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Magnetotransport studies of the Sb square-net compound LaAgSb, under high pressure

and rotating magnetic fields
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Square-net-layered materials have attracted attention as an extended research platform of Dirac fermions
and of exotic magnetotransport phenomena. In this study, we investigated the magnetotransport properties of
LaAgSb,, which has Sb-square-net layers and shows charge density wave (CDW) transitions at ambient pressure.
The application of pressure suppresses the CDWs, and above a pressure of 3.2 GPa a normal metallic phase with
no CDWs is realized. By utilizing a mechanical rotator combined with a high-pressure cell, we observed the
angular dependence of the Shubnikov—de Haas (SdH) oscillation up to 3.5 GPa, and we confirmed the notable
two-dimensional nature of the Fermi surface. In the normal metallic phase, we also observed a remarkable
field-angular-dependent magnetoresistance (MR), which exhibited a “butterflylike” polar pattern. To understand
these results, we theoretically calculated the Fermi surface and conductivity tensor at the normal metallic phase.
We showed that the SdH frequency and Hall coefficient calculated based on the present Fermi surface model
agree well with the experiment. The transport properties in the normal metallic phase are mostly dominated by
the anisotropic Dirac band, which has the highest conductivity due to linear energy dispersions. We also proposed
that momentum-dependent relaxation time plays an important role in the large transverse MR and negative
longitudinal MR in the normal metallic phase, which is experimentally supported by the considerable violation
of Kohler’s scaling rule. Although quantitatively complete reproduction was not achieved, the calculation showed
that the elemental features of the butterfly MR could be reasonably explained as the geometrical effect of the

Fermi surface.
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I. INTRODUCTION

A material class that possesses a two-dimensional square-
net structure has attracted considerable attention in the field
of condensed-matter physics [1]. In these materials, the bulk
physical properties are governed by carriers with extremely
high mobility (so-called Dirac fermions) characterized by
linear energy dispersion, which causes various exotic magne-
totransport phenomena.

Materials with the formula MTP, (M is a rare-earth or
alkali-earth metal, T is a transition metal, and P is a pnictogen
element such as Bi and Sb) serve as versatile square-net com-
pounds [2—12]. One remarkable advantage of these materials
is that systematic investigation is possible by choosing the
appropriate M and/or T from a wide range of materials, in-
cluding nonmagnetic and magnetic elements. The prominent
quantum oscillation with the nontrivial Berry phase [2—12]
and the quantum Hall effect in a bulk crystal [4,11,12] have
been regarded as hallmarks of Dirac fermions derived from
the Bi- or Sb-square-net layers.

Another system being intensively studied is MXY (M =
Zr Hf, etc., X = Si,Ge,Sn, and Y = S,Se, Te) with a square
net composed of X [13-21]. The intervention of the nontrivial
electronic state in the experimentally observed large nonsatu-
rating magnetoresistance (MR) and high carrier mobility has
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attracted research interest in these materials. Notably, the MR
effect in these materials shows a strong field-angular depen-
dence [13-16,18-21], which results in a butterflylike shape
on the polar plot of the resistivity. Although active discussion
on the origin of this “butterfly MR” has been performed,
whether it involves the nontrivial band structure or it can be
merely explained by a geometrical effect of the Fermi surface
is currently unclear.

LaAgShb,, the target of the present study, is classified into
the former “112-type” material having Sb-square-net layers.
Reflecting the anisotropic crystal structure, the Fermi surface
shows a remarkable two-dimensional nature [22,23], which
results in the unique physical properties of this material.
LaAgSb, exhibits two successive charge density wave (CDW)
transitions at Tcpw; ~ 210K and Tcpws ~ 190K at ambi-
ent pressure [24,25]. Previous x-ray diffraction studies have
identified that CDW1 and CDW2 accompany lattice modu-
lations along the a- and c-directions, respectively [25]. The
origin of these CDWs has been understood as a nesting of
the corresponding part of the Fermi surface [26]. The fun-
damental physical properties, Fermi surface, and details of
the CDW phase have been investigated by various research
groups [27-31]. Interestingly, recent studies have proposed
that LaAgSb, has a Dirac-like linear dispersion [32,33], simi-
lar to the relevant square-net materials. This linear dispersion
is in the Fermi surface that is regarded to serve the nesting
of CDW1. Previous studies have suggested that the Dirac-
like point in LaAgSb, is highly anisotropic [26]: it has a
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steep linear dispersion along high-symmetry lines, whereas
it is quadratic along the normal directions. A similar highly
anisotropic Dirac dispersion has been reported for SrMnBi,
and CaMnBi, [2,34,35].

The authors recently reported the magnetotransport prop-
erties of LaAgSb, under high pressure [36], in which CDW1
and CDW?2 were suppressed by pressure and disappeared at
the critical pressures Pcpwi ~ 3.2 GPa and Pcpw, ~ 1.7 GPa,
respectively. We observed large positive transverse MR in
the range of 1000-4000 % and characteristic negative lon-
gitudinal MR. In addition, we observed a distinct change in
the Shubnikov—de Haas (SdH) oscillation pattern at Pcpw
and Pcpwa, highlighting the drastic change of the Fermi sur-
face. The collapse of CDW1 causes an abrupt increase in
the conductivity components o, and oy,, suggesting a highly
conductive electronic state above Pcpw;. We can expect that
above Pcpwi, the Fermi surfaces hidden by the CDW gap can
fully contribute to the transport properties. Thus, novel trans-
port phenomena caused by linear energy dispersion should be
an intriguing issue. In the previous report [36], the magnetic-
field direction was fixed to the out-of-plane [001] direction,
and thus details of the Fermi surface geometry under pres-
sure have remained unexplored. Various Fermi surface models
have been proposed [22,23,26,29,31], although there is no
commonly recognized picture at present.

