ISL cannot help the numerical
instabilities in open-shell systems and is not recommended for
open-shell systems.
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