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Ferromagnetic helical nodal line and Kane-Mele spin-orbit coupling in kagome metal Fe3Sn2
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The two-dimensional kagome lattice hosts Dirac fermions at its Brillouin zone corners K and K ′, analogous
to the honeycomb lattice. In the density functional theory electronic structure of ferromagnetic kagome metal
Fe3Sn2, without spin-orbit coupling, we identify two energetically split helical nodal lines winding along z in
the vicinity of K and K ′ resulting from the trigonal stacking of the kagome layers. We find that hopping across
A-A stacking introduces a layer splitting in energy while that across A-B stacking controls the momentum space
amplitude of the helical nodal lines. We identify the latter to be one order of magnitude weaker than the former
owing to the underlying d-orbital degrees of freedom. The effect of spin-orbit coupling is found to resemble
that of a Kane-Mele term, where the nodal lines can either be fully gapped to quasi-two-dimensional massive
Dirac fermions, or remain gapless at discrete Weyl points depending on the ferromagnetic moment orientation.
Aside from numerically establishing Fe3Sn2 as a model Dirac kagome metal by clarifying the roles played by
interplane coupling, our results provide insights into materials design of topological phases from the lattice point
of view, where paradigmatic low dimensional lattice models often find realizations in crystalline materials with
three-dimensional stacking.
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I. INTRODUCTION

Topological nodal lines are one-dimensional manifolds
of band degeneracies in momentum space first introduced
conceptually by Burkov et al. in 2011 as a higher dimen-
sional generalization of pointlike band touching [1]. Such
line nodes have in recent years found realizations in var-
ious forms in crystalline materials, including infinite lines
extending over Brillouin zones [2], closed loops [3], along
with intricate three-dimensional networks of chains, knots,
and nexuses [4–9]. Interest in electronic line nodes are partly
motivated by the peculiar emergent condensed matter quasi-
particles they support, which do not possess fundamental
particle analogues [4]. Furthermore, due to bulk-boundary
correspondence, nodal lines in three-dimensional bulk materi-
als generate surface states enclosed in their surface projection;
these signature surface states under certain circumstances
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bear little momentum-space dispersion over a finite region in
the surface Brillouin zone [1] and are therefore termed
“drumhead surface states.” The enhanced density of states of
drumhead surface states is expected to provide a route towards
high-temperature correlated phases including ferromagnetism
and superconductivity [10].

Viewed in the context of band topology, nodal lines in
three-dimensional materials are necessarily protected by sym-
metries [8] and therefore serve as progenitors for a large
number of distinct topological electronic states when the cor-
responding symmetry is relieved. For instance, broken mirror
symmetry is suggested to separate intersecting nodal lines
and serve to manipulate an embedded non-Abelian topol-
ogy [7]. The prototype inversion symmetry-breaking Weyl
semimetal TaAs [11] and time-reversal symmetry breaking
Weyl semimetal Co3Sn2S2 [12] can both be viewed as gen-
erated by adding spin-orbit coupling–which breaks the SU(2)
spin-rotation symmetry–to nodal loops on mirror planes. In
addition, nodal lines in certain cases can be fully gapped and
further give rise to topological insulating phases [9]. From
the materials perspective, elucidating mechanisms of gener-
ating topological nodal lines and their interplay with different
types of symmetries—including crystallographic symmetries,
spin-rotation symmetry, and time-reversal symmetry—are
expected to afford key clues in discovering novel topological
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FIG. 1. Nodal lines and three-dimensional stacking of the kagome lattice. (a) The two-dimensional (2D) kagome lattice and (b) associated
Dirac fermions in the hexagonal Brillouin zone (BZ). Blue and red Dirac fermions at K and K ′ possess opposite chiralities. (c) Schematic of a
three-dimensional (3D), A-A stacked kagome lattice, and (d) the corresponding vertical nodal lines in the hexagonal prism BZ. (e) Schematic
of an A-B-C stacking of the kagome lattice and the corresponding helical nodal lines are shown in (f) and (g) from both an isometric (f) and a
top (g) perspective. In (c) and (e), the dashed lines represent the interplane hopping t1 while the in-plane kagome bonds are characterized by an
hopping integral t0. In (f), we show the rhombohedral BZ along with a hexagonal prism extended from the 2D BZ illustrated in (b). (h) Surface
spectra weight of the A-B-C kagome tight-binding model. A drumhead surface state (DSS) can be identified as the flat and bright intensity
within the projection of the helical nodal line to the surface BZ.

electronic states and allow the study of emergent electromag-
netic responses in such systems.