In the present study, we investigated the magnetotrans-
port properties of LaAgSb, with combined experimental and
computational methods. We revealed the angular dependence
of MR under a high pressure of up to 3.5 GPa utilizing a
uniaxial mechanical rotator combined with a high-pressure
cell. The angular dependence of the SdH frequencies ob-
served in the high-pressure phases supports the cylindrical
geometry of the Fermi surface. Furthermore, we observed a
clear butterfly MR only above Pcpwi, which is similar to
that observed in MXY systems. To discuss the experimental
results, we calculated the Fermi surface under pressure and the
conductivity tensor based on the first-principles band struc-
ture. Above Pcpwi, the largest contribution on the electrical
conductivity was caused by the anisotropic Dirac band. This
dominance can be explained by the large Fermi velocity dis-
tributed over a wide range of the surface, which is caused
by the linear dispersion. The experimentally obtained Hall
coefficient and the SdH frequency observed above Pcpw; were
reasonably explained by the present Fermi surface model. We
also showed that fundamental features of the butterfly MR
can be qualitatively explained by the geometrical effect of
the Fermi surface. From a quantitative viewpoint, however,
the high-field transverse MR and negative longitudinal MR
were not reproduced by calculation. We proposed that this
inconsistency between the experimental and calculated results
is caused by the momentum-dependent relaxation time, which
is not considered in the present calculation. This assumption is
supported experimentally by the violation of Kohler’s scaling
rule above Pcpwi .

II. EXPERIMENTAL METHODS

Single crystals of LaAgSb, were synthesized by the Sb
self-flux method [24]. Detailed properties of the utilized sam-
ples are described in the previous report [36].

The resistivity under high pressure was measured using an
indenter-type pressure cell (P < 3.5GPa) [37]. Daphne oil
7474 [38] was used as a pressure medium. The pressure in the
sample space was determined based on the superconducting
transition temperature of Pb set near the sample.

The resistivity measurements under the condition of B <
8T and T > 1.6 K were performed using a superconducting
magnet and variable-temperature insert (Oxford Instruments).
Resistivity measurements under low temperature (0.1 < 7 <
1.6K) and high magnetic field (B < 12T) were performed
using a combined system of a home-made dilution refrigerator
and superconducting magnet (Oxford Instruments). LR-700
(Linear Research) or model 370 (Lake Shore Cryotronics,
Inc.) ac resistance bridges were utilized for resistivity mea-
surements. We adopted the standard four-terminal method,
and electrical contacts were formed by a silver paste (Dupont
4922N).

The angular dependence of the resistivity under pressure
was measured using a home-made mechanical rotator, which
can uniaxially rotate the indenter-type pressure cell in the
variable-temperature insert. The tilt angle of the pressure cell
against the applied magnetic field was determined using a Hall
sensor (HG-302C, Asahi Kasei Microdevices Corporation).

III. COMPUTATIONAL METHODS

The band-structure calculation based on the density-
functional theory (DFT) was performed using the QUANTUM
ESPRESSO package [39,40] with full-relativistic ultrasoft
pseudopotentials. For calculations at ambient pressure (high-
temperature phase without CDW), we adopted the lattice
constants a = 4.3941 A, c = 10.868 10\, and atomic coordi-
nates experimentally identified in our previous study [36].
For calculation under a pressure of 3.5 GPa, we adopted
a=4.3495 A and ¢ = 10.5598 A, which were obtained by
linear extrapolation assuming the known lattice compressibil-
ity [41], whereas the atomic coordinates were assumed to be
identical with those at ambient pressure. We used a cutoff of
75 and 540 Ry for the plane-wave expansion of wave func-
tions and charge density, respectively, and a Monkhorst-Pack
6 x 6 x 6 k-point grid for the self-consistent calculation.

To investigate the details of the Fermi surface, we em-
ployed maximally localized Wannier functions (MLWFs)
method using WANNIER9O [42]. Based on the tight-binding
Hamiltonian obtained by the MLWF method, we calculated
the Fermi surface and electrical conductivity using WANNIER-
TooLs [43]. For the Fermi surface calculation, we interpolated
the full-relativistic DFT band structure with 44 Wannier func-
tions (La-d and Sb-p). The Fermi surface and Fermi velocity
= h_lae(k)/8k|€:€,, obtained using a dense 101 x 101 x
101 k& mesh were visualized using FERMISURFER [44]. Cal-
culation of the conductivity tensor required relatively higher
computational costs than the Fermi surface calculation. Thus,
we recalculated the scalar-relativistic DFT band structure
with identical cutoffs and the k-point mesh mentioned above,
and we reconstructed the tight-binding Hamiltonian with 22
Wannier functions for the conductivity tensor calculation.
As shown in the previous study [31] and Fig. S1 in the
Supplemental Material [45], the effect of the spin-orbit cou-
pling caused a negligible effect on the shape of the Fermi
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surface, and thus no essential change in the conductivity ten-
sor calculation is expected. In Fig. S2 in the Supplemental
Material [45], we show a comparison between the DFT
calculation and the tight-binding model adopted for the con-
ductivity calculation. The tight-binding model reproduces the
DFT calculation quite well.

