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We show that the subregion entanglement Hamiltonians of excited eigenstates of a quantum many-body
system are approximately linear combinations of subregionally (quasi)local approximate conserved quantities,
with relative commutation errors O( subregion boundary area

subregion volume ). By diagonalizing an entanglement Hamiltonian super-
density matrix (EHSM) for an ensemble of eigenstates, we can obtain these conserved quantities as the EHSM
eigenoperators with nonzero eigenvalues. For free fermions, we find the number of nonzero EHSM eigenvalues
is cut off around the order of subregion volume, and some of their EHSM eigenoperators can be rather nonlocal,
although subregionally quasilocal. In the interacting XYZ model, we numerically find the nonzero EHSM
eigenvalues decay roughly as a power law if the system is integrable, with the exponent s ≈ 1 (s ≈ 1.5–2) if
the eigenstates are extended (many-body localized). For fully chaotic systems, only two EHSM eigenvalues are
significantly nonzero, the eigenoperators of which correspond to the identity and the subregion Hamiltonian.

DOI: 10.1103/PhysRevB.105.035106

I. INTRODUCTION

Conserved quantities significantly affect the integrability
and nonequilibrium dynamics of a quantum many-body sys-
tem, for instance, they may lead the system to equilibrate into
a nonthermal state described by a generalized Gibbs ensemble
[1–7]. In quantum systems, the generic belief is that only local
and quasilocal conserved quantities contribute to the quantum
integrability. However, unlike classical systems, it is not clear
how many (quasi)local conserved quantities are needed for a
quantum system to be integrable. Moreover, it is difficult to
identify all the local and quasilocal conserved quantities even
for exactly solvable models [8–11], and it is unclear which of
them contribute to the quantum integrability.

Two frequently employed indicators distinguishing be-
tween chaotic and integrable systems are the level spacing
statistics (LSS) [12,13] and the eigenstate thermalization hy-
pothesis (ETH) [14–18]. However, neither LSS nor ETH can
give much information (e.g., conserved quantities) about a
quantum system which is not fully chaotic. Another feature of
quantum chaos is the Lyapunov exponent in the out-of-time-
ordered correlation [19,20]. This, however, usually requires
certain large flavor limit, for instance in the Sachdev-Ye-
Kitaev type models [21–25].

Here we ask, given a set of many-body eigenstates of a
quantum system, can one obtain the (quasi)local conserved
quantities and tell the integrability of the system? Previous
studies show that if a Hamiltonian is strictly local, it can
be recovered (up to local conserved quantities) if an exact
single eigenstate is known [26]. Besides, ETH suggests that
the subregion entanglement Hamiltonian of fully chaotic sys-
tems resembles the physical subregion Hamiltonian [27–29].
For generic systems, one expects other conserved quanti-
ties may also contribute to the entanglement Hamiltonian
[28,29], but which conserved quantities contribute has not

been carefully studied. In this paper, we show that the sub-
region entanglement Hamiltonians of excited eigenstates of a
quantum system are the linear combinations of subregionally
(quasi)local approximate conserved quantities, with relative
mutual commutation errors O( subregion boundary area

subregion volume ). We define
an entanglement Hamiltonian superdensity matrix (EHSM)
for a given ensemble of eigenstates, and show that the
eigenoperators of EHSM with nonzero eigenvalues resem-
ble the subregionally (quasi)local conserved quantities. For
free fermions [30], we find the number of nonzero EHSM
eigenvalues is proportional to the subregion volume, with
the coefficient depending on whether the free fermion eigen-
states are extended or localized. In particular, for extended
free fermions, we reveal that the entanglement Hamiltonians
contain a set of rather nonlocal conserved quantities, although
they still satisfies the definition of subregional quasilocality.
We further study the interacting 1D XYZ model with or with-
out disorders (within sizes calculable), for which we find the
nth largest EHSM eigenvalue decays as n−s if the system is in-
tegrable. The exponent s ≈ 1 if the many-body eigenstates are
delocalized, and s ≈ 1.5–2 if the system shows many-body
localization (which is arguably integrable) [31–39]. If the
system is fully chaotic, only two EHSM eigenvalues are sig-
nificantly nonzero, corresponding to the only two (quasi)local
subregion conserved quantities: The identity and the physical
Hamiltonian as suggested by the ETH. We conjecture that
the conserved quantities in EHSM are those governing the
quantum integrability behaviors of a system.

The rest of the paper is organized as follows. In Sec. II, we
give the arguments and criteria for subregionally quasilocal
conserved quantities in the eigenstate entanglement Hamil-
tonians. In Sec. III, we define the EHSM for calculating the
conserved quantities. In Sec. IV, we investigate the conserved
quantities in the eigenstate entanglement Hamiltonians of free
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FIG. 1. Illustration of a system in (a) a 2D square lattice and (b) a
1D lattice divided into two subregions A and B.

fermion models in different spatial dimensions, and verify the
validity of our generic criterion of subregional quasilocality.
Section V is devoted to an exact diagonalization study of
the EHSM and conserved quantities of the interacting XYZ
model, which has both quantum integrable and chaotic phases.
Lastly, we summarize and discuss the possible generalization
to time-evolution problems in Sec. VI.

II. APPROXIMATE CONSERVED QUANTITIES
IN THE ENTANGLEMENT HAMILTONIAN

We shall consider quantum systems in lattices, and assume
each lattice site has a finite Hilbert space dimension d . Con-
sider a system in a finite real space region with L sites, which
has a Hilbert space dimension N = dL. Assume the system
has a local N × N many-body Hamiltonian H in this region
and has eigenstates |α〉

H |α〉 = Eα|α〉, (1)

where Eα is the energy of eigenstate |α〉 (1 � α � N). We
divide this region into two subregions A and B with number of
sites LA and LB = L − LA (Fig. 1), which have Hilbert space
dimensions NA = dLA and NB = dLB , respectively. We denote
the boundary number of sites between A and B as lAB. In
D spatial dimensions, if the linear size of the system is of
order lx, one generically has LA, LB ∝ lD

x , and lAB ∝ lD−1
x . The

Hamiltonian H can then be divided into

H = HA ⊗ IB + IA ⊗ HB + HAB, (2)

where IA and IB are the identity matrix in A and B sub-
regions, HA ⊗ IB (IA ⊗ HB) contains all the product terms
with supports within subregion A (B) (including the identity
term IA ⊗ IB), while HAB denotes all the product terms with
supports across subregions A and B. Here a product term is
defined as the product

∏
j∈S Oj of traceless on-site operators

Oj (hence the identity operator is not included) of a set of
sites j ∈ S , and the set of sites S is called the support. Note
that tr(HAB) = 0. Therefore HA and HB can be understood as
the bulk Hamiltonian of subregions A and B, while HAB is the
boundary coupling between subregions A and B.

For a given eigenstate |α〉 of the entire system, the reduced
density matrix in subregion A is

ρA(α) = trB|α〉〈α| = e−HA
E (α). (3)

HA
E (α) is the entanglement Hamiltonian [40] of eigenstate |α〉.

Assume the eigenbasis of the two subregions are defined by
HA|αA, A〉 = EA

αA
|αA, A〉 and HB|αB, B〉 = EB

αB
|αB, B〉, where

EA
αA

and EB
αB

are the eigenenergies, and 1 � αA � NA, 1 �

αB � NB. If the eigenstate |α〉 of the entire system under the
subregion eigenbasis has wave function

|α〉 =
∑
αA,αB

uα,αA,αB |αA, A〉 ⊗ |αB, B〉, (4)

the elements of ρA(α) will be

〈αA, A|ρA(α)|α′
A, A〉 =

NB∑
αB=1

uα,αA,αB u∗
α,α′

A,αB
. (5)

In the below, we examine the relation between HA
E (α) and

conserved quantities.

A. Fully chaotic systems

We start by considering fully many-body chaotic systems
with a local Hamiltonian, for which the ETH holds. Ap-
proximately, the coupling HAB in the subregion eigenbasis
|αA, A〉 ⊗ |αB, B〉 will have matrix elements (HAB)α′

Aα′
B;αAαB =

δαA,α′
A
δαB,α′

B
E (d )(EA

αA
, EB

αB
) + h(off)

α′
Aα′

B;αAαB
, where E (d ) is the diag-

onal term, while h(off)
α′

Aα′
B;αAαB

is a random off-diagonal matrix

decaying exponentially in |EA
αA

− EA
α′

A
| and |EB

αB
− EB

α′
B
| [18].

When the boundary size lAB 
 LA, LB, one can show that the
wave function of an excited state |α〉 approximately satisfies
(Appendix A)

uα,αA,αB u∗
α,α′

A,α′
B

∝ δαA,α′
A
δαB,α′

B
δ
(
Eα − EA

αA
− EB

αB
− E (d )

)
(6)

under the random average of h(off), which determines the re-
duced density matrix ρA(α) (by Eq. (5)). The width of the
delta function ∝ lAB, while generically EA

αA
∝ LA, EB

αB
∝ LB,

and E (d ) ∝ lAB.
When the boundary size lAB 
 LA 
 LB, as studied in

literature [15–17,27–29] and re-derived in Appendix A, the
entanglement Hamiltonian of subregion A of excited states |α〉
reads approximately (up to boundary terms)

HA
E (α) ≈ β

(0)
A (α)IA + β

(1)
A (α)

(
HA − EA

avIA
)
, (7)

where EA
av = tr(HA)/NA is the average energy of the subre-

gion Hamiltonian HA. In other words, HA
E (α) resembles the

physical Hamiltonian HA, which is the only local subregion
conserved quantity for the fully chaotic system. The coef-
ficients to the zeroth order of lAB

LA
are given by β

(0)
A (α) =

ln[ NA�(Eα )
�B (Eα−EA

av ) ], and β
(1)
A (α) ≈ d ln �B (E )

dE |E=Eα−EA
av

, where �(E )
and �B(E ) are the normalized densities of states of Hamilto-
nians HA ⊗ IB + IA ⊗ HB and HB, respectively.