Motivated by the experimental discovery of quasi-two-
dimensional Dirac electronic dispersions in the vicinity of
the Fermi level in the ferromagnetic kagome metal Fe3Sn2

[13], we here examine the density functional theory (DFT)
electronic structure of the system in the context of three-
dimensional (3D) topological nodal lines. In the following,
we use the convention of Dirac fermions referring to linearly
dispersing two-dimensional bands as in topological insula-
tor surface states [14] or the two-dimensional graphene [15]
and kagome models [16]. For the case of the considered 3D
material, this convention includes crossing states with linear
dispersion in two dimensions and preserved degeneracy in the
third dimension (nodal lines), regardless of their degeneracy.
This should be contrasted with the convention associated with
the four-fold degeneracy of 3D Dirac semimetals that are de-
scribed by the 3D Dirac equation [17]. The two-dimensional
(2D) kagome lattice is composed of corner-shared triangles
[see Fig. 1(a)] and is known theoretically to host Dirac
fermions at its Brillouin zone corners K and K ′ in the elec-
tronic spectrum as illustrated in Fig. 1(b)—analogous to the
honeycomb lattice [16]. In contrast to the honeycomb lattice
whose experimental realization primarily falls into p-electron
materials such as graphene and other main group X-enes
[18], the kagome lattice has found extensive presence in
a class of transition metal intermetallic compounds termed
“kagome metals”, where the kagome bands are composed
by d electrons [12,13,19–24]. As these compounds crys-
tallize in three-dimensional structures, a natural question is
how the notion of the point nodes in the two-dimensional

limit can be extended to the third dimension. The subject
of this study—binary ferromagnetic kagome metal Fe3Sn2

has been experimentally identified as host of bulk quasi-two-
dimensional Dirac fermions in transport and photoemission
spectroscopy [13], as well as in de Haas-van Alphen quan-
tum oscillations [25] and optical conductivity [26]. Scanning
tunneling microscopy has revealed a strongly anisotropic re-
sponse of the electronic structure of Fe3Sn2 due to spin-orbit
coupling [27], and more recently a large number of Weyl
points are also proposed to be present in the system [28]. In
view of the successful application of DFT to related topologi-
cal kagome metals [20,22], a comprehensive DFT study of the
electronic structure of Fe3Sn2 is expected to address the nature
of its electronic topology and offer insights into the origin of
experimentally observed Dirac fermions.

In this study, we first identify two sets of ferromagnetic
helical nodal lines in Fe3Sn2 near K and K ′ of the hexagonal
Brillouin zone in the limit of vanishing spin-orbit coupling.
We also found that with the introduction of spin-orbit cou-
pling, these nodal lines are gapped into a three-dimensional
quantum anomalous Hall insulating phase with out-of-plane
ferromagnetic moments while with in-plane moments, point
Weyl nodes remain gapless along the helices. The helical
nodal lines are found to originate from the rhombohedral
stacking of the bilayer kagome lattices and also subject to a
layer splitting between upper and lower branches. We pro-
pose that these ferromagnetic helical nodal lines are the key
to describe the observed topological electronic structure in
Fe3Sn2 and insights obtained herein can be broadly applied to
various three-dimensional constructions of two-dimensional
lattice models.
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II. FERROMAGNETIC HELICAL NODAL LINE IN Fe3Sn2

We start from the two-dimensional nearest neighbor tight-
binding model of the kagome lattice as shown in Fig. 1(a),
where we highlight the Dirac fermions located at K and K ′,
with opposite chirality shown in red and blue, respectively in
Fig. 1(b). In Figs. 1(c)–1(g) we illustrate the effects of three-
dimensional stacking with a moderate interplane hopping on
these Dirac fermions. For clarity, in Figs. 1(c) and 1(e), we
introduce only the in-plane nearest neighbor hopping t0 (solid
lines) and the nearest out-of-plane hopping t1 (dashed lines).
The location of band crossing points in the 3D Brillouin zone
(BZ) with t0 = 1, t1 = 0.1 are shown in Figs. 1(d), 1(f), and
1(g). In the simpler A-A stacking, the hopping along the z
direction extends the Dirac points at K and K ′ to vertical
nodal lines along the K-H (K ′-H ′) directions [Fig. 1(d)].
A-B-C stacking instead results in helical nodal lines where
at each kz plane the Dirac points are shifted away from K
and K ′ [Figs. 1(f) and 1(g)]. Here we show the BZ of the
rhombohedral unit cell of the A-B-C stacking in Figs. 1(f)
and 1(g) along with a hexagonal prism extended vertically
from the original 2D hexagonal BZ; the projected helical
nodal lines wind around the corresponding K and K ′ points
of the latter. We show in Fig. 1(g) a top view of the helices,
where within the projection onto the top surface, a weakly
dispersive drumhead surface state (DSS) can be found in the
surface spectral function using a large finite slab calculation
[Fig. 1(h)], as is expected for prototypical topological nodal
line semimetals [8]. We note that similar helical nodal lines
have been discussed in the context of A-B-C stacked rhom-
bohedral graphite [10,29–31]; there the associated drumhead
surface states are theoretically anticipated to drive correlated
magnetic and superconducting states [10,32] and have been
observed in photoemission spectroscopy in multi-layer A-B-C
stacked graphite flakes [33]. In the context of the kagome
lattice, it is intriguing to note that the three-dimensional
stacking allows access to a surface flat band and potential cor-
related states it entails, in addition to the in-plane destructive
interference-induced flat band of bulk nature [23,34].