The electrical conductivity tensor ¢ under a magnetic field
was calculated based on the Boltzmann equation within the
relaxation-time approximation by WANNIERTOOLS [46]. In the
above framework, the conductivity tensor is represented by

2 3
ol = e—/dkuf”(k)znﬁ;”)(k)(—@) )
e=¢,(k)

7 43 de

Here, e, frp, and n represent the elemental charge, Fermi-
Dirac distribution function, and band index, respectively. 7,
represents the relaxation time of the nth band, which is
assumed to be independent of k. Because of the energy
derivative of the Fermi-Dirac distribution function, oi(]f” was
determined by the states within the thermal energy width of
~kpT near the Fermi level. We set T = 10K to define the
thermal energy width. v (k) represents the velocity defined
by the gradient of the energy in the reciprocal space as

1 de, (k)

h ok @
9" (k) represents the weighted average of velocity over the
orbit, which is defined as

v (k) =

n

0
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The historical motion of k(¢) under a magnetic field B was
obtained by the equation of motion

dk(t)

dt

where k(t = 0) = k. We adopted a 101 x 101 x 101 k mesh

for the calculation under fixed B (Fig. 7) and an 81 x

81 x 81 k mesh for the field-angular dependence calculation
(Fig. 9).

—%v“”[k(t)] x B, )

IV. RESULTS
A. In-plane magnetoresistance

First, we show the experimental results obtained under
high pressure and rotating magnetic fields. In this study, the
magnetic field was tilted from the [001] axis to the normal
directions to discuss the dimensionality of the Fermi surface.
0 is defined as a field angle measured from the [001] axis.
We utilized the term “CDW1 + 2 phase” (0 < P < Pcpwa,
CDW1 and CDW?2 coexist), “CDW]1 phase” (Pcpwz < P <
Pcpwi, only CDW1 survives), and “normal metallic phase”
(P > Pcpwi, no CDW exists) to specify the electronic state.
As mentioned in the previous report [36], the amplitude of the
SdH oscillation in the CDW 1 phase does not obey the conven-
tional Lifshitz-Kosevich formula and takes the maximum at a
relatively higher temperature. Thus, most data were taken at
20 K in the CDW1 phase, unless otherwise specified.

In Fig. 1, we show the field-angular dependence of the
in-plane magnetoresistance (o190 and pjj0), where electrical
current (/) flows along the [100] and [110] directions. In
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FIG. 1. Magnetoresistance p;op with current along the [100] di-
rection at (a) 0 GPa, (b) 2.4 GPa, and (c) 3.3 GPa. Magnetoresistance
p110 With current along the [110] direction at (d) O GPa, (e) 2.7 GPa,
and (f) 3.3 GPa. 0 is defined by the angle between B and [001] as
shown in the schematic drawings. The increment of 6 from 0° to 90°
corresponds to the color change from light orange to dark blue.

these measurements, the magnetic field (B) was rotated in the
plane perpendicular to /. At all phases, remarkable changes in
the magnetoresistance were observed depending on the field
direction. We also observed an angular dependence of the SAH
oscillation, which will be discussed later. In the CDW1 + 2
and CDW1 phases, the angular dependence of the MR is
rather simple: it shows the largest positive MR effect in the
case of B || [001] (light orange traces in Fig. 1), and then
gradually decreases as B approaches the in-plane [100] or
[110] directions (dark blue traces in Fig. 1). In the normal
metallic phase, however, the MR effect takes the maxima
at intermediate angles as 6 increases, and then it takes the
minimum around 6 = 90°.

This change in the MR is clearly visible in the po-
lar plots shown in Figs. 2(a) and 2(b). In Figs. 2(a) and
2(b), the radius data represent the magnetoresistance at 8 T
normalized by the value at O T defined by Apjgo.110/p =
£100.110(8 T)/0100.110(0 T) — 1. In the CDW1 + 2 and CDW1
phases, it shows simple and almost identical twofold symme-
try in both current configurations.

In the normal metallic phase, in contrast, polar spectra
show a more complicated structure and obviously depend on
the current direction. The polar patterns show butterflylike
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FIG. 2. Polar plot of (a) Apipo/p and (b) Apip/p at 8 T in
CDWI1 + 2, CDWI1, and the normal metallic phases. (c) Exponent

n of Apigo.110/p as a function of 6. Here, we assumed A pjo0.110/0
B".

shapes in both cases, which are similar to those observed in
the other square-net systems [13—16,18-21]. In the case of
I || [100], the magnetoresistance takes broad local maxima
around £45°. In the case of 7 || [110], we can recognize the
distinctive local maxima around £30° and £60°. In contrast
to CDW1 + 2 and CDW1 phases, § = 0° changes into the
local minima in both configurations.