B. Generic systems

For a generic quantum system which is not fully chaotic,
we assume there are linearly independent Hermitian con-
served quantities Q(n) (n � 0) satisfying

[Q(m), Q(n)] = [H, Q(n)] = 0. (8)

The Hamiltonian H is the linear combination of some Q(n),
and the energy eigenstates |α〉 can be simultaneously eigen-
states of Q(n). Without loss of generality, we define Q(0) = I
as the identity matrix, and assume (Q(m), Q(n) ) = 0 if m �= n
(which indicates tr(Q(n) ) = 0 for n � 1).
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For later convenience, we define

(M, M ′) = tr(M†M ′), ||M|| =
√

(M, M ), (9)

as the Frobenius (Hilbert-Schmidt) inner product of operators
(matrices) M and M ′, and the Frobenius norm of operator M,
respectively.

Generically, there are always N = dL conserved quanti-
ties given by the linear combinations of eigenstate projection
operators |α〉〈α|, most of which are nonlocal. To charac-
terize their locality, similar to Eq. (2), we decompose each
Q(n) (n � 1) as

Q(n) = Q(n)
A ⊗ IB + IA ⊗ Q(n)

B + Q(n)
AB, (10)

where Q(n)
A ⊗ IB (IA ⊗ Q(n)

B ) consists of product terms with
supports in subregion A (B), while Q(n)

AB contains product terms
with supports across subregions A and B. We then define a
conserved quantity Q(n) as subregionally quasilocal in subre-
gion A if and only if it satisfies∣∣∣∣Q(n)

AB

∣∣∣∣∣∣∣∣Q(n)
A ⊗ IB

∣∣∣∣ = O
(√

lAB

LA

)
, (11)

when lAB 
 LA, LB (O(x) denotes up to order x), and similarly
for subregion B. For an extended local conserved quantity
Q(n), Eq. (11) can be seen by noting that Q(n)

AB consists of order
lAB local terms, while Q(n)

A ⊗ IB contains order LA local terms.
Instead, if Q(n) is a localized conserved quantity in A, the error

||Q(n)
AB ||

||Q(n)
A ⊗IB|| will be exponentially small (∼e−cLA/lAB ), and Eq. (11)

will be an overestimate.
If Eq. (11) (or similar condition for subregion B) is sat-

isfied, we can treat Q(n)
A (Q(n)

B ) as approximate conserved
quantities in subregions A (B) when lAB 
 LA, LB, respec-
tively. Then, similar to the argument of Eq. (7) for fully
chaotic systems, we can argue that (Appendix B) the subre-
gion entanglement Hamiltonian HA

E (α) is approximately given
by (up to boundary terms)

HA
E (α) ≈ β

(0)
A (α)IA +

∑
n∈Loc

β
(n)
A (α)Q(n)

A , (12)

where n ∈ Loc runs over all subregionally quasilocal con-
served quantities in A (n > 0), and the coefficients β

(n)
A (α) are

estimated in Appendix B, Eq. (B13).
The subregional quasilocality of Eq. (11) is equivalent to

the following relative commutation error requirement (Ap-
pendix B 2): ∀ n, m ∈ Loc contributing to Eq. (12),∣∣∣∣[HA, Q(n)

A

]∣∣∣∣∣∣∣∣HAQ(n)
A

∣∣∣∣ ∼
∣∣∣∣[Q(n)

A , Q(m)
A

]∣∣∣∣∣∣∣∣Q(n)
A Q(m)

A

∣∣∣∣ = O
(

lAB

LA

)
. (13)

We conjecture Eq. (13) is the generic criterion for Q(n)
A to con-

tribute to Eq. (12). If Q(n)
A is a localized conserved quantity in

subregion A, Eq. (13) is an overestimation, and the error will
be exponentially small (∼e−cLA/lAB ). Compared to Eq. (11), the
criterion of Eq. (13) is sometimes more convenient, since it
only involves operators within subregion A.

While HA
E (α) as summation of local conserved quantities

has been proposed in literature [15–17,28,29], here we empha-
size on two key observations which are not discussed before:
(i) The contributing conserved quantities Q(n)

A in Eq. (12) only

approximately mutually commute up to Eq. (13); (ii) they
only need be subregionally quasilocal, which could be rather
nonlocal in subregion A. This can be explicitly seen in the free
fermion example discussed in Sec. IV below.

III. ENTANGLEMENT HAMILTONIAN
SUPERDENSITY MATRIX

Equation (12) allows us to numerically recover the subre-
gionally (quasi)local conserved quantities Q(n)

A from a set of
entanglement Hamiltonians of full system eigenstates. Note
that an entanglement Hamiltonian HA

E (α) can be regarded as
a vector |HA

E (α)) in the linear space of NA × NA matrices.
Given the entanglement Hamiltonians of eigenstates |α〉 in
an ensemble �, we can define an entanglement Hamiltonian
superdensity matrix (EHSM) of size N2

A × N2
A :

RA =
∑
α∈�

wα

NA

∣∣HA
E (α)

)(
HA

E (α)
∣∣, (14)

where wα > 0 is the weight of state |α〉 (
∑

α∈� wα = 1). We
can then diagonalize the EHSM RA into

RA =
∑
n�0

pA,n

∣∣Q(n)
A

)(
Q

(n)
A

∣∣, (15)

where pA,n � 0 is the nth eigenvalue (n � 0) of RA (in

descending order), and Q
(n)
A is the normalized eigenopera-

tor satisfying (Q
(m)
A , Q

(n)
A ) = tr(Q

(m)†
A Q

(n)
A ) = δmn. We expect

Q
(n)
A with pA,n > 0 to resemble the normalized subregionally

(quasi)local conserved quantities in subregion A. An exten-
sive conserved quantity Q(n)

A in physical units will scale as

Q(n)
A ∼ √

NALA Q
(n)
A .

The EHSM RA in Eq. (14) is a huge matrix to diagonalize.
However, if the number of known eigenstates (the size of en-
semble �) is much smaller than the size of matrix RA, namely,
N� 
 N2

A , the matrix RA will only have a rank up to N�.
Accordingly, RA can be easily diagonalized by diagnalizing
a much smaller N� × N� correlation matrix

KA,αβ =
√

wαwβ

NA

(
HA

E (α), HA
E (β )

)
. (16)

It can be proved (Appendix C) that RA and KA have exactly
the same nonzero eigenvalues pA,n, and each eigenvector vA

n
of KA (satisfying KAvA

n = pA,nv
A
n ) corresponds to a normalized

eigenoperator of RA of the same eigenvalue:

Q
(n)
A = 1√

NA pA,n

∑
α

√
wαvA

n,αHA
E (α). (17)

In the below, we study the EHSM eigenvalues and eigenoper-
ators of several models.

IV. CONSERVED QUANTITIES OF FREE FERMIONS

In this section, we investigate the conserved quantities in
the entanglement Hamiltonians of free fermion eigenstates.
Free fermion models are many-body integrable by solving
their single-particle spectra. We consider the Anderson model
[30] in both 2D square lattice and 1D lattice as shown in
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(c) (d)

(a) (b)

FIG. 2. The EHSM eigenvalues pA,n for free fermions (param-
eters given in panels), calculated for N� = 1000 randomly chosen
eigenstates. The model is on (see Fig. 1) (a) and (b) a 1D lattice with
total size L = 500 and A subregion size LA = 10, 30, 50; [(c) and (d)]
a 2D square lattice with total size Lx = 60, Ly = 10, L = LxLy = 600
and A subregion volume LA = LA,xLy = 50, 100, 150.

Fig. 1, with the Hamiltonian

H = −t
∑
〈i j〉

(c†
ri

cr j + H.c.) +
∑

j

μ jc
†
r j

cr j , (18)

where t (real) is the nearest neighbor hopping, μ j is an on-site
random potential within an interval [−W,W ], and periodic
boundary condition is imposed. Generically, the entanglement
Hamiltonian of free fermion eigenstates |α〉 in subregion A
takes the fermion bilinear form [41]

HA
E (α) = γA(α)IA +

∑
i j∈A

κA,i j (α)c†
ri

cr j , (19)

where γA(α) and matrix κA,i j (α) can be calculated
from the correlation matrix CA,i j (α) = 〈α|c†

ri
cr j |α〉 (see

Appendix D). We first diagonalize the single-particle Hamil-
tonian in Eq. (18), then randomly choose an ensemble �

of N� = 1000 many-body Fock eigenstates |α〉 of the entire
system, with weight wα = 1

N�
, and diagonalize the EHSM

of their entanglement Hamiltonians to extract the subregion-
ally quasilocal conserved quantities. Generically, we find the
EHSM eigenvalues pA,n drops to zero at n = zLA for some
coefficient z, as we will show below.