Having illustrated the generation of helical nodal lines in
a simple A-B-C stacked kagome lattice model, in the fol-
lowing we turn to the DFT electronic structure of Fe3Sn2 in
the absence of spin-orbit coupling—to test the relevance of
the above picture in describing the system. The crystalline
structure of Fe3Sn2 (space group No.166 R3̄m) is illustrated
in Fig. 2(a) in the conventional hexagonal unit cell, while the
rhombohedral unit cell is highlighted in gray. Each unit cell
contains a bilayer kagome structure that are further stacked in
the A-B-C fashion. In Fig. 2(b), we show the rhombohedral
BZ of Fe3Sn2 along with selected high-symmetry points. We
note that in addition to Z , �, B, L, and F of the rhombohe-
dral convention, we also include M and K of the hexagonal
convention to better describe the Dirac electronic structure
observed experimentally in the proximity of K̄ of the sur-
face BZ [13]. The calculated electronic structure is shown
in Fig. 2(c) along the high-symmetry lines highlighted in
Fig. 2(b). The majority spin states (illustrated in red) feature
electron pockets centered near � and a hole pocket close to
K , while the minority spin states (illustrated in blue) show a
double Dirac structure displaced in energy in the vicinity of

K , as previously observed in angle-resolved photoemission
experiments [13,28,35]. This suggests that DFT reasonably
accounts for the electronic structure in Fe3Sn2. Hereafter we
refer to the Dirac structure near −0.1 eV (−0.4 eV) as upper
(lower) Dirac fermions, respectively.

Focusing on the upper Dirac dispersion, although we ob-
serve an apparent gap at K similar to the DFT band structure
reported in Ref. [35], via searching in the proximity of K , we
find the gap closing and reopening through a single point at
each constant kz cross-section [band landscapes at selected kz

planes for the upper nodal line are shown in Figs. 2(d)–2(f)]. A
search near the lower Dirac dispersion yields similar results.
Connecting the point nodes at each kz plane we obtain two
sets of helical nodal lines as depicted in Fig. 2(g), where the
nodal line for the upper Dirac fermion is shown in red, and
lower Dirac fermions in blue. Both nodal lines wind around K
vertical in a helical fashion, similar to that of the simple tight-
binding model as shown in Figs. 1(f) and 1(g), suggesting that
the trigonal A-B-C stacking plays a key role in generating the
helical nodal lines. A magnified view of the top projection of
the helical nodal lines at K and K ′ can be found in Figs. 2(h)
and 2(i) in the shape of hypotrochoids, where we use gradient
scales as shown in Fig. 2(h) to sketch the evolution along kz.
Near K both nodal lines may be approximately described by
the following functional form:

�kx + i�ky = iλ1e−ikzc + iλ2e2ikzc. (1)

Here the band touching point is shifted to (�kx,�ky) with
respect to K point at given kz. For the upper (lower) nodal
line, the parameters are λu

1 = 0.00928 (λl
1 = 0.0136) and

λu
2 = 0.0087 (λl

2 = −0.0214) in units of Å−1, respectively.
Here c stands for the vertical distance between the kagome
bilayer units; superscripts u and l stand for upper and lower
nodal lines, respectively. The kz evolution near K ′ can be
obtained by performing an inversion operation to that near K
[Fig. 2(i)].

The presence of sinusoidal components of both kzc and
2kzc implies the presence of both nearest layer and next near-
est layer hopping terms in Fe3Sn2 (see Ref. [36]), the latter not
included in the simple nearest layer model discussed above in
Figs. 1(f)–1(h). We further examine the energy evolution of
both the upper and lower nodal lines in Fig. 2(j). The closer
confinement of the upper nodal lines to the verticals of K
and K ′ is accompanied by a weaker out-of-plane dispersion
illustrated in Fig. 2(j): the energy variation of the upper nodal
line is on the order of 1.5 meV and for the lower is on the order
of 11 meV, while both are significantly weaker as compared
to the in-plane Dirac bandwidth ∼2 eV. This corroborates
the bulk quasi-2D nature and the absence of photon-energy
dependence of the double Dirac structure observed in Fe3Sn2

[13].
To further elucidate the nature of the identified helical

nodal lines, we have computed the Berry phase �B = ∮
�B

Ak ·
dk on loops �B around the nodal lines where Ak is the Berry
connection Ak = −i〈uk|∇k|uk〉 [37], with |uk〉 denoting the
wave function at k. Without spin-orbit coupling, a combined
inversion and effective time-reversal symmetry dictates the
quantization of the Berry phase as a binary Z2 invariant that
takes either 0 or π [8]. We have verified that both upper and
lower nodal lines support a π -Berry phase to the path integrals
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FIG. 2. Scalar-relativistic electronic structure and helical nodal lines in Fe3Sn2. (a) Crystal structure of Fe3Sn2 with iron atoms shown in red
and tin atoms in gray. The primitive rhombohedral unit cell containing a kagome bilayer is outlined in gray. (b) Schematic of the rhombohedral
BZ of Fe3Sn2 with high-symmetry points labeled and high-symmetry directions highlighted in blue. The gray hexagonal prism is extended
from the hexagonal BZ in the 2D limit. (c) Scalar-relativistic generalized gradient approximation (GGA) DFT electronic structure of Fe3Sn2

where the majority spin is shown in red and minority in blue. (d)-(f) DFT energy-momentum dispersion of the upper helical nodal line within a
region of 0.16 × 0.16 Å−2 close to K at (d) kz = 0, (e) kz = 0.317 Å−1, (f) kz = −0.317 Å−1 planes, respectively. The black sphere denotes the
K point of the 2D BZ. (g) The helical nodal lines around K and K ′ in Fe3Sn2; the upper nodal line is shown in red and lower nodal line in blue.
[(h) and (i)] Magnified top view of the helical nodal lines at K (h) and K ′ (i), respectively. The color gradient in (h) and (i) reflects the value
of kz. (j) Energy dispersion of both the upper and lower nodal lines along kz. (k) Surface spectra weight of the lower nodal line inferred from
the k · p model (see Methods). (l) Schematic of two distinct momentum regions DSS1 (blue) and DSS2 (purple) that host different number of
drumhead surface states. The hypotrochoid curve represents the projection of lower nodal line to the top surface.