In Fig. 2(c), we summarize the 6 dependence of n, assum-
ing the field dependence to be Apjgo,110/p o B". Around the
local maxima of Apjgo,110/p, 1 is slightly enhanced in both
cases. At & = 90°, in contrast, n decreases considerably, and
even shows an almost linear field dependence. At any 6, n is
significantly smaller than conventional n = 2.

The drastic change in the magnetotransport properties at
Pcpw mentioned above is evidently accompanied by the
emergence of a Fermi surface, which has been gapped out by
CDWI1. Because the angular dependence of the magnetore-
sistance roughly reflects the symmetry of the Fermi surface
cut perpendicular to the current direction [46], the twofold
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FIG. 3. Magnetoresistance pgy; with current along the [001] di-
rection at (a) 0.55 GPa, (b) 1.9 GPa, and (c) 3.5 GPa. (d) Angular
dependence of Apgy;/p at 8 T. Magnetic-field dependence of pg; at
several pressures around (e) || = 0° and (f) |6] = 90°.

symmetry is expected to be trivial considering the tetragonal
crystal structure. Additional structures observed only in the
normal metallic phase are expected to contain information
of the Fermi surface geometry. This behavior will again be
discussed in later sections.

B. Out-of-plane magnetoresistance

Next, we focus on the angular dependence of the out-of-
plane magnetoresistance (pgo1). The in-plane crystal orienta-
tion has not been identified for this sample. § = 0° and 90°
correspond to the longitudinal (/ || B) and transverse (I L B)
configurations, respectively.

Figures 3(a), 3(b) and 3(c) show pgy; under various field
directions in CDW1 + 2, CDW1, and normal metallic phases,
respectively. The angular dependence of Apg;/p at 8 T is
summarized in Fig. 3(d). Common to all phases, the mag-
netoresistance is considerably small and even decreases as
B increases when B || [001] (light orange), whereas it is ro-
bustly enhanced around 6 = 90° (dark blue). This behavior
introduces very sharp peaks at around 6 = 90° in Fig. 3(d).
Apgor/p at 6 =90° is smaller in the CDWI1 + 2 phase
and becomes approximately two times larger in the CDW1
and normal metallic phases. The value of Apgy/p is not

035108-4



MAGNETOTRANSPORT STUDIES OF THE Sb SQUARE-NET ...

PHYSICAL REVIEW B 105, 035108 (2022)

600 —1—T T 1 T
n 4L 4L [J .
aol e L e [ Se®

- 0 GPa 0 GPa 0.55 GPa
L i T 16K [ 416K, ]
Wogoof 18K L TSK L elee -
0 i | ] ga)- i | ] .(d) i | ] gg)-

o L | L N
20 —‘..2.4 GPa ;/ —'2.7 GPa ! [\ ® 20K -
—~ 15} 20K,__\ 20K / |-¢0 16K/, _]
= , ®

w 10 ‘\-’ b Neet L a e
°I L gb)- B L .(e)- B |1'9 ?Pagh)-
O o e | o L e | o L
120 = 1 | 1] = !
[\ 3.3GPa ;][ ", 3.3 GPa ;][\ 3.5 GPa 7]
c 80 _':“\ 16K i _-:3‘ 16K i (% 16K ]
Lol et [ tews’ T e
N ST ;| Gk | Uk

-50 50  -50 50  -50 50

6 (°) 0 (°) 6 (°)

B B B
/ /
[100] [110]

FIG. 4. Angular dependence of the SdH frequency at each phase
with current along the (a)-(c) [100], (d)-(f) [110], and (g)—(i)
[001] directions. The first, second, and third rows correspond to the
CDWI1 + 2, CDW1, and normal metallic phases, respectively. The
black broken lines represent the 1/ cos 6-type angular dependence,
and the red broken lines represent the ellipsoidal angular dependence
with anisotropic parameter e = 2.9 (see the main text for details).

substantially different between the CDW1 and normal metal-
lic phases. Figures 3(e) and 3(f) show pgo; at representative
pressures around |@| ~ 0° and 90°, respectively. For |0 ~ 0°,
the characteristic negative magnetoresistance is well consis-
tent with our previous result [36]. For |#| ~ 90°, in contrast,
negative contribution is completely absent, and pgo; increases
with the application of B without saturation.

C. Angular dependence of the SdH oscillation

Then, we move onto the angular dependence of the SdH
oscillations superimposed on pig9, P110, and pgo;. Figure 4
shows the angular dependence of the SdH frequency (F'). The
current and field configurations are illustrated at the bottom of
each column. The corresponding raw data are shown in Fig.
S3 in the Supplemental Material [45].

At CDW1+2 phase (the first row in Fig. 4), we observed
two frequencies, F ~ 160 and ~440T, at 6 = 0°, which cor-
respond to the 8 and y branches, respectively, in the previous
studies [22,23,28]. Each frequencies increases as the magnetic
field is tilted from [001] axis, which is consistent with the pre-
vious quantum oscillation measurements at ambient pressure
[22,23].

In the CDW1 phase (the second row in Fig. 4), we detected
a single frequency of 10 T at & = 0°, which is consistent with

6 I T

T T
6=0°0.17K
mmm 0 =90° 024 K

P00 (HQ cm)

0 2 4 6 8 10 12

FIG. 5. Magnetoresistance piop at & = 0° and 90° below 1 K
measured using a dilution refrigerator.

our previous report [36]. The angular dependence of this fre-
quency well obeys the 1/ cos 6-scaling over the wide 6 range
(up to 6 = 60°), indicating the cylindrical geometry. This
indicates the existence of a considerably narrow cylindrical
Fermi surface in the CDW1 phase. We also confirmed that the
6 dependence of F is almost identical at the lower temperature
of 1.6 K, as shown by the open markers in Fig. 4(h).