A. 1D free femions

In 1D, we take the total system size of the free fermion
model as L = 500. For different A subregion volumes LA =
10, 30, 50, we diagonalize the EHSM of an ensemble � of
N� = 1000 randomly chosen Fock eigenstates. Generically,
we find the leading eigenvalue pA,0 corresponds to the identity

operator Q
(0)
A ≈ IA/

√
NA. The other EHSM eigenoperators de-

pend on whether the free fermions are extended or localized.
When the 1D single-fermion wave functions are extended,

the EHSM eigenvalues of subregion A are as shown in
Fig. 2(a), where we have set t = 1 and W = 0. We find
pA,n for 1D extended fermions drops to zero around n =
3LA, indicating the presence of 3LA approximately conserved
quantities. This cutoff remains robust for week disorders W ,

n=3 n=14
t=1, W=0, L=500, LA=10

A
Tx

A

Px
A

(a)

(d)

(b) (c) n=3
t=0.1, W=1, L=500, LA=10

FIG. 3. The EHSM eigenoperators of 1D free fermions (L =
500, LA = 10) take the fermion bilinear form of Q

(n)
A = γ

(n)
A IA +∑

i, j∈A κ
(n)
A,i jc

†
xi

cx j , and the values of matrices κ
(n)
A,i j (normalized by its

largest element) for given model parameters are plotted in (a)–(c),
where the axis are sites xi and x j . The parameters for (a)-(b) are
t = 1,W = 0 (extended fermions), and for (c) are t = 0.1,W = 1
(localized fermions). (d) illustrates the hoppings in the conserved
quantities T A

x in Eq. (20) and PA
x in Eq. (21), respectively.

provided the Anderson localization length is larger than the
subregion A size LA. Numerically, as shown in Figs. 3(a) and
3(b), the 3LA eigenoperators Q

(n)
A (n > 0) with nonzero EHSM

eigenvalues pA,n are approximately linear combinations of the
following 3LA operators:

T A
x =

∑
xi,xi+x∈A

(
c†

xi+xcxi + c†
xi

cxi+x
)
, (20)

with 0 � x < LA, and

PA
x =

∑
xi,x−xi∈A

c†
x−xi

cxi , (21)

with 2 � x � 2LA. As shown in Appendix D 3 a, they are in-
deed approximate conserved quantities in subregion A (which
has open boundaries) satisfying the criterion of Eq. (13). T A

x
are the Fourier transforms of the single-particle momenta. PA

x
come from the Fourier transform of the hoppings between
momentum k and −k fermion states, which are conserved
since the fermion energy does not change under k → −k.
Remarkably, unlike the naive expectation that only local con-
served quantities contribute to the entanglement Hamiltonian,
the 2LA operators PA

x are fairly nonlocal within subregion A,
with nondecaying hoppings between two sites with a fixed
center [Fig. 3(d)]. However, PA

x are still subregionally quasilo-
cal, satisfying the criterion of Eq. (13).

Where all the 1D single-particle eigenstates are strongly
localized, the EHSM eigenvalues pA,n are as shown in
Fig. 2(b) (t = 0.1, W = 1), which drops significantly to-
wards zero around a cutoff n = LA. Accordingly, except for
Q

(0)
A ≈ IA/

√
NA, the eigenoperators Q

(n)
A (0 < n < LA) give

approximately the occupation number operators (approxi-
mately c†

xi
cxi ) of the LA localized single-particle eigenstates

[Fig. 3(c), see also Appendix D 3 a].

B. 2D free femions

We further examine a 2D system with a fixed total system
size L = LxLy, with Lx = 60 and Ly = 10. The subregions
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are defined as shown in Fig. 1(a), with different A subregion
volumes LA = LA,xLy = 10LA,x and LA,x = 5, 10, 15. Again,

generically, we find Q
(0)
A ≈ IA/

√
NA, and the rest EHSM

eigenoperators are different for extended/localized fermions.
When the 2D single-fermion wave functions are extended

(or when the localization length is larger than the linear size
of subregion A), the EHSM eigenvalues pA,n are as shown
in Fig. 2(c) (where we set t = 1 and W = 0). We find the
eigenvalues pA,n also drops to zero at some cutoff n = zLA.
However, different from the 1D case where z is fixed at 3,
in the 2D case here we find z depends on the aspect ratio of
subregion A:

z →
{

7,
( LA,x

Ly

 1

)
3,

( LA,x

Ly
� 1

) . (22)

Generically, 3 < z < 7. By both numerical and analytical
investigations (see Appendix D 3 b), we arrive at the fol-
lowing explanation for this aspect ratio dependent behavior:
First, similar to the 1D case, there always exists 3LA ap-
proximately mutually commuting conserved quantities [i.e.,
satisfying Eq. (13)] given by

T A
x,y ≈

∑
xi,x+xi∈A

(
c†

xi+x,yi+ycxi,yi + c†
xi,yi+ycxi+x,yi

)
,

PA,1
x,y ≈

∑
xi,x−xi∈A

c†
x−xi,yi+ycxi,yi ,

(23)

where 0 � x � LA,x, 0 � y < Ly for T A
x,y and 2 � x �

2LA,x, 0 � y < Ly for PA,1
x,y . Note that PA,1

x,y is nonlocal in the
x direction. In addition, one can show that there are other 4LA

operators which approximately commute with HA, given by

PA,2
x,y ≈

∑
xi,x−xi∈A

c†
xi+x,y−yi

cxi,yi ,

PA,3
x,y ≈

∑
xi,x−xi∈A

c†
x−xi,y−yi

cxi,yi ,
(24)

where −LA,x < x < LA,x, 0 � y < Ly for PA,2
x,y , and 2 � x �

2LA,x, 0 � y < Ly for PA,3
x,y . Note that PA,2

x,y is nonlocal in the y
direction, while PA,3

x,y is nonlocal in both x and y directions.
However, the 4LA operators in Eq. (24) do not always ap-
proximately commute with the 3LA operators in Eq. (23), and
one can show their relative commutation errors are around
O(

√
LA,x

Ly

lAB
LA

). Therefore, when LA,x

Ly

 1, all the 7LA operators

in Eqs. (23) and (24) satisfy the criterion of Eq. (13). Con-
versely, when LA,x

Ly
� 1, only the 3LA conserved quantities in

Eq. (23) satisfy the criterion of Eq. (13). This example shows
remarkably the validity of the criterion Eq. (13).

Where the 2D single-particle wave functions are strongly
localized, the story is similar to the 1D case. As shown in
Fig. 2(d) (t = 0.1, W = 1), the EHSM eigenvalues pA,n drops

to zero at n = LA. The corresponding eigenoperators Q
(n)
A

(0 < n < LA) are again approximately the number operators
(approaching c†

ri
cri ) of the LA localized single-particle eigen-

states.

C. Generic observation

Generically, if we denote the free fermion entanglement

Hamiltonians as HA
E (α) = ∑

n�zLA
β

(n)
A (α)Q

(n)
A in terms of nor-

malized eigenoperators Q
(n)
A , the free fermion EHSM spectra

pA,n cutoff behaviors can be roughly fitted by assuming a
standard deviation

σ (n) ∝
(

1 − n

zLA

)r
(25)

for β
(n)
A (α) among all the eigenstates |α〉, where r � 0

(see Appendix F 1). From Fig. 2, we find r ≈ 0.5D for D-
dimensional extended free fermions, and r ≈ 0.5(D − 1) for
D-dimensional localized free fermions. Besides, we conjec-
ture the subregionally quasilocal conserved quantities Q

(n)
A

found here may play a role in the eigenstate typicality of free
fermions [42,43].

V. CONSERVED QUANTITIES OF INTERACTING
MODELS: THE XYZ MODEL

As an example of EHSM of interacting many-body sys-
tems, we study the traceless 1D spin 1/2 XYZ model
Hamiltonian in a magnetic field (with periodic boundary con-
dition):

H =
L∑

j=1

[ ∑
ν=x,y,z

Jνσ j,νσ j+1,ν + (B + δB j ) · σ j

]
, (26)

where σ j,ν are the spin Pauli matrices on site j, Jν are the
neighboring spin interactions, B is a uniform magnetic field,
and δB j is a random magnetic field with components δBj,ν ∈
[−BR,ν , BR,ν] (ν = x, y, z). We perform exact diagonalization
(ED) of the model for L = 14 sites, and study the EHSMs
of subregion A with LA � 7 [Fig. 1(b), see Appendix E for
details].

In Fig. 4, we calculate the EHSM eigenvalues pA,n for the
ensemble � of all the N eigenstates |α〉 with equal weights
wα = 1/N , with parameters labeled in each panel. The insets
show the LSS of the ensemble �. The largest eigenvalue pA,0

is not shown, which always dominantly gives Q
(0)
A ≈ IA/

√
NA.

In Figs. 4(a)–4(c) where B = BR = 0, the XYZ model is
exactly solvable [44,45] (thus integrable), and we find the
EHSM eigenvalues approximately decaying as a power law
[see Fig. 5(a)]:

pA,n ∝ n−s, s ≈ 1. (27)

For the XYZ model (three Jν unequal) in a uniform magnetic
field B shown in Fig. 4(d), pA,n also decays approximately as
n−s (for n > 2) with s ≈ 1, indicating the existence of sub-
regionally quasilocal conserved quantities, although exactly
local conserved quantities are proved nonexisting [46].

Figure 4(e) shows the EHSM of XXZ model (Jx = Jy �= Jz)
with a ẑ direction random field BR, which is in the many-body
localization (MBL) phase [31–35]. In this case, we also find
pA,n approximately decays as a power law, but with a larger
exponent [Fig. 5(b)]:

pA,n ∝ n−s, s ≈ 1.5–2. (28)
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(a) (b)

(e) (f)

(c) (d)

FIG. 4. The EHSM eigenvalues pA,n of the 1D XYZ model in a
magnetic field, which are calculated for the ensemble � of all the
eigenstates |α〉 with equal weights wα . The full system size is L =
14, and the subregion size LA and model parameters are given in each
panel. The insets show the LSS of ensemble � [Poisson in (a)–(e) and
Wigner-Dyson in (f)].

We expect the eigenoperators to give the MBL local-
ized conserved quantities [36–39], which makes the system
(approximately) integrable.

Note that the power-law decaying pA,n ∝ n−s of the in-
tegrable XYZ models (which may be subject to finite size
effects) is different from the cutoff behavior of nonzero pA,n

of free fermion models in Fig. 2. Here it indicates a standard

FIG. 5. The log-log plot (ln pA,n vs ln n) of Fig. 4(b) [panel
(a) here] and (e) [panel (b) here], respectively. The results show that
pA,n ∝ n−s, where the exponent s ≈ 1 for extended integrable phases
(a), and s ≈ 1.5 ∼ 2 for MBL phases (b).

deviation σ (n) ∝ n−s/2 for the coefficient β
(n)
A (α) in HA

E (α) =∑
n β

(n)
A (α)Q

(n)
A among all eigenstates |α〉 (Appendix F 2).