enclosing the nodal lines, suggesting that it is the nontrivial
Berry phase that protects the nodal lines in the present case.
The π -Berry phase here may be naturally connected to that of
Dirac fermions in the 2D limit [38] and that more recently
demonstrated in photoemission intensity analysis for bulk
quasi-2D Dirac fermions derived from the kagome lattice in
FeSn [22]. In the present system, due to a reduction of the
symmetry from hexagonal to trigonal, the positions of the
nodal lines are displaced from high-symmetry lines; never-
theless their presence is robust and protected by the π -Berry
phase inherited from the 2D limit. In Fig. S1 [36], we show
that nodal lines centered at K and K ′ are robust with increasing
interplane hopping strength, as long as the two lines do not
touch and hybridize with each other. We note that due to
broken time reversal symmetry, each band touching point here
in Fe3Sn2 is ferromagnetic and two-fold degenerate, which
belongs to a similar class with the ferromagnetic nodal lines

discussed in Co2MnGa [5], Co3Sn2S2 [12], and Fe3GeTe2

[45] in the absence of spin-orbit coupling.
Additionally, we examine the surface states which orig-

inate from the hypotrochoid winding pattern of the lower
nodal line in Figs. 2(k) and 2(l) (see Methods). The existence
of a drumhead surface state in a nodal line semimetal may
be illustrated in the following picture: for a given (kx, ky )
one may define a Zak phase �Z = ∫ π/c

−π/c A · dkz along kz,
and �Z (kx, ky) = π corresponds to a 1D topological insula-
tor with zero energy edge states (here we restrict ourselves
in the spinless case) and defines the (kx, ky) region where
surface states reside [3]. In Fig. 2(k), we find that in the
present case ferromagnetic drumhead surface states appear
once within the three side lobes [blue region labeled DSS1
in Fig. 2(l)] with �Z (kx, ky) = π and twice within the center
surface momentum regime [purple region labeled DSS2 in

035107-4



FERROMAGNETIC HELICAL NODAL LINE AND … PHYSICAL REVIEW B 105, 035107 (2022)

M || [001]
M || [100]

ε<E

SO
C
ga
p
(m
eV
)

SO
C
ga
p
(m
eV
)

k (A )
-0.4 0.4-0.2 0.20

0

10

10

20

30

40

50

0

20

30

40

Upper NL

Lower NL
50

K' Γ

M || [001]

M || [001]

K

M || [100] E = -0.1 eV ∫ (A )ΩZ

(A
)

Ω
Z

kx ky

kz

kx ky

kz

kx

ky

kz

(b)

(a)

(f)(c) (e)

(d)

FIG. 3. Electronic structure of Fe3Sn2 with spin-orbit coupling. (a) The gap along the helical nodal line at each kz with ferromagnetic
moment out-of-plane (red) and in-plane along [100] (blue) for the upper nodal line. (b) A similar analysis for the lower nodal line. (c) Weyl
points originated from the lower helical nodal line with magnetic moment along [100]. The nodal line itself is shown in magenta. (d) The Berry
curvature �z distribution with the ferromagnetic moments pointing out-of-plane along K ′-�-K high-symmetry line in the band structure. (e),
(f) Distribution of integrated Berry curvature (see text) up to the upper Dirac gap in the 3D BZ at E = −0.1 eV in a 3D view (e) and top view
(f), respectively.

Fig. 2(l)] �Z (kx, ky) = 2π (0). We expect the surface states
in the DSS2 region to be more fragile and dependent on
the surface potential than that within DSS1, as has been
discussed for systems with multiple nodal loops [39]. The
lobe structure of the flat surface bands adds new opportuni-
ties for potential correlated phenomena; moreover, with the
sensitivity of the helical nodal line to interplane hopping, one
may manipulate the connectivity and drive Lifshitz transi-
tions of these lobewise drumhead surface states by hydro-
static, uniaxial pressure, or alternatively epitaxial strain (see
Fig. S12 [36]).

III. KANE-MELE SPIN-ORBIT COUPLING IN Fe3Sn2

Having located the helical nodal lines in the proximity of
K and K ′ in the absence of spin-orbit coupling, in the fol-
lowing we examine the fully relativistic electronic structure of
Fe3Sn2. As Fe3Sn2 is known to be a soft ferromagnet [40,41],
we consider both cases of moments in and out of the kagome
lattice plane. With an out-of-plane magnetic moment, we find
that both the upper and lower nodal lines are fully gapped

with spin-orbit coupling, with the upper (43.3 ± 0.5) meV
and lower Dirac gap (27 ± 4) meV as shown in Figs. 3(a)
and 3(b). The in-plane magnetic moment induces a smaller
gap, and the nodal lines remain gapless at two kz positions for
both the upper and lower branches [Figs. 3(a) and 3(b)]. This
anisotropic coupling of M with the Dirac electrons is consis-
tent with a Kane-Mele type spin-orbit coupling in Fe3Sn2 as
suggested in Refs. [13,25]. These discrete remnant touching
points correspond to Weyl points; we show Weyl points with
the opposite chirality as blue and red circles in Fig. 3(c) for
the case of the lower nodal line.