In the normal metallic phase (the third row in Fig. 4), the
SdH oscillation has a single component in all configurations,
whose frequency F ~ 50T at & = 0° is consistent with that
of the w branch identified in the previous study [36]. The
obtained data are relatively poor compared to those in the
CDW!1 phase because of the significant decay of the oscil-
lation amplitude as 6 increases. In the case in which the cross
section comes from an elongated ellipsoid characterized by
shorter (a) and longer (b) axes, the 8 dependence is propor-

tional to 1/\/cos2 0 + e~2sin% 0, where e = b/a. The above
function shows similar § dependences at a small 6. We show
the expected 6 dependence when e = 2.9 in Figs. 4(c), 4(f)
and 4(i) by red broken lines. For the w branch, it is difficult
to discuss the geometry only from these data. Thus, we focus
on the low-temperature MR measured at 0.24 K for 6§ = 90°,
which is shown in Fig. 5. When the SdH oscillation comes
from a cylindrical geometry, the orbit is open when 6 = 90°,
and thus no SdH oscillation is expected. In the case of ellip-
soidal geometry, in contrast, there exists an extremum cross
section at & = 90°, and thus it is reasonable to expect an SdH
oscillation under sufficiently small thermal damping. As seen
in Fig. 5, oscillation is absent at the lowest temperature of
the present study, and hence we regard the w branch resulting
from a cylindrical geometry.

To summarize the SdH measurements, we conclude that
Fermi surfaces detected in the high-pressure phases seem to
be cylindrical along the z direction. This fact indicates that the
strong two-dimensional nature is maintained up to the normal
metallic phase.

V. DISCUSSION

A. Band structure and the Fermi surface in the normal
metallic phase

Here, we discuss the Fermi surface in the normal metal-
lic phase based on the band-structure calculations. Because
accurate information on the crystal structure and atomic
coordinates, etc., within the CDWs is not available, it is
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FIG. 6. (a) Band structure at 3.5 GPa (black) obtained by full-
relativistic DFT calculations. The band structure at ambient pressure
(red) is also overlaid for comparison. (b)—(e) Fermi surfaces at
3.5 GPa originated from bands 1, 2, 3, and 4. The color code rep-
resents the absolute value of the Fermi velocity vy from 0.40 x 103
m/s (blue) to 15.5 x 10° m/s (red). Cross section of the Fermi
surface cut by (f) k, =0 and (g) k, = w/c. Black and red traces
represent the cross sections at 3.5 GPa and ambient pressure, re-
spectively. The outer black square represents the first Brillouin zone.
The size of the first Brillouin zone is equalized between the case of
3.5 GPa and ambient pressure.

difficult to quantitatively discuss the electronic structure in
the CDW1 + 2 and CDW1 phases. In this study, therefore, we
mainly focus on the normal metallic phase, in which we can
directly compare the calculation with experiments due to the
absence of the energy gap and band reconstruction by CDW.
Figure 6(a) shows the band structure at 3.5 GPa (black)
and ambient pressure (red). We can see that at a pressure
of 3.5 GPa, no remarkable change occurs near the Fermi
level, such as the Lifshitz transition. Figures 6(b)-6(e) show
the Fermi surface of LaAgSb, at 3.5 GPa with the absolute

TABLE I. Calculated cross section S and SdH frequency F' of
orbits C1-3 shown in Figs. 6(f) and 7(g) at 3.5 GPa. The values in
parentheses were obtained from the calculation at ambient pressure.

Orbit S (10" m~2) F (T)
Cl 4.76 (7.98) 49.9 (83.6)
2 46.4 (40.9) 486 (429)
c3 14.8 (11.7) 156 (123)

value of the Fermi velocity vr shown by color code. Here-
after, we refer to the bands constructing the surfaces shown
in Figs. 6(b), 6(c) 6(d), and 6(e) as bands 1, 2, 3, and 4,
respectively. Bands 1 and 2 (3 and 4) are hole (electron)
surfaces enclosing the higher- (lower-) energy region within
the surface. The hot spot of vg (e.g., around X and on the way
of ' — M and Z — A) corresponds to the point at which almost
linearly dispersed bands cross €r in Fig. 6(a). The maximum
vr of ~1.6 x 10° m/s is consistent with the previous calcula-
tion [31] and comparable to those of SrMnBi, and graphene
[2]. Compared with the previous calculation by Myers et al.
[22], which is often referred to in the discussion of quantum
oscillation and nesting properties in this material, the shape
of bands 2—4 is almost identical. However, our calculation
supports that band 1 is open along the z direction, which is
a dicelike closed pocket in the calculation by Myers et al.
The present Fermi surface geometry is well in accordance
with a recent computational study reported by Ruszala et al.
[31]. In Table I, we list the calculated cross section S and the
corresponding SdH frequency F of several orbits at 3.5 GPa
and ambient pressure.