Lastly, for the XXZ model with a random direction field
BR shown in Fig. 4(f), the LLS shows the Wigner-Dyson
distribution, indicating full quantum chaos. In this case, only
the leading two eigenvalues pA,0 and pA,1 are significantly
nonzero, which correspond to linear combinations of the only
two local conserved quantities IA and HA, in agreement with
ETH [Eq. (7)].

We now take a closer look at the eigenoperators Q
(n)
A , which

roughly commute with subregion Hamiltonian HA by Eq. (13)
(Appendix E 2). Generically, the eigenoperator of the largest
eigenvalue pA,0 is quite accurately Q

(0)
A ∝ IA. In Figs. 4(a),

4(b) and 4(e), which possess a ẑ direction spin rotational sym-
metry, Q

(1)
A and Q

(2)
A are approximately linear combinations of

HA and
∑

j σ j,z (Appendix E Table II). For Figs. 4(c), 4(d),

and 4(f), we find dominantly Q
(1)
A ∝ HA. The higher eigenop-

erators Q
(n)
A are generically less local (Appendix E 3), or even

fairly nonlocal within subregion A although still subregionally
quasilocal, similar to PA

x,y for the extended free fermions. In
the zero field XXZ model [Figs. 4(a) and 4(b)], we find

Q
(3)
A ≈

∑
j,�,ν

ζν (l )σν, jσν, j+l + ζ ′ ∑
j

σz, j, (29)

with the functions ζν (l ) decaying with l , and ζ ′ is some
constant. Q

(4)
A has a large overlap with the known support-4

local conserved quantity P4 [definition in Eq. (E7)] of XXZ
model [8,9] (Appendix E 3). In contrast, all Q

(n)
A has zero

overlap with the known support-3 local conserved quantity P3

[definition in Eq. (E6)] [8,9].
We can also calculate the EHSM for a microcanonical

ensemble � consisting of all the eigenstates |α〉 with energies
Eα ∈ [Ec − �E

2 , Ec + �E
2 ] with equal weights wα , for some

center energy Ec, to characterize the integrability of the sys-
tem near energy Ec. Figures 6(a)–6(c) show the cases with
subregionally quasilocal conserved quantities other than IA

and HA, where the nonzero EHSM eigenvalues pA,n (n � 1)
asymptotically approach nonzero constants as �E → 0. In
sharp contrast, in the fully chaotic case where the ETH holds,
we find pA,n → 0 for all n � 1 when �E → 0. This is be-
cause all the entanglement Hamiltonians are given by Eq. (7)
with Eα = Ec and thus equal, leading to only one nonzero
EHSM eigenvalue pA,0 and the corresponding eigenoperator

Q
(0)
A ∝ β

(0)
A IA + β

(1)
A HA. (30)

VI. DISCUSSION

Sometimes only the time τ evolution |ψ (τ )〉 of a noneigen-
state |ψ (0)〉 within time T is known. In this case, one can
define approximate “eigenstates”

|̃α〉T = 1

NT (α)

∫ T

0
dτeiẼατ |ψ (τ )〉 (31)

for a set of random energies {Ẽα}, where NT (α) is the nor-
malization factor. One can then diagonalize the EHSM in
subregion A of these states. With a time T power-law in
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FIG. 6. The EHSM eigenvalues pA,n (n � 1) of the 1D XYZ
model for an ensemble � of all eigenstates in the energy interval
[Ec − �E

2 , Ec + �E
2 ], where �E is varied. The full system (subre-

gion) size is L = 14 (LA = 7). E0 is the range of the energy spectrum
of the entire system. The insets show the density of states �(E ) of
the system and Ec.

system size, we find such a calculation still yields a similar
EHSM spectrum as Fig. 4, and the second eigenoperator Q(1)

A
reproduces the subregion Hamiltonian HA well (Appendix
G). However, to accurately retrieve conserved quantities other
than the Hamiltonian HA, this method may require an expo-
nentially long time T ∼ O(dL ).

We have seen that if an ensemble of N� excited eigenstates
are known, subregionally (quasi)local conserved quantities
including the Hamiltonian can be extracted as eigenoperators
of their subregion EHSM with eigenvalues pA,n > 0. For free
fermions, the nonzero pA,n has a cutoff proportional to the sub-
region volume. For the interacting XYZ models, pA,n decays
as n−s if integrable, while only pA,0 and pA,1 are significantly
nonzero if fully chaotic. One future question is to understand
the power-law EHSM spectrum in interacting integrable mod-
els, and which conserved quantities contribute. This might be
studied more analytically from the Bethe ansatz [47] eigen-
states of 1D solvable models, which allow much larger system
sizes than ED. Another future question is whether terms in
the EHSM eigenoperators not commuting with HA [Eq. (13)]
are located near the subregion boundary. Moreover, how the
EHSM eigenoperators affect the nonequilibrium evolution in
a subregion is to be understood.
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APPENDIX A: ENTANGLEMENT HAMILTONIAN
OF A FULLY CHAOTIC SYSTEM

In this section, we study the properties of eigenstate wave
functions of the Hamiltonian in main text Eq. (2) when the
system is fully quantum chaotic. The N × N Hamiltonian
(N = dL is the Hilbert space dimension of the full system)
in the main text Eq. (2) is of the form:

H = H0 + HAB, H0 = HA ⊗ IB + IA ⊗ HB. (A1)

Here the subregions A and B have sizes (number of sites) LA

and LB, respectively, and the total number of sites is L = LA +
LB. Besides, we denote the number of sites on the boundary
between subregions A and B as lAB.

For a local Hamiltonian and lAB 
 LA, LB (i.e., large
system sizes), H0 is dominant, and HAB can be treated
as a perturbation. We adopt the subregion energy eigen-
state direct product basis |αA, A; αB, B〉 = |αA, A〉 ⊗ |αB, B〉,
where HA|αA, A〉 = EA

αA
|αA, A〉 and HB|αB, B〉 = EB

αB
|αB, B〉

(1 � αA � NA, 1 � αB � NB, with NA = dLA , NB = dLB being
the Hilbert space dimensions of subregions A and B, NANB =
N). In this basis, both HA and HB are diagonal, and thus H0 is
diagonal, with eigenvalues EA

αA
+ EB

αB
.

The eigenstates |α〉 (1 � α � N) of the entire Hamiltonian
H under the subregion energy eigenbasis then have wave
functions of the form

|α〉 =
∑
αA,αB

uα,αA,αB |αA, A〉 ⊗ |αB, B〉. (A2)

The elements of the reduced density matrix ρA(α) can thus be
expressed as

〈αA, A|ρA(α)|α′
A, A〉 =

∑
αB

uα,αA,αB u∗
α,α′

A,αB
. (A3)

1. Estimation of the boundary term HAB from ETH

If the system is fully quantum chaotic, one expects ETH to
hold. Since the Hamiltonian is local, we expect

HAB =
∑

m

OA
mOB

m (A4)

is the sum over a set of local terms OA
mOB

m, where OA
m is

supported in subregion A and OB
m is supported in subregion B.

The number of m indices is proportional to the boundary size
lAB. According to ETH [14–18], their matrix elements can be
estimated as

〈α′
A, A|OA

m|αA, A〉
= OA

m(EA)δαA,α′
A
+ e−SA(EA )/2 f A

m (EA, ωA)rA,m
αA,α′

A
,

〈α′
B, B|OB

m|αB, B〉
= OB

m(EB)δαB,α′
B
+ e−SB (EB )/2 f B

m (EB, ωB)rB,m
αB,α′

B
, (A5)

where EA = (EA
αA

+ EA
α′

A
)/2 and EB = (EB

αB
+ EB

α′
B
)/2 are the

average energies, ωA = EA
αA

− EA
α′

A
and ωB = EB

αB
− EB

α′
B

are

energy differences, while SA(EA) and SB(EB) are the entropies
in each subregion at the average energies. rA,m

αA,α′
A

and rB,m
αB,α′

B
are

random matrices with a root mean square for each element
being 1. We note that for chaotic systems satisfying the ETH,
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e−SA(EA )/2 ∝ 1/
√

NA, and e−SB (EB )/2 ∝ 1/
√

NB. The function
f A,B
m (E , ω) decay exponentially as e−|ω|/ω0 at large ω (com-

parable to ω0), and is smooth at small ω (the values scale as√
L), where ω0 is independent of system size (i.e., of order

1 in the expansion with respect to system size LA,B) [18].
Therefore we find HAB (contributed by order lAB number of
local terms OA

mOB
m) under the basis |αA, A〉 ⊗ |αB, B〉 consists

of a diagonal part and an off-diagonal part:

HAB = H (d )
AB + h(off),(

Hd
AB

)
α′

Aα′
B;αAαB

= δαA,α′
A
δαB,α′

B
E (d )(EA

αA
, EB

αB

)
,

h(off)
α′

Aα′
B;αAαB

= δαA,α′
A
rB
αB,α′

B

λB(EB, ωB)√
NB

+ δαB,α′
B
rA
αA,α′

A

λA(EA, ωA)√
NA

+ λAB(EA, ωA, EB, ωB)√
N

rAB
αAαB,α′

Aα′
B
, (A6)

where all the r matrices are random matrices with the root
mean square of each element being 1, while the functions
λA, λB, λAB are proportional to

√
LAlAB,

√
LBlAB,

√
LALBlAB

and decay as e−|ωA|/ωA,0 , e−|ωB|/ωB,0 and e−|ωA|/ωA,0−|ωB|/ωB,0 , with
ωA,0 and ωB,0 independent of system sizes LA and LB. To the
lowest order, we can approximately assume the diagonal part
takes the form of

E (d )(EA
αA

, EB
αB

) ≈ lAB

εAB
0

(
EA

αA

LA
− εA

0

)(
EB

αB

LB
− εB

0

)
, (A7)

where lAB is the boundary area (number of sites on the bound-
ary), while εAB

0 , εA
0 , and εB

0 are of order 1 energies and are
asymptotically independent of system sizes LA and LB. Since
we have defined that each product term in the boundary term
HAB is traceless, we have

εA
0 = 1

NALA

NA∑
αA=1

EA
αA

= EA
av

LA
, εB

0 = 1

NBLB

NB∑
αB=1

EB
αB

= EB
av

LB
,

(A8)

where EA
av and EB

av are the mean values of EA
αA

and EB
αB

, re-
spectively. Note that for systems with delocalized eigenstates
(e.g., the fully chaotic systems considered here), the energy
range of EA

αA
(EB

αB
) generically scale linearly with LA (LB), so

εA
0 and εB

0 are of order 1.
This yields a correlation for the matrix elements of the

off-diagonal Hermitian part hoff [averaged over the random r
matrices in Eq. (A6)]:〈

hoff
α′

Aα′
B;αAαB

〉 = 0,
〈
hoff

α′
Aα′

B;αAαB
hoff

αAαB;α′
Aα′

B

〉
= λ2

AB

N
+ δαA,α′

A

λ2
B

NB
+ δαB,α′

B

λ2
A

NA
, (A9)

where we have omitted the variables of the functions λAB, λA,
and λB for simplicity. Note that here the bra and ket stand for
the average over the random r matrices in Eq. (A6).