Next we elaborate on the out-of-plane ferromagnetic case
where spin-orbit coupling introduces a full gap to the helical
nodal lines. We have computed the resultant Berry curvature
� = ∇ × Ak and its distribution along high-symmetry lines
K ′-�-K in kz = 0 plane is shown in Fig. 3(d). We observe con-
centrated Berry curvature �z at the gapped nodes as expected
for massive Dirac fermions [42], together with additional dis-
tribution of Berry curvatures from potential Weyl points (see
also Fig. S10 [36]) [28]. �z near K and K ′ are found to be
additive, which can be contrasted to the canceling �z pattern
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at K and K ′ valleys in the inversion-symmetry-breaking and
time-reversal-symmetric graphene [42]. The Berry curvature
structure at both upper and lower Dirac gaps also exhibit the
same sign. We further illustrate the distribution of integrated
Berry curvature

∫
ε<E �ε

z (here ε represents all states with
energy below E ) in the 3D BZ in Figs. 3(e) and 3(f) up to the
upper Dirac gap (E = −0.1 eV), where columns of Berry cur-
vature hot spots are confined along the stacked massive Dirac
fermions. These massive Dirac fermions descend naturally
from their 2D limit as kagome realizations of the Haldane
model [43] and therefore in isolation form a 3D quantum
anomalous Hall insulating phase [44]. In this context, we
propose that chiral boundary modes can be detected at step
edges of the kagome cleavage of Fe3Sn2 crystals at energies
within the Dirac gap, similar to those recently demonstrated in
a Mn-based kagome metal TbMn6Sn6 [24]. Near �, we also
observe less extended patches of Berry curvature intensities,
the 3D nature of which suggests that they may originate from
underlying Weyl fermions in the system [28]. The difference
in momentum-space dimensionality leads to a response dom-
inated by the extended kz features associated with the massive
quasi-2D Dirac states [Fig. 3(e)].

Having demonstrated that nodal lines gapped by the in-
terplay of ferromagnetic order and spin-orbit coupling in
Fe3Sn2 serve as a strong source of Berry curvature and there-
fore contribute significantly to the intrinsic anomalous Hall
conductivity σxy (see Fig. S9 [36]) [13], it is instructive to
compare the helical nodal lines identified here in Fe3Sn2 with
the nodal lines discussed in the van der Waals ferromagnet
Fe3GeTe2 [45]. In both cases, topological nodal lines are
rendered strong sources of �z. We note that as compared with
Fe3GeTe2, where contribution to σxy is concentrated in the
momentum space near the gapped nodal line along K-H over
its energy dispersion of 0.25 eV [45], such contributions in
Fe3Sn2 is further concentrated energetically due to the weak
energy variation of the massive Dirac fermions along the z
direction. Intriguingly, in Fe3GeTe2, it is also found that an
out-of-plane moment maximizes the spin-orbit gap along the
nodal line. Despite this similar sensitivity with the ferromag-
netic moment orientation, we note that the spin-orbit coupling
in Fe3Sn2 that opens the gaps at the Dirac nodes is different
at the effective model level than that discussed for Fe3GeTe2

[45]. In the latter, an on-site spin-orbit coupling of the L · S
form lifts the degeneracy at K that originates from orbital
degrees of freedom of Fe d orbitals; this mechanism also
applies to the px, py models on the triangular lattices [46] and
the d orbitals on hexagonal closed packing cobalt layers [47],
where an orbital degree of freedom is preserved for three(or
six)-fold rotation centers. In the context of the kagome lattice,
the degeneracies of all d orbitals are in principle lifted due
to the low site symmetry. An onsite spin-orbit coupling term is
therefore ineffective in opening a gap for the band crossing at
the effective model level, rather the intersite form of spin-orbit
coupling—introduced by Kane-Mele for the graphene lattice
model based on pz orbitals [48], where the orbital degrees of
freedom is quenched—is responsible for the gap opening at
K . The kagome lattice therefore provides a model platform for
studying the Kane-Mele type spin-orbit coupling and its inter-
play with massive Dirac fermions. Clarifying the underlying
microscopic mechanisms for such spin-orbit coupling terms

will provide insights in future design of topological phases
from the lattice point of view.