We have shown in the experimental results that there ex-
ists a cylindrical Fermi surface with a small cross-section
of ~50T in the normal metallic phase. In our calculation,
the orbit C1 around the Z point in band 1 [Fig. 6(g)] can
cause 1/ cos6-type angular dependence, whose frequency is
calculated to be 49.9 T at 3.5 GPa (Table I). This value shows
reasonable agreement with the observed frequency. Although
orbit C2 in Fig. 6(f) can also cause 1/ cos 6-type dependence,
the frequency is calculated to be 486 T, which is considerably
larger than the observed frequency. The orbit C3 in band 4
[Fig. 6(f)] shows a comparable cross section with C1. How-
ever, the complete absence of the SdH shown in Fig. 5 might
be unlikely for the ellipsoidal shape. The other cross-sections
are considerably larger, and thus we can exclude them from
consideration.

According to the above results, we conclude that the exper-
imentally observed cross-section in the normal metallic phase
originates from orbit C1, i.e., our result supports the cylindri-
cal Fermi surface for band 1. Conventionally, the CDW2 has
been considered to be caused by the k,-oriented nesting vector
within band 1 [25], which was deduced from the dicelike
shape of the Fermi surface. Our conclusion suggests a careful
reconsideration of whether this nesting picture is valid in the
case of the present Fermi surface geometry.

B. Magnetotransport properties in the normal metallic

phase in B || [001]

Here, we show the computational results of the conductiv-
ity and resistivity tensors in the normal metallic phase in B ||
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FIG. 7. (a)—(f) Calculated conductivity components at 3.5 GPa with B || [001]. Parts (a)—(c) are band-resolved o " )/T,, ax()',’) /Ta, and az(z") /Ta
for n = 1—4, and (d)—(f) are total conductivity o,./7, 0y,/7, and 0., /7, obtained by the summation over n assuming an n-independent relaxation
time 7. The insets of (d) and (e) show the log-log plots of oy, ,,/7 as a function of Bz. Red lines indicate n = —2 for o,,/t and n = —1 for
Oyy/T assuming oy, ., & B". (g)—(i) Calculated resistivity components oy, oy, and p,, at 3.5 GPa. In (h), partial Hall resistivities for all possible
cases are also shown (see the main text for details). We can see that the absence of band 3 causes considerable changes in p,,, whereas others
bring a negligible effect.

[001], and we compare them with the experimental results. and hence gi(fl) /7, is represented as a function of B, as

In the following calculation, the effect of Landau quantiza- !

. .. . . . (n)

tion is ignored. This a§sumpthn is assumed to be reason'flbl'e o (Bty) _ e? o™ (5™ (k. B _ 0 frp

because the present situation is far from the quantum limit - - T i3 v k)oK, BTy)| ——— :

state tn 4 9€ / cmeyth)
Figures 7(a)-7(c) show the band-resolved conductivity 6)

components ai(j") /T, at 3.5 GPa. Here, the weight-averaged

velocity in Eq. (3) is arranged as a function of Bt as The relaxation time in the nth band (t,) appears as an un-

known parameter in the form of o;;/7, or Bt, in the results

o shown in Figs. 7(a)-7(c). We recognize that in all compo-
d(Bt) nents, the dominant contribution comes from band 3. Based

=(n) _ AP Bt/Bt, (1) B

v (k. Br,) = _[ ~ BT, ¢ vk ()], ) on Eq. (6), the dominance of band 3 is explained by the largest
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surface area and the distribution of high v(k) [Fig. 6(d)] due
to its steep linear dispersion. As shown in Fig. 7(b), bands
1 and 2 (band 4) lead to positive (negative) contributions on
the Hall conductivity, because these Fermi surfaces are hole
(electron) surfaces and host only closed orbits when sliced by
the (001) plane. In contrast, band 3 has a remarkable positive
contribution, although it is referred to in conventional termi-
nology as an electron surface. The reason for this behavior
is assumed to be the characteristic hollowlike geometry that
enables the formation of hole-type closed orbits when sliced
by the (001) plane [e.g., C4 and C5 in Fig. 6(f)]. The cal-
culated o,,/7 indicates that LaAgSb, in the normal metallic
phase with B || [001] is far from the compensation condition,
and the orbital character inclines considerably toward the
hole-type.

By summing all band-resolved components, we ob-
tain the total conductivity tensor divided by the relaxation
time (0y;/t = 23:1 al.(;l) /T,), whose nonzero components are
shown in Figs. 7(d)-7(f). Here, we assume that the relax-
ation time is independent of the band index, namely 7, =t
for all four bands. We can see in the insets of Figs. 7(d)
and 7(e) that oy, x B and o, o« B! are satisfied, which
are generally known as the field dependence in the un-
compensated case with no open orbit [47]. By calculating
the inverse matrix of o;;/7, we finally obtain the resistivity
tensor p;;T, which can be compared with the experimental
data.

In uncompensated metal with no open orbit, the Hall re-
sistivity no longer depends on the details of relaxation time,
and it can be determined only by the degree of compensation
between electronlike and holelike orbits in the high-field limit.
Thus, the Hall resistivity is regarded as a quantitative index of
the Fermi surface geometry. Here, we compare and discuss
the experimental and theoretical Hall responses in the normal
metallic phase.