2. Derivation of the entanglement Hamiltonian for eigenstates

To find the properties of the eigenstate wave functions
for determining the entanglement Hamiltonian, we treat the
off-diagonal part hoff of HAB as fluctuating quantum fields
obeying Eq. (A9), and define the statistically averaged Green’s
function:

GαAαB;α′
Aα′

B
(ω) =

〈(
〈αA, A; αB, B| 1

ω − H
|α′

A, A; α′
B, B〉

)〉
= δαAα′

A
δαBα′

B
GαAαB (ω), (A10)

where the outer bra and ket stand for the statistical average
over all possible random hoff matrices satisfying Eq. (A9).
The fact that GαAαB;α′

Aα′
B
(ω) ∝ δαAα′

A
δαBα′

B
can be seen by noting

that GαAαB;α′
Aα′

B
(ω) should be invariant under flipping of any

basis |αA, A〉 → −|αA, A〉 or |αB, B〉 → −|αB, B〉, given that
the matrix elements of hoff are random with zero mean. In the
large NA, NB limit, by treating hoff as a matrix quantum field,
one can show that the Green’s function GαAαB (ω) satisfy the
Schwinger-Dyson (SD) equation:

G0,αAαB (ω)−1 = GαAαB (ω)−1 + �αAαB (ω), (A11)

where the unperturbed Green’s function G0,αAαB (ω) and the
self-energy �αAαB (ω) are given by

G0,αAαB (ω) = 1

ω − EA
αA

− EB
αB

− E (d )
(
EA

αA
, EB

αB

) , �αAαB (ω)

=
∑
α′

Aα′
B

〈
hoff

α′
Aα′

B;αAαB
hoff

αAαB;α′
Aα′

B

〉
Gα′

Aα′
B
(ω). (A12)

Equations (A11) and (A12) then gives a self-consistent
equation

�αAαB (ω)

= 1

N

∑
α′

Aα′
B

λ2
AB + NAλ2

BδαA,α′
A
+ NBλ2

AδαB,α′
B

ω − EA
α′

A
− EB

α′
B
− E (d )

(
EA

α′
A
, EB

α′
B

) − �α′
Aα′

B
(ω)

.

(A13)

In the large LA and LB limit, hoff is much smaller than HA

and HB, thus Eq. (A12) implies that the self-energy �αAαB (ω)
is much smaller than EA

α′
A

and EB
α′

B
. To the leading order of

lAB
LA

and lAB
LB

, ignoring the E (d )(EA
αA

, EB
αB

) and �α′
Aα′

B
(ω) term in

the denominator, and turn the summation over α′
A, α′

B into an
integration, we find an imaginary self-energy

�αAαB (ω) ≈ 2π i

[(∫
dEA�A(EA)�B(ω − EA)λ2

AB

×
(

EA
αA

+ EA

2
, EA

αA
− EA,

EB
αB

+ ω − EA

2
,

× EB
αB

− ω + EA

))
+ �B

(
ω − EA

αA

)
λ2

B

(
EB

αB
, 0

)
+ �A

(
ω − EB

αB

)
λ2

A

(
EA

αA
, 0

)]
, (A14)
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where we have defined

�A(E ) = 1

NA

∑
αA

δ
(
E − EA

αA

)
, �B(E )

= 1

NB

∑
αB

δ
(
E − EB

αB

)
(A15)

as the normalized density of states in subregions A and B
(
∫

�A(E )dE = ∫
�B(E )dE = 1). Note that since the range

of energies in subregions A (B) is proportional to LA (LB), we
have �A(E ) ∝ 1/LA and �B(E ) ∝ 1/LB. Therefore we find
the value of the self-energy �αAαB (ω) is around the order of
the boundary size lAB. We therefore find the Green’s function

given by

GαAαB (ω) = 1

ω − EA
αA

− EB
αB

− E (d )
(
EA

αA
, EB

αB

) − �αAαB (ω)
.

(A16)

On the other hand, it is known that the spectral weight is
related to the eigenstates of Hamiltonian H by

AαAαB (ω) = 2ImGαAαB (ω)

= 2π
∑

α

|〈α|αA, A; αB, B〉|2δ(ω − Eα )

= 2π
∑

α

|uα,αA,αB |2δ(ω − Eα ). (A17)

Therefore, in the large LA, LB limit, we approximately have (under the statistical average of hoff):

uα,αA,αB u∗
α,α′

A,α′
B

≈ δαA,α′
A
δαB,α′

B

πN�(Eα )
ImGαAαB (Eα )

= δαA,α′
A
δαB,α′

B

πN�(Eα )

|�αAαB (Eα )|[
Eα − EA

αA
− EB

αB
− E (d )

(
EA

αA
, EB

αB

)]2 + |�αAαB (Eα )|2

≈ δαA,α′
A
δαB,α′

B

N�(Eα )
δ
(
Eα − EA

αA
− EB

αB
− E (d )

(
EA

αA
, EB

αB

))
, (A18)

where

�(E ) = 1

N

∑
α

δ(E − Eα ) (A19)

is the density of states of the entire system. Note that the energy width of the delta function in Eq. (A18) is |�αAαB (Eα )|, which
is of order lAB. It also has a dependence on Eα , EA

αA
and EB

αB
[see Eq. (A14)]. In comparison, the ranges of EA

αA
and EB

αB
are

proportional to LA and LB. Therefore the delta function approximation is legitimate when the subregion sizes LA and LB are
large, in which case lAB 
 LA and lAB 
 LB. The diagonal part E (d ) of the boundary term yields an order lAB contribution to the
center position of the delta function.

If we take the approximation for E (d )(EA
αA

, EB
αB

) in Eq. (A7), and assume lAB 
 LA, LB, we find

〈αA, A|ρA(α)|α′
A, A〉 =

∑
αB

uα,αA,αB u∗
α,α′

A,αB

≈
∫

dEB δαA,α′
A
NB

N�(Eα )
�B(EB)δ

(
E − EA

αA
− EB − lAB

εAB
0

(
EA

αA

LA
− εA

0

)(
EB

LB
− εB

0

))

= δαA,α′
A

�B
(
aA

(
Eα, EA

αA

))
NA�(Eα )

, (A20)

where the function

aA
(
Eα, EA

αA

) =
E − EA

αA
+ εB

0

εAB
0

lAB
LA

(
EA

αA
− LAεA

0

)
1 + lAB

εAB
0 LB

(EA
αA

LA
− εA

0

) . (A21)

When lAB 
 LA 
 LB, to the linear order of EA
αA

− LAεA
0 (note that the average value of EA

αA
is EA

av = LAεA
0 ), we approximately

have

HA
E (α) = − ln ρA(α) ≈

∑
αA

(
β

(0)
A (α) + β

(1)
A (α)EA

αA

)|αA, A〉〈αA, A| = β
(0)
A (α)IA + β

(1)
A (α)

(
HA − EA

av

)
, (A22)

where

β
(0)
A (α) = ln

[
NA�(Eα )

�B
(
Eα − LAεA

0

)], β
(1)
A (α) =

(
1 + Eα − LAεA

0 − LBεB
0

εAB
0

lAB

LALB

)
d ln �B(E )

dE

∣∣∣∣∣
E=Eα−LAεA

0

. (A23)
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Note that by definition in Eq. (A8) and the fact that tr(HAB) = 0, we have LAεA
0 + LBεB

0 = tr(H )/N = Eav is the average value
of the energy Eα of the entire system. Also, note that LAεA

0 = EA
av is the mean value of subregion energy EA

αA
, so we can rewrite

the coefficients as

β
(0)
A (α) = ln

[
NA�(Eα )

�B
(
Eα − EA

av

)], β
(1)
A (α) =

(
1 + Eα − Eav

εAB
0

lAB

LALB

)
d ln �B(E )

dE

∣∣∣∣∣
E=Eα−EA

av

. (A24)

If we ignore all the terms to the linear order of lAB
LA

, lAB
LB

and higher, we will have

β
(0)
A (α) = ln

[
NA�(Eα )

�B
(
Eα − EA

av

)], β
(1)
A (α) ≈ d ln �B(E )

dE

∣∣∣∣∣
E=Eα−EA

av

. (A25)

3. The case when the Hamiltonian is extremely nonlocal

For completeness, we also discuss the case when the
Hamiltonian H is extremely nonlocal, in which case most
terms are coupling subregions A and B and belong to HAB, so
we expect ||HAB|| � ||H0|| in Eq. (A1). We can then approxi-
mately regard H0 = 0, and treat HAB as a fully random matrix
(as a nonlocal chaotic system resembles a zero dimensional
chaotic system). Accordingly, if we assume the random matrix
HAB satisfies〈