IV. INTERPLANE HOPPING AND LAYER DEGREES
OF FREEDOM OF DIRAC FERMIONS IN Fe3Sn2

Having demonstrated that both upper and lower helical
nodal lines in Fe3Sn2 can be captured by quasi-2D Dirac
fermions subject to a Kane-Mele type spin-orbit coupling,
in the following we examine the origin of the pair of Dirac
fermions in the system. Expanding from the A-B-C stacked
kagome model described above, we build a tight-binding
model of an AA-BB-CC stacked kagome lattice illustrated
in Fig. 4(a) to more accurately capture the iron sublattice of
Fe3Sn2. A fundamental rhombohedral unit cell of this model
includes six atoms, forming a pair of A-A stacked kagome
bilayer. This pair provides a layer degree of freedom whose
role we elucidate hereafter. Aside from the in-plane nearest
neighbor hopping t0, we introduce two inequivalent interplane
hopping integrals taa and tab. Here, taa represents vertical
hopping processes between aligned A-A (B-B, C-C) stacked
sublattices, while tab denotes the nearest neighbor hopping
between layers that are rotated by 60◦ with each other (i.e.,
through A-B, B-C and C-A stacking).

First we find that parameter sets satisfying tab < taa �
t0 reproduces the experimental and numerical double Dirac
structure in Fe3Sn2: bands obtained from several such taa and
tab are shown in Figs. 4(b)–4(e) and the corresponding nodal
lines are shown as insets. The momentum line is highlighted
in Fig. 4(b) inset. We note that setting tab > taa consider-
ably deforms the Dirac bands (Fig. S4 [36]) and yields band
features inconsistent with either ARPES [13] or the DFT
spectrum shown in Fig. 2(c). Hereon we focus on the evo-
lution of the double Dirac structure with respect to taa and
tab. In Figs. 4(b), 4(d), and 4(e), a progressively increasing
tab displaces the nodal lines farther from K, consistent with
the simpler A-B-C model (see Fig. S1 [36]); meanwhile the
energy splitting between upper and lower nodal lines stays
constant. In contrast, by varying taa while keeping tab con-
stant [Figs. 4(b) and 4(c)], the location of the nodal lines
are unchanged while the energy splitting between upper and
lower branches increases in proportion to taa. The respective
dependence on taa and tab of the energy splitting �E and
momentum displacement �k [both schematically illustrated
in Fig. 4(e)] is also clear in the contour plots of �E and �k in
the taa − tab phase space [Figs. 4(f) and 4(g)]. Further analysis
of the eigenstates of the tight-binding Dirac states reveals
that the upper/lower branches are predominately composed of
bonding/antibonding superpositions of states residing respec-
tively in layers L+ and L− in Fig. 4(a), which are connected
via taa, reminiscent of the layer splitting of Dirac states in
AA-stacked bilayer graphene [49].

An outstanding observation here is that taa and tab appear
to play distinct roles to the Dirac fermions. It is instruc-
tive to adopt the following 4 × 4 k · p model in the vicinity
of K :

H = ih̄vF (k+σ− − k−σ+) + taa(eikzc1τ+ + e−ikzc1τ−)

+ 2tab(e−ikzc2τ+σ− + eikzc2τ−σ+), (2)

035107-6



FERROMAGNETIC HELICAL NODAL LINE AND … PHYSICAL REVIEW B 105, 035107 (2022)

(a)

(b) (c) (f)

(h) (i) (j) (k)

(d)
(e) (g)

FIG. 4. Layer splitting and interplane hopping in Fe3Sn2. (a) Schematic of AA-BB-CC kagome lattice model with in-plane hopping t0

(dark solid bonds), interplane hopping taa (light solid bonds) and tab (dashed bonds). [(b)–(e)] Double Dirac structure near K (momentum
line illustrated in (b) inset) at selected taa and tab (t0 = 1): (b) taa = 0.2, tab = 0.03, (c) taa = 0.1, tab = 0.03, (d) taa = 0.2, tab = 0.05, and (e)
taa = 0.2, tab = 0.1. The insets show the upper (red) and lower (blue) nodal lines. Here the momentum kx is expressed in the unit of a−1, where
a is the in-plane hexagonal lattice constant. [(f) and (g)] Contour plots of the energy splitting �E (f) and momentum displacement �k (g) in
the taa-tab phase space. (h) Initial wave function on a single kagome layer used to project out double Dirac structure in AA-BB-CC model. The
color illustrates the phase of wavefunction: 1 (red), ω = ei2π/3 (green) and ω̄ = e−i2π/3 (blue). The other partner state is obtained by the mirror
M operation defined by the dashed grey line. (i) The k · p 4-band model (red) compared to the full six-band AA-BB-CC model. (j) Initial basis
set of a single Fe kagome layer for k · p projection of the double Dirac cones in Fe3Sn2. The rotated local coordinate frames for Fe sites are
shown with the out-of-plane ẑ′ axis. The wave function for projection is the product of the phases in (h) and the local dxy orbitals. The partner
state on the same layer can be obtained by mirror M. (k) Fe3Sn2 band structure (blue) compared with the projected four-band k · p expansion
(red) near K point.

where σ and τ are Pauli matrices and vF is the Dirac
velocity. c1(c2) represents the vertical distance of taa(tab) hop-
ping. σ represents the Dirac spinor per kagome layer [the
basis wave function of σ within each layer is illustrated
in Fig. 4(h)], while τ denotes the layer degree of freedom
where τz|L±〉 = ±1|L±〉. In Fig. 4(i), we illustrate the k · p
dispersion (red) as compared with the AA-BB-CC tight-
binding model (blue) for taa = 0.2, tab = 0.05. With tab <

taa, one can treat the last term of Eq. (2) as a perturbation
and project the four states to two sets; the resulting two
eigenstate subsectors Du,l (upper (u) and lower (l) Dirac
fermions) can be classified with eikzc1τ+ + e−ikzc1τ− = ξ u,l