Figure 7(h) shows the calculated Hall response pyt as
a function of Br. The black curve is total py7, calculated
by considering contributions from all bands. It shows an al-
most linear magnetic-field dependence up to Bt = 40T ps.
This linear dependence is consistent with the experimental
results [36], and thus we can quantitatively compare the Hall
coefficient Ry. From the slope of the py,,r — Bt plane, we
can theoretically evaluate Ry = p,,t/(Bt), which is a t-
independent quantity. We obtained R;; = 0.903 x 10~ m?/C
from Fig. 7(h), which shows reasonable agreement with the
experimental value Ry = 1.16 x 10~ m3/C at 3.4 GPa [36].
This agreement supports the validity of our Fermi surface
model shown in Fig. 6.

We can also calculate the “partial” Hall resistivity, in which
the contribution from a specific band is intentionally excluded
when calculating p. This virtually describes the case in which
a specific band is absent due to the full CDW gap. In Fig. 7(h),
we show the partial Hall resistivity without the nth band (w/o
1 to 4). Obviously, the absence of bands 1, 2, and 4 hardly
affects the slope of py,7, and only hollowlike band 3 causes
significant changes on py, 7. Previous experiments have shown
that p,, at 9 T is reduced to 1/8 across Pcpwi [36]. Such a
large change can only be explained by the disappearance of
band 3. Thus, the above discussion confirms the dominant role
of band 3 for the formation of CDW 1. However, we note that

experimental p,, in the CDW1 phase shows an unignorable
nonlinearity in the weak-field region, which is not reproduced
by the calculated partial Hall resistivity. In-depth knowledge
regarding the Fermi surface within the CDW phase is in-
dispensable to enter further quantitative aspects of the Hall
response below Pepw -

Next, we move onto the transverse (p,,) and longitudinal
(p.,) magnetoresistance. Figures 7(g) and 7(i) show p,,t and
pz;T as a function of Bt, respectively. p,,T increases at the
weak-field region and then shows an almost linear Bt de-
pendence with a considerably small slope in Bt > 10T ps.
0z, T also shows a sudden increase at a low Bt region and
becomes almost flat above Bt > 5T ps. In the experimental
result, in contrast, both p,, and p,, show a considerable field
dependence: p,, is proportional to B~!-> as shown in Fig. 2(c),
and p,, shows characteristic negative longitudinal magnetore-
sistance as shown in Fig. 3(e).

Here, we discuss the reason for the mismatch between the
experimental and calculated results. The possible factor is the
relaxation-time approximation adopted in this calculation. We
ignored the details of t, namely, (i) the n dependence of t and
(ii) the k dependence of t. As for (i), we can recognize, in the
case of o,;, that irrespective of how we set 7, individually,
we cannot reproduce the decrease in p,, ~ 1/0,, observed
in the experiment. Thus, the factor (i) alone cannot explain
the mismatch between the experiment and calculation. To
consider factor (ii), we have to introduce the k-dependent
relaxation time t,(k) in the integrant in Eq. (1). Recent the-
oretical work on elemental metals showed that there exists
a remarkable k dependence of t even in such simple metals
when the electron-phonon interaction is considered [48,49].
Because we do not know the precise representation of 7, (k),
we cannot discuss the effect of (ii) quantitatively. In the
scope of the present study, factor (ii) is not excluded from
the possible cause. Unlike the case of the Hall response, the
contribution of the relaxation time to the transverse and lon-
gitudinal magnetotransport does not vanish in the high-field
limit, and thus they are affected by the details of the scattering
process.

The above consideration is also experimentally supported
by the remarkable violation of the so called Kohler’s rule
in the normal metallic phase. When the relaxation time
is independent of n and k, the transverse magnetoresis-
tance should follow Kohler’s scaling rule. When we define
Ap/p =1[pB,T)— p(0,T)]/p(0,T), where p(B, T) repre-
sents the transverse magnetoresistance at magnetic field B
and temperature 7', Kohler’s rule requires Ap/p = f(Bt) =
F(B/p(0,T)), where f and F represent arbitral functions,
and we assume T « 1/p(0,7). To test the validity of
Kohler’s rule in the present case, we construct a so called
Kohler’s plot for each phase, as shown in Fig. 8. Here,
the magnetic field is applied along the [001] direction, and
current is applied along an in-plane direction. In CDW1 +
2 and CDW1 phases, Ap/p roughly falls into a universal
curve as a function of B/p(0, T') within the given temper-
atures, indicating reasonable agreement with Kohler’s rule.
In the normal metallic phase, however, the deviation from
Kohler’s scaling becomes significant, indicating that the pic-
ture of isotropic t should be refined in the normal metallic
phase.
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is applied along the [001] direction, and current along an in-plane
direction.

C. Angular dependence of the magnetotransport properties
in the normal metallic phase

Although we mentioned above that the conductivity
calculation based on the conventional relaxation-time approx-
imation is inadequate for a quantitative discussion on p,
and p,, it is still insightful from a qualitative viewpoint to
see whether the observed magnetotransport properties can
arise from the Fermi surface geometry. Thus, we proceed
with a comparison of the angular dependence of p,, and
pz; between the experiment and calculation. We performed
similar calculations shown in Figs. 7(g) and 7(i) for vari-
ous 6 with an interval of 2°, and we constructed a polar
plot.