(HAB)α′
Aα′

B;αAαB (HAB)αAαB;α′
Aα′

B

〉 = λ2

N
, (A26)

the SD equation gives the Green’s function and spectral
weight

GαAαB (ω) = ω − √
ω2 − 4λ2

2λ2
,

(A27)

AαAαB (ω) = �(4λ2 − ω2)

√
4λ2 − ω2

λ2
,

where �(x) is the Heaviside step function. Note that AαAαB (ω)
has no dependence on the basis indices αA, αB. Therefore the
eigenstate wave function components have no obvious αA, αB

dependence, and we expect a uniform correlation

uα,αA,αB u∗
α,α′

Aα′
B

≈ δαA,α′
A
δαB,α′

B

N
. (A28)

APPENDIX B: ENTANGLEMENT HAMILTONIAN OF
SYSTEMS WITH MULTIPLE CONSERVED QUANTITIES

In this section, we consider the case when there are multi-
ple subregionally local or quaislocal conserved quantities. We
assume the system in the entire region has linearly indepen-
dent local and nonlocal conserved quantities Q(n) (n � 1) as
shown in main text Eqs. (5) and (6), namely,

Q(n)|α〉 = q(n)
α |α〉, [Q(n), Q(m)] = 0,

(B1)
Q(n) = Q(n)

A ⊗ IB + IA ⊗ Q(n)
B + Q(n)

AB,

where Q(n)
A [Q(n)

B ] has supports within subregion A (B), and
Q(n)

AB contains all the terms with supports across the two sub-
regions, as we defined below the main text Eq. (6). Note
that we have assumed the energy eigenstates |α〉 are also
simultaneous eigenstates of Q(n). We assume Q(0) = I is the
trivial identity operator. The full Hamiltonian H is given by a

certain combination of Q(n) (n � 0). Similarly, we denote the
number of sites in subregion A (B) as LA (LB), and the number
of sites adjacent to the boundary between subregions A and B
as LAB. The total system size is L = LA + LB.

Without loss of generality, we assume different Q(n) (n �
0) are orthogonal, namely, their Frobenius inner product
(Q(n), Q(m) ) = tr(Q(n)Q(m) ) ∝ δmn. In particular, this indicates
that tr(Q(n) ) = tr(Q(n)Q(0) ) = 0 if n � 1, so Q(n) (n � 1) only
contains traceless terms. Accordingly, the mean value of q(n)

α

for n � 1 is zero. The total Hamiltonian HA is the linear
combination of some Q(n).

If a conserved quantity Q(n) in Eq. (B1) satisfies the fol-
lowing order of magnitude bound as LA → ∞ and LB → ∞,
respectively:

∣∣∣∣Q(n)
AB

∣∣∣∣∣∣∣∣Q(n)
A ⊗ IB

∣∣∣∣ = O
(√

lAB

LA

)
,

∣∣∣∣Q(n)
AB

∣∣∣∣∣∣∣∣IA ⊗ Q(n)
B

∣∣∣∣ = O
(√

lAB

LB

)
,

(B2)

we define Q(n) as a subregionally quasilocal conserved quan-
tity in subregion A and in subregion B, respectively. Here
||Q|| =

√
tr(QQ†) is the Frobenius norm of a matrix, and O(x)

stands for up to order x. We note that Q(n) can be subregionally
quasilocal in both subregions A and B (for instance, when
Q(n) is extensive), or only subregionally quasilocal in one
subregion A or B if only one condition in Eq. (B2) is satisfied
(for instance, if Q(n) is localized in one of the subregions).
Furthermore, if Q(n) contains only terms with supports within
a fixed finite size (independent of LA, LB), we say Q(n) is local.

Equation (B2) can roughly be understood as follows: if Q(n)

is extensive and consists of independent local product terms
of similar order of magnitudes, and each term is localized
around a site, one can see that Q(n)

AB contains order lAB num-
ber of independent product terms, while Q(n)

A ⊗ IB contains
order LA number of independent product terms, so the ratio

of their Frobenius norms is of order
√

lAB
LA

, and similarly for

subregion B. If Q(n) is instead localized (either in subregion
A or B), as long as it is not localized at the boundary, we

expect ||Q(n)
AB ||

||Q(n)
A ⊗IB|| ∼ e−cLA/lAB (c > 0) if it localizes in A (or

similar for B). Equation (B2) is then an overestimation (for
the corresponding localized subregion) and thus satisfied. In
particular, we require the Hamiltonian H to be subregionally
(quasi)local.
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By the definition of Eq. (B2), if a set of conserved quanti-
ties Q(n) ∈ Loc are subregionally (quasi)local in subregion A
or B and mutually commuting, one can show their subregion
restrictions satisfy∣∣∣∣[HA, Q(n)

A ]
∣∣∣∣∣∣∣∣HAQ(n)

A

∣∣∣∣ ∼
∣∣∣∣[Q(n)

A , Q(m)
A ]

∣∣∣∣∣∣∣∣Q(n)
A Q(m)

A

∣∣∣∣ = O
(

lAB

LA

)
,

(B3)∣∣∣∣[HB, Q(n)
B ]

∣∣∣∣∣∣∣∣HBQ(n)
B

∣∣∣∣ ∼
∣∣∣∣[Q(n)

B , Q(m)
B ]

∣∣∣∣∣∣∣∣Q(n)
B Q(m)

B

∣∣∣∣ = O
(

lAB

LB

)
,

respectively. For extensive quantities, both equations in
Eq. (B3) will be satisfied, which can be understood by noting
that [Q(n)

A , Q(m)
A ] contains up to l2

AB local product terms, while
Q(n)

A Q(m)
A contains roughly L2

A local product terms. For local-
ized quantities in subregion A (B), the left (right) equation in
Eq. (B3) holds, and the error is overestimated, which would
be O(e−cLA/lAB ) (O(e−cLB/lAB )) for some c > 0.

In some sense, Eq. (B3) can be viewed as an equivalent
definition of subregionally quasilocal conserved quantities,
which are mutually commuting in the entire system, but their
subregion restrictions commute up to relative errors O( lAB

LA
).

1. Conserved quantities in the entanglement Hamiltonian

We now discuss the effect of conserved quantities Q(n) in
a system on the statistical average value of the wave func-
tion correlation uα,αA,αB u∗

α,α′
A,α′

B
under the subregion eigenstate

direct product basis |αA, A〉 ⊗ |αB, B〉, and further on the en-
tanglement Hamiltonian.

a. Three cases of conserved quantities

There are the following three cases of conserved quantities
which we need to distinguish.

(1) Case (i). If the conserved quantity Q(n) (n � 1) is sub-
regionally local or quasilocal, and is extensive (i.e., containing
local terms around all sites of the system), both equations
in Eq. (B3) will be satisfied. In the large system size limit
lAB 
 LA, LB, one can approximately regard [HA, Q(n)

A ] = 0
and [HB, Q(n)

B ] = 0 as true, namely, Q(n)
A and Q(n)

B are approxi-
mate conserved quantities in subregions A and B, respectively.
Different subregionally (quasi)local Q(n)

A (Q(n)
B ) also approx-

imately commute. We therefore assume that the subregion
energy eigenstates approximately satisfy

Q(n)
A |αA, A〉 = q(n)

A,αA
|αA, A〉, Q(n)

B |αB, B〉 = q(n)
B,αB

|αB, B〉.
(B4)

Since Q(n) (n � 1) is traceless, Q(n)
A , Q(n)

B and Q(n)
AB should

also be traceless, and thus the mean values of q(n)
A,αA

and q(n)
B,αB

should vanish. The noncommuting errors of Q(n)
A will be dis-

cussed in the next section B 2.
We further assume that the boundary coupling term

Q(n)
AB exhibit certain randomless in its off diagonal elements

in the subregion eigenstate direct product basis |αA, A〉 ⊗
|αB, B〉, similar to HAB in Eq. (A6). Then, in analogy to
Eq. (A18), under the random average of the off diagonal part
of Q(n)

AB , we expect the wave function correlation to satisfy
uα,αA,αB u∗

α,α′
A,α′

B
∝ δαA,α′

A
δαB,α′

B
, and to be large only if |q(n)

α −

q(n)
A,αA

− q(n)
B,αB

− q(n,d )
αA,αB

| to be of order lAB, where q(n,d )
αA,αB

is the

diagonal element of Q(n)
AB (which is of order lAB). Since q(n)

α ,
q(n)

A,αA
and q(n)

B,αB
are of order L, LA and LB, respectively, in the

lAB 
 LA, LB limit, we approximately have

uα,αA,αB u∗
α,α′

A,α′
B

∝ δαA,α′
A
δαB,α′

B
δ
(
q(n)

α − q(n)
A,αA

− q(n)
B,αB

− q(n,d )
αA,αB

)
.