(ξ u = 1 and ξ l = −1, respectively), which are energetically

split as ξ u,l taa. Projecting the tab terms into each sector, we
derive a 2 × 2 effective Hamiltonian as Hu,l

eff = ih̄vF (k+σ− −
k−σ+) + ξ u,l tab(eikzcσ+ + e−ikzcσ−) + ξ u,l taa, where the Dirac
points are moved to �kx + i�ky = iξ u,l tab

vF
e−ikzc (c = c1 + c2

the vertical distance between the neighboring bilayer units),
giving rise to helical nodal lines [see inset of Fig. 4(i)]. From
the k · p formulation, it is clear that tab preserves an underlying
sublattice (chiral) symmetry for the Dirac fermions [50], as a
result of which tab terms perturb band touching points away
from K and K ′ but cannot generate either a gap or an energy
shift to the degeneracy points. A similar k · p model can be
constructed for the DFT structure as we show in Figs. 4(j)
and 4(k). The leading parameters are vF = 3.8 × 105 m/s,
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TABLE I. The Dirac wave function kz-averaged (0 � kz < 2π/c) density distribution for Fe and Sn atomic orbitals, at the projected (2D) K
point. Sn(s) (Sn(k)) denotes the set of Sn atoms in spacer unit (kagome layer). The atomic orbitals are defined with the rotated local coordinate
as shown in Fig. 4(j). The density is represented by the percentage projected in atomic orbitals.

Fe dxy Fe dx2−y2 Fe dxz Fe dyz Fe dz2 Fe s Sn(s) pz Sn(s) px/y Sn(k) p Sn s

Lower Dirac cone 33.0 23.8 10.9 9.9 9.1 1.7 0.4 9.2 1.5 0.5
Upper Dirac cone 49.4 9.6 16.6 15.0 4.3 1.3 0.2 1.8 1.6 0.3

taa = −0.13, eV, and tab = −0.0028 eV (also see Methods),
suggestive of a layer split nature of the two copies of Dirac
fermions in Fe3Sn2 [13]. The layer origin of the upper and
lower Dirac states is also consistent with the similar Berry
curvature structure they exhibit as illustrated in Fig. 3(d).

We additionally analyzed the orbital characters of the
Wannier function for the upper and lower Dirac fermions as
summarized in Table I. The predominant in-plane nature of
both upper and lower Dirac fermions dictates reduced strength
of taa and tab as compared to t0 (we may estimate t0 ∼ 0.8 eV
from vF via t0 	 √

3h̄vF /a, where a is the in-plane lattice con-
stant), which further leads to the characteristic double Dirac
structure in Fe3Sn2 (for a more detailed description of the
orbital-decomposed hopping pathways see Ref. [36]). More-
over, as can be inferred from Eq. (2), taa and tab are decoupled
from the kz evolution of the nodal line energies, implying that
higher order hopping terms are required to grant the Dirac
fermions a considerable kz dispersion. This is consistent with
the suppressed kz dispersion and quasi-two-dimensionality of
the bulk Dirac fermions suggested experimentally in Fe3Sn2

[13,25]. We note that including an asymmetry to account for
the breathing nature of the kagome lattices in Fe3Sn2 does not
considerably alter the scenarios presented here (see Fig. S5
[36]); in particular, the inversion symmetry of the breathing
distortion in the unit cell does not lift the nodal degeneracy
(which is protected by a π -Berry phase as described above).
Through the above minimal AA-BB-CC model and k · p ex-
pansion, we establish Fe3Sn2 as an illustrative example of how
rich stacking patterns and associated interplane coupling man-
ifest in quasi-two-dimensional electronic materials. In Fig. S6
[36], we illustrate that similar results can be obtained for a
model of AA-BB-CC stacked honeycomb layers.

V. DISCUSSION

In summary, from a band theoretical perspective, we have
established Fe3Sn2 as a host of ferromagnetic helical nodal
lines derived from a kagome network of iron. The peculiar
presence of mixed A-A and A-B stacking patterns of kagome
lattices in Fe3Sn2 causes the formation of helical nodal lines,
gives rise to the layer splitting between upper and lower
branches, and suppresses the kz-dispersion of these nodal
lines. With an out-of-plane ferromagnetic order, the two sets
of helical nodal lines are gapped out by spin-orbit coupling
and serve as strong source of Berry curvatures. Gradually
rotating the ferromagnetic moments from out-of-plane to in-
plane orientations one may partially close the Dirac mass gap
at discrete points and realize pairs of Weyl nodes located along
the original helical nodal lines. In view of the soft ferromag-
netic nature of the system we may anticipate novel electronic
states at domain walls [51]; one especially exciting avenue lies

in the skyrmion bubble structures observed earlier in Fe3Sn2

at room temperature [52], where the real space topological
spin textures may entangle with the nodal lines and give rise
to novel electronic responses [53].