Figures 9(a) and 9(b) show the calculated polar plot of
Apioo/p and Apijo/p, respectively. For several representa-
tive angles, the Bt dependence of Apjgo/p and Apjjo/p is
also shown in Figs. 9(c) and 9(d). We can see that the re-
markable field-angular dependence of the MR can arise from
the Fermi surface geometry. Furthermore, we can recognize
essential features observed in the experiment, such as the local
minima at 0 = 0° and 90° and a current-direction-dependent
polar pattern. A notable feature in the calculated polar plot
is the very sharp decrease of the MR at specific field angles,
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FIG. 9. Calculated polar plot at selected Bt (a), (b) and Bt
dependence of magnetoresistance at representative 6 (c), (d) for
1| [100] and [ || [110] cases. (e) Calculated angular dependence of
Apgo1/p at selected Br.

which results in a complex pattern. As mentioned in Fig.
S4 in the Supplemental Material [45], these dips seem to
arise in a certain manner, which apparently resembles the
Kajita-Yamaji oscillation observed in quasi-two-dimensional
materials [50,51]. In the present stage, however, the specific
mechanism of the reduction in resistance cannot be identified.
The changes in the MR are more rapid in the case of I ||
[100], which occurs within 10°. Focusing on the case of 7 ||
[110], the calculated polar pattern shows two distinct “petals”
indicated by arrows in Fig. 9(b). This feature agrees quali-
tatively with the experimental butterflylike pattern shown in
Fig. 2(b).

However, we should note several undeniable mismatches
between the experimental and calculated results. First, the
theoretical polar pattern for / || [100] seems to have little
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resemblance to the experimental one [Fig. 2(a)]. As shown
in Fig. S5 in the Supplemental Material [45], the Fermi sur-
face shift within 250 meV does not cause notable changes
in the polar pattern. We assume that coarse experimental
data (~10° interval) and a slightly lower residual resistiv-
ity ratio (RRR) of the measured sample (RRR = 106 at
3.3 GPa for I || [100], whereas RRR = 152 at 3.3 GPa for
I || [110]) might mask the rapid change in the MR. Sec-
ond, the details of the polar pattern, e.g., the position of
the maxima/minima for the 7 || [110] case and the elongated
shape of the calculated patterns, disagree with the experimen-
tal results. Although a slight difference in the Fermi surface
curvature or shape can contribute to these mismatches, we
cannot specify the exact reason in the present study. Because
several proposals can be seen for the possible Fermi surface
[27-31], which are slightly different from each other, the
details of the geometry are open to further argument. In ad-
dition, anisotropic t revealed in the previous section should
also contribute to the above mismatches, and hence more
accurate treatment for 7 is indispensable for a quantitative
discussion.

Finally, we show in Fig. 9(e) the calculated Apgg;/p as a
function of 6. In this calculation, B directs [100] at & = 90°.
We can see a very sharp peak at around 6 = 90°, and no
remarkable structure is discernible. This behavior qualita-
tively reproduces the experimental results. The enhancement
of MR around 6 = 90° can be understood as the very small
v, component because most cross-sections are open along the
[001] direction when the Fermi surface is sliced parallel to the
[001]. From Eq. (1), small v, results in small o,,, and thus p,,
becomes large.

To summarize, although complete agreement between
the experiment and calculation is not achieved, elemental
features of the observed angular dependence of the MR
can be qualitatively explained by the calculation. Thus, we
assume that the angular dependence of the magnetotrans-
port properties observed in the normal metallic phase is
mainly derived from the geometrical effect of the Fermi
surface.

VI. CONCLUSION

We investigated the angular dependence of the magneto-
transport properties and Shubnikov—de Haas (SdH) oscillation
of LaAgSb, under high pressure up to 3.5 GPa. The angular
dependence of the in-plane magnetoresistance (MR) in the
normal metallic phase showed a butterflylike polar pattern,
which has been reported in the relevant square-net system. In
high-pressure phases, we identified cylindrical Fermi surfaces
by the angular dependence of the SdH oscillation, indicating
that LaAgSb, holds two-dimensional Fermi surface property
up to 3.5 GPa. Compared with the band structure and Fermi
surface calculation at 3.5 GPa, we conclude that the most
inner cylindrical hole surface around the I" point is responsible
for the w branch observed in the normal metallic phase. Our
results suggest a careful reconsideration of the conventionally
adopted nesting picture of the CDW2. We also calculated the
conductivity and resistivity tensors under a magnetic field and
showed reasonable agreement in terms of the Hall coefficient.
This provided strong support for the validity of the calcu-
lated Fermi surface and dominant contribution of hollowlike
Fermi surfaces to the formation of CDWI1. In contrast, the
large positive MR in p,, and negative MR in p,, were not
reproduced by the calculation. A possible reason for this mis-
match is assumed to be the momentum-dependent relaxation
time, which was experimentally supported by the violation of
Kohler’s rule. The elemental features of the butterflylike polar
pattern were qualitatively reproduced by calculation, and thus
we considered that the remarkable anisotropy of the MR is ba-
sically caused by the geometrical effect of the Fermi surface.
From the quantitative viewpoint, however, there are unde-
niable mismatches between the experimental and calculated
results. To access these inconclusive issues, more accurate
treatment of the relaxation time and further inspection of the
details of the Fermi surface are necessary in future studies.
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