(B5)

Note that Q(n)
AB is traceless, the average value of q(n,d )

αA,αB
over all

states is zero.
(2) Case (ii). If the conserved quantity Q(n) (n � 1)

is subregionally (quasi)local, and is localized in subregion
A (e.g., in the many-body localization systems), one ex-
pects ||IA ⊗ Q(n)

B || ∼ ||Q(n)
AB|| ∼ e−cLA/lAB ||Q(n)

A ⊗ IB||, for some
number c > 0 (the inverse of the localization length). There-
fore Q(n) is approximately equal to Q(n)

A ⊗ IB, and one expects
their eigenvalues to be almost equal. If we assume Q(n) is
not the polynomial function of another different localized
Hermitian conserved quantity (so that its eigenvalues are inde-
pendent), this would indicate approximately a wave function
of the product form uα,αA,αB ∼ δα,αAζα,αB , and thus

uα,αA,αB u∗
α,α′

A,α′
B

∝ δαA,α′
A
ζα,αBζ

∗
α,α′

B
δ
(
q(n)

α − q(n)
A,αA

)
, (B6)

where the delta function has a width �(n)
α ∝ e−c(n)LA/lAB , and

ζα,αB is the wave function in subregion B which is almost de-
coupled with subregion A (normalized by

∑
αB

|ζα,αB |2 = 1).
A similar conclusion holds for conserved quantities local-

ized in subregion B.
(3) Case (iii). If the conserved quantity Q(n) is not subre-

gionally quasilocal, in the large system size limit we will have
Q(n)

AB comparable or even larger than Q(n)
A ⊗ IB and IA ⊗ Q(n)

B .
Therefore Q(n)

A or Q(n)
B will not be approximate subregion

conserved quantities. In this case, we expect the entire Q(n)

matrix to be sufficiently random (due to the Q(n)
AB term) in

the subregion eigenstate direct product basis |αA, A〉 ⊗ |αB, B〉
and will not contribute to the shape of the statistical average
of the wave function correlation uα,αA,αB u∗

α,α′
A,α′

B
.

b. Approximating the entanglement Hamiltonian

With the arguments in the three above cases, we expect the
eigenstate wave-function correlation in the large system size
limit to be approximately

uα,αA,αB u∗
α,α′

A,α′
B
= 1

N
δαA,α′

A
δαB,α′

B

∏
n∈Loc1

1

�(n)
(
q(n)

α

)δ(q(n)
α − q(n)

A,αA

− q(n)
B,αB

− q(n,d )
αA,αB

) ∏
n∈Loc2

δ
(
q(n)

α − q(n)
A,αA

)
,

(B7)

where

�(n)(q) = 1

N

∑
α

δ
(
q − q(n)

α

)
(B8)

denotes the normalized density of states of the operator Q(n).
Besides, n ∈ Loc1 runs over all the subregionally (quasi)local
conserved quantities Q(n) which are extensive, and n ∈ Loc2

runs over all the subregionally (quasi)local conserved quanti-
ties Q(n) which are localized in subregion A and are not the
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polynomial function of another localized conserved quantity.
Generically, in the sets Loc1 and Loc2, we require n � 1
(excluding the identity operator), and require Eq. (B3) to
be satisfied (see discussion in the next section B 2). Note
that when there is only one subregionally (quasi)local exten-

sive conserved quantity, which has to be the Hamiltonian H ,
Eq. (B7) reduces to Eq. (A18).

This yields a reduced density matrix in subregion A (where
we used the fact that the mean value of q(n,d )

αA,αB
is zero for n � 1)

〈αA, A|ρA(α)|α′
A, A〉 =

∑
αB

uα,αA,αB u∗
α,α′

A,αB
≈ δαA,α′

A
NB

N

∏
n∈Loc1

∫
�

(n)
B

(
q(n)

B

)
�(n)

(
q(n)

α

)δ(q(n)
α − q(n)

A,αA
− q(n)

B,αB

)
dq(n)

B

∏
n∈Loc2

δ
(
q(n)

α − q(n)
A,αA

)
= δαA,α′

A

NA

∏
n∈Loc1

�
(n)
B

(
a(n)

A

(
q(n)

α , q(n)
A,αA

))
�(n)

(
q(n)

α

) ∏
n∈Loc2

δ
(
q(n)

α − q(n)
A,αA

)
, (B9)

where

�
(n)
B

(
q(n)

B

) = 1

NB

∑
αB

δ
(
q − q(n)

B,αB

)
(B10)

is the normalized density of states of the subregion conserved
quantity Q(n)

B , and similar to Eq. (A21), one expects the func-
tion

a(n)
A

(
q(n)

α , q(n)
A,αA

) ≈ q(n)
α − q(n)

A,αA
(B11)

in the limit lAB 
 LA, LB.
As we have discussed in the previous subsection, for

n ∈ Loc2, the delta functions δ(q(n)
α − q(n)

A,αA
) in Eq. (B9) has

a width �(n)
α ∝ e−c(n)LA/lAB . We can therefore approximate it

as Gaussian functions ∝ 1√
2π�

(n)
α

e−(q(n)
α −q(n)

A,αA
)2/2(�(n)

α )2

. If fur-

ther we expand over q(n)
A,αA

(n � 1) to the first order (in the
limit lAB 
 LA 
 LB), we find an approximate entanglement
Hamiltonian of subregion A given by

HA
E (α) ≈ β

(0)
A (α)IA +

∑
n∈Loc1

β
(n)
A (α)Q(n)

A

+
∑

n∈Loc2

[
β

(n)′
A (α)Q(n)

A + β
(n)′′
A (α)

(
Q(n)

A

)2]
. (B12)

Similar to Eq. (A24), and note that the mean values of q(n)
α

and q(n)
A,αA

are zero, we find the coefficients are approximately
given by

β
(0)
A (α) = ln NA +

∑
n∈Loc1

ln
�(n)

(
q(n)

α

)
�

(n)
B

(
q(n)

α

)
+

∑
n∈Loc2

[
1

2

(
q(n)

α

�
(n)
α

)2

+ ln
√

2π�(n)
α

]
,

β
(n)
A (α) = b(n)

α

d ln �
(n)
B (q)

dq
|q=q(n)

α
, (n ∈ Loc1), β

(n)′
A (α)

= − q(n)
α

�
(n)
α

, β
(n)′′
A (α) = 1

2
(
�

(n)
α

)2 (n ∈ Loc2),

(B13)

where b(n)
α = 1 + O( q(n)

α lAB

LALB
) is a function which tends to 1

in the limit lAB 
 LA, LB. Note that (Q(n)
A )2 is also localized

in subregion A if n ∈ Loc2. We can redefine a subregionally

quasilocal set as{
Q(n)

A

∣∣n∈Loc
}={

Q(n)
A

∣∣n ∈ Loc1
} ∪ {

Q(n)
A , (Q(n)

A )2
∣∣n∈Loc2

}
,

(B14)

and thus we can rewrite Eq. (B12) in the form

HA
E (α) ≈ β

(0)
A (α)IA +

∑
n∈Loc

β
(n)
A (α)Q(n)

A . (B15)

Note that the set n ∈ Loc does not include n = 0, which corre-
spond to the trivial conserved quantity of the identity matrix.
More generically, if the actual shape of the finite-width delta
functions δ(q(n)

α − q(n)
A,αA

) are not Gaussian but other functions,

the polynomials (higher than square) of Q(n)
A with n ∈ Loc2

may generically be included in the set Loc in Eq. (B14),
which are by definition subregionally quasilocal and localized
in subregion A.

2. Noncommuting errors of the subregion conserved quantities

We now briefly discuss the noncommuting errors of the
subregion conserved quantities, and the range of the set Loc
of subregionally (quasi)local conserved quantities. Equation
(B3) indicates that at finite system sizes, the subregionally
quasilocal conserved quantities Q(n)

A always have noncom-
muting errors. In other words, under the subregion energy
eigenbasis |αA, A〉, the quantities Q(n)

A in Eq. (B15) also have
random off-diagonal elements in addition to the diagonal el-
ements we discussed in Sec. B 1. Equation (B3) limits the
magnitude of off-diagonal elements to

(Q(n)
A )αA,α′

A
= O

(
lAB

√
LA√

NA
e
−|q(n)

A,αA
−q(n)

A,α′
A
|/q(n)

0

)
(αA �= α′

A),

(B16)

where q(n)
0 is an order 1 number, and the exponential decay

is due to the (quasi)locality of Q(n)
A . Note that N−1/2

A ∼ e−SA/2

where SA is the entropy of the state in subregion A, therefore,
Eq. (B16) is in agreement with the estimations in the literature
[28]. Again, we note that this is an overestimation if Q(n)

A is
localized around a site in subregion A.
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Equation (B16) ensures that (Q(n)
A )p for any power p have

off-diagonal elements up to order O( 1√
NA

), and thus the factor

e−β
(n)
A (α)Q(n)

A in the reduced density matrix ρA(α) is not far away
from a diagonal matrix (or equivalently, the delta function in
Eq. (B7) holds up to order 1).

Therefore we conjecture that Eq. (B16), or equivalently,
Eq. (B3), gives the criterion for Q(n)

A to contribute to the entan-
glement Hamiltonian (with nonzero weight β

(n)
A in Eq. (B15)),

namely, the criterion for n ∈ Loc (the set of mutually commut-
ing subregionally (quasi)local conserved quantities). More
explicitly, we conjecture that Q(n)

A will contribute to the en-
tanglement Hamiltonians HA

E (α) with a nonzero weight (i.e.,
n ∈ Loc) if and only if∣∣∣∣[HA, Q(n)

A ]
∣∣∣∣∣∣∣∣HAQ(n)

A

∣∣∣∣ ∼
∣∣∣∣[Q(n)

A , Q(m)
A ]

∣∣∣∣∣∣∣∣Q(n)
A Q(m)

A

∣∣∣∣ =O
(

lAB

LA

)
(∀ n, m ∈ Loc),

(B17)

in the limit lAB 
 LA. This is nothing but a rewriting of
Eq. (B3). As we will see (in Sec. D 3 b), this criterion of
Eq. (B17) works intriguingly well for free fermions. For in-
teracting models, Eq. (B17) does not seem to set a sharp
boundary for the set Loc (which may be limited to finite sizes
of our numerical exact diagonalization).

APPENDIX C: DIAGONALIZATION OF THE EHSM

When the entanglement Hamiltonians HA
E (α) in subregion

A of an ensemble of the full region eigenstates α ∈ � are
known, all of which have the form of Eq. (B15), we can
solve for the conserved quantities and their weights in the
entanglement Hamiltonians.

To do this, we can regard each entanglement Hamiltonian
HA

E (α) (written down in a certain Hilbert space basis | j〉)
as a vector in the linear space of NA × NA matrices. More
explicitly, we can define a matrix basis |ζi j ) (1 � i, j � NA)
which represents an NA × NA matrix with matrix elements
δii′δ j j′ in row i′ and column j′. Here half parenthesis instead of
ket is used to denote the matrix basis, to avoid confusion with
the quantum state basis. We can then rewrite the entanglement
Hamiltonian HA

E (α) as a vector |HA
E (α)) = ∑

i, j HA
E ,i j (α)|ζi j ),

where HA
E ,i j represent the matrix elements of HA

E in row i
and column j. Thus, the inner product between two matrices
P and Q are exactly the Frobenius inner product, namely,
(Q|P) = tr(Q†P).

As given in the main text Eq. (8), we then define the
entanglement Hamiltonian superdensity matrix (EHSM) for
the set of entanglement Hamiltonians:

RA =
∑
α∈�

wα

NA

∣∣HA
E (α)

)(
HA

E (α)
∣∣

=
∑
α∈�

∑
i ji′ j′

wα

NA
HA

E ,i j (α)HA∗
E ,i′ j′ (α)|ζi j )(ζi′ j′ |, (C1)

where for generality, we assume one is free to set a weight
wα > 0 for each eigenstate |α〉 in the ensemble �, and∑

α∈� wα = 1. Note that the EHSM RA is a size N2
A × N2

A

matrix. Assume the EHSM can be diagonalized into into

RA =
∑
n�0

pA,n

∣∣Q(n)
A

)(
Q

(n)
A

∣∣, (C2)

where the eigenvectors |Q(n)
A ) are orthonormal, namely, they

satisfy (Q
(m)
A |Q(n)

A ) = tr(Q
(m)†
A Q

(n)
A ) = δmn. We note that the

matrices Q
(n)
A as normalized eigenvectors here are not neces-

sarily equal to Q(n)
A in Eq. (B15), although we expect that they

span the same linear space of size NA × NA matrices. Generi-
cally, a physical local or quasilocal conserved quantity would
have a Frobenius norm ||Q(n)

A || ∝ √
NALA, therefore, we ex-

pect the physical conserved quantities Q(n)
A ∼ √

NALA Q
(n)
A .

Generically, the EHSM is a big matrix of size N2
A × N2

A .
When the number of eigenstates N� in the ensemble � is
much smaller than N2

A , an efficient way of diagonalizing RA

is to diagonalize the following N� × N� entanglement corre-
lation matrix KA with matrix elements

KA,αβ =
√

wαwβ

NA

(
HA

E (α)
∣∣HA

E (β )
)
, (C3)

where α, β ∈ �. We now prove that the eigenvalues of the
correlation matrix KA are the same as the nonzero eigenvalues
of the EHSM RA, and their eigenvectors have a simple rela-
tion. Assume the nth eigenvector of KA is vA

n (n � 0), which
satisfies∑

β

KA,αβvA
n,β = pA,nv

A
n,α, vA†

m vn =
∑

α

vA∗
m,αvA

n,α = δmn,

(C4)

where we assume the eigenvalues pA,n are ranked in a de-
scending order. We can then define a vector in the matrix
space |Q(n)

A ) = 1√
NA pA,n

∑
β

√
wβvA

n,β |HA
E (β )), which has been

normalized, namely, (Q
(n)
A |Q(n)

A ) = 1. One can then verify that

|Q(n)
A ) is an eigenvector of the EHSM RA with eigenvalue

pA,n:

RA

∣∣Q(n)
A

)= 1√
NA pA,n

∑
αβ

wα
√

wβvA
n,β

∣∣HA
E (α)

)(
HA

E (α)
∣∣HA

E (β )
)

= 1√
NA pA,n

∑
αβ

√
wα

∣∣HA
E (α)

〉
KA,αβvA

n,β

= 1√
NA pA,n

∑
α

pA,n
√

wαvA
n,α

∣∣HA
E (α)

〉
= pA,n

∣∣Q(n)
A

)
, (C5)

where we have used Eq. (C4). Note that the rank of matrices
RA and KA are both equal to N�, so they have equal num-
ber of nonzero eigenvalues. Therefore we conclude that the
eigenvalues pA,n of matrix KA are exactly equal to all the
nonzero eigenvalues of RA, and the relation between their cor-
responding eigenvectors are given by Eq. (C5). Numerically,
it is easier to diagonalize KA if the number of eigenstates
N� < N2

A , which is equivalent to the diagonalization of RA.
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APPENDIX D: THE EHSM OF FREE FERMIONS

In this section, we give the details on the diagonalization
of the EHSM of the free fermion model given in main text
Eq. (10), namely,

H = −t
∑
〈i j〉

(c†
ri

cr j + H.C.) +
∑

j

μ jc
†
r j

cr j , (D1)

which has one fermion degree of freedom per site i, where t
is the nearest neighbor hopping and μi is a random potential
distributed within the interval [−W,W ].

1. Method of calculation

We assume the lth single-particle eigenstate wave func-
tions of the full region are φl,i (1 � l � L), with the
single-particle energy being εl . Accordingly, the many-body
eigenstates are generically given by

|α〉 =
L∏

l=1

( f †
l )ηα,l |0〉, f †

l =
∑

i

φl,ic
†
ri
, (D2)

where f †
l are the single-particle eigenstate fermion creation

operators, ηα,l = 0 or 1 is the occupation number of single-

particl e state l , and |0〉 is the particle number vacuum
with zero fermions. According to Ref. [41], the entanglement
Hamiltonian of the free fermion state |α〉 in subregion A is
given by

HA
E (α) = γA(α)IA +

∑
i, j∈A

κA,i j (α)c†
ri

cr j , (D3)

where the matrix κA(α) and the number γA(α) are defined by

κA(α) = ln(CA(α)−1 − IA), γ (α) = −tr ln(IA − CA(α)),
(D4)

in terms of the LA × LA two-particle correlation matrix CA(α)
with matrix elements

CA,i j (α) = 〈α|c†
ri

cr j |α〉 =
L∑

l=1

ηα,lφl,iφ
∗
l, j, (i, j ∈ A) (D5)

Note that HA
E (α) is a many-body Hamiltonian of size NA × NA,

while κA(α) and CA(α) are Hermitian matrices of size LA × LA

(recall that LA is the number of sites, and NA = 2LA in this
model). In this case, the Frobenius inner products of entangle-
ment Hamiltonians in Eq. (C3) are given by

〈
HA

E (α)
∣∣HA

E (β )〉 = tr
(
HA

E (α)HA
E (β )

)
=

∑
i ji′ j′∈A

(κA(α))i j (κA(β ))i′ j′ tr(c
†
i c jc

†
i′c j′ ) + γ (α)

∑
i j∈A

(κA(β ))i j tr(c
†
i c j )

+ γ (β )
∑
i j∈A

(κA(α))i j tr(c
†
i c j ) + γ (α)γ (β )trIA

=
∑

i ji′ j′∈A

(κA(α))i j (κA(β ))i′ j′
NA

4
(δi jδi′ j′ + δi′ jδi j′ ) + γ (α)

∑
i

NA

2
(κA(β ))ii

+ γ (β )
∑

i

NA

2
(κA(α))ii + γ (α)γ (β )NA

= NA

{
1

4
tr[κA(α)κA(β )] +

(
1

2
tr[κA(α)] + γ (α)

)(
1

2
tr[κA(β )] + γ (β )

)}
. (D6)

This greatly simplifies the calculation of the matrix KA in
Eq. (C3), and thus the diagonalization of the EHSM RA of
free fermions.

2. Numerical calculations

We numerically diagonalize the EHSM of the free fermion
Anderson model (D1) in both 1D and 2D (the lattices of which
are illustrated in the main text Fig. 1).

(i) In the 2D case, the system is in a lattice with Lx = 60
and Ly = 10 sites in the x and y directions, with periodic
boundary condition in both directions. We set the lattice con-
stant in both directions to be 1. The full 2D number of sites is
thus L = LxLy = 600. The 2D subregion A is defined to be the
region of sites within x coordinate 1 � x j � LA,x as shown in
the main text Fig. 1(a) (here (x j, y j ) is the 2D coordinate of
site j), which has number of sites LA = LA,xLy.

(ii) In the 1D case, we set the number of sites in the system
to be L = 500, with a periodic boundary condition. The 1D
subregion A is chosen to be the region of sites within the x
coordinate 1 � x j � LA.

In both cases, we calculate and diagonalize the EHSM for
an ensemble � of randomly chosen N� = 1000 eigenstates
of the full system, and each of the eigenstates has an equal
weight wα = 1/N� in the EHSM in Eq. (C1). We note that
if the two-particle correlation matrix C(α) in Eq. (D5) has
eigenvalues reaching 0 or 1, the entanglement Hamiltonian co-
efficients in Eq. (D4) will encounter divergence. To avoid such
numerical divergences, we relax the 0 and 1 eigenvalues of
C(α), if any, into δ and 1 − δ, respectively, with δ being a suf-
ficiently small positive number. In practice, we set δ = 10−16.
We note that C(α) has almost 0 or 1 eigenvalues only when the
single-particle eigenstates of the system are localized. We also
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FIG. 7. The log-log plot (ln10 pA,n vs ln10 n) of the EHSM eigenvalues pA,n for free fermion models in 1D [(a) and (b)] and in 2D [(c) and
(d)], which are calculated for randomly chosen 1000 many-body eigenstates. The Hamiltonian is given by Eq. (D1), and the parameters
are labeled in the panels. For 1D [(a) and (b)], the system size is L = 500, and the A subsystem sizes LA = 5, 10, 15 are considered. For
2D [(c) and (d)], the system size is given by L = LxLy, with Lx = 60 and Ly = 10 fixed, while the A subsystem size is LA = LAxLy with
LAx = 5, 10, 15 examined. In (a) and (c) when the single-particle states are delocalized, pA,n shows a sharp cutoff towards zero around n = 3LA

and 3LA � n � 7LA, respectively. In contrast, in (b) and (d) where the single-particle states are localized, pA,n shows a