A direct experimental observation of the drumhead surface
states in Fe3Sn2 has remained elusive due in part to the weak
interplane coupling of the tab form and a resulting limited
radial size of the helical nodal lines. Aside from tuning Fe3Sn2

utilizing hydrostatic/uniaxial pressure and epitaxial strain as
we propose in this study, further engineering of the interplane
hopping and spin-orbit coupling in related intermetallic com-
pounds that host trigonal stacking of kagome lattices may lead
to experimentally detectable drumhead surface states [33].
We note that a recent tight-binding study of a dz2 type or-
bital on an A-B-C kagome lattice with enhanced out-of-plane
hopping assisted by interlayer Sn atoms serves as a minimal
model to generate vertical nodal rings and the ferromagnetic
Weyl semimetallic phase in Co3Sn2S2 [54]. This comparison
suggests that with rational orbital engineering, intermetallic
compound-based kagome lattices may provide a full spectrum
of topological phases ranging from the 3D quantum anoma-
lous Hall insulating phase [13,22,44] to the ferromagnetic
Weyl semimetallic phase [12]; driving the topological phase
transition between the two classes of phases is of extreme
theoretical and experimental interest.

The implications of our study are beyond electronic
structures of metallic systems. As trigonal stacking and
rhombohedral symmetry are ubiquitous in naturally occuring
kagome lattice materials [55–58], including, for instance, the
spin liquid hosting herbertsmithite [57], we expect that the
helical nodal lines discussed here may be relevant not only in
the electronic sector, but also in the magnonic or spinonic sec-
tors [59], in the context of considerable inter-plane coupling.
In view of the close resemblance of the kagome lattice with
the honeycomb lattice [10,31,60], the above picture could be
relevant, for example, in the Dirac-like Majorana fermionic
spectrum in α-RuCl3 where the Ru honeycomb layers are
A-B-C stacked [61].
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APPENDIX: METHODS

1. Density functional theory electronic structure calculations

To compute the electronic and related properties of Fe3Sn2

we carry out the Density Functional Theory (DFT) cal-
culations by using the full-potential local-orbital (FPLO)
code [62], version 18.00-52. The exchange-correlation energy
functional used is based on the parametrization of Perdew,
Burke, and Ernzerhof (PBE-96) [63] within the generalized
gradient approximation. A linear tetrahedron method with
15 × 15 × 15 subdivisions in the full Brillouin zone was
used for the momentum space integrations. The lattice pa-
rameters used in the calculation are a = 5.3307 Å and c =
19.7968 Å [64]. We consider the ground state in the ferro-

magnetic state and converge the self-consistent calculations
within the scalar relativistic mode, and (four-component) fully
relativistic mode of FPLO, with a self-consistent spin density
better than 10−6. The total magnetic moments per unit cell
(Fe6Sn4) for the converged ground states are 12.21 μB in
scalar relativistic mode, 12.64 μB and 12.65 μB respectively
for the fully relativistic mode with ferromagnetic state along
[001] and [100] orientations. We note that the latter two values
include orbital magnetic moments.

To carry out further analysis of the electronic structure, we
derive the Wannier tight-binding Hamiltonian by projecting
the Bloch states onto atomic orbital-like, maximally projected
Wannier functions using the PYFPLO module of FPLO package
[62,65]. These localized Wannier basis states include Fe 4s,
3d , orbitals and Sn 5s, 5p orbitals. The Wannier model is
converged with a 8 × 8 × 8 grid sampling in the Brillouin
zone. These derived Wannier Hamiltonians are then used to
investigate the nodal Dirac structure and associated topolog-
ical properties such as Berry curvatures [67]. The pressure
modification of the helical nodal lines are simulated via DFT
calculations implemented in the Vienna ab initio simulation
package (VASP) [68,69] based on the projector augmented-
wave [70] pseudopotential formalism (see Ref. [36]).

2. Fe3Sn2 k · p expansion and calculation of drumhead
surface states

Here we give a more detailed k · p expansion for Fe3Sn2

electronic structure near the double Dirac cones, as performed
for the AA-BB-CC model in Eq. (2). The numerical projection
is based on the Wannier construction (see main text, Ref. [36]
and Ref. [66]). The four-band effective Hamiltonian can be
summarized as

H = ih̄vF (k+σ− − k−σ+) + E0 + (taae−ikzc1τ− + tabe−ikzc2τ+σ− + H.c.)

+ (
t1e−ikz (c1+c2 )σ− + t2e−ikz (2c1+c2 )σ−τ− + t3e−ikz (c1+2c2 )σ+τ+ + t4e−i2kz (c1+c2 )σ+ + H.c.

)
, (A1)

where h̄vF = 2.52 eV Å (corresponding to vF = 3.8 × 105 m/s), E0 = −0.26 eV, taa = −0.13 eV, tab = −0.0028 eV, t1 =
0.0123 eV, t2 = 0.0059 eV, t3 = −0.0339 eV, and t4 = −0.008 eV. This effective model captures the helical nodal line structure
for both upper and lower cones. Starting from this, we consider a finite thin-film slab geometry to shed light on the surface states
associated with the helical nodes in Fe3Sn2. We found the drumhead surface states near K points as illustrated in Fig. 2(k) in the
surface spectral function for the lower Dirac cone (similar drumhead surface states can be obtained for the upper Dirac cone).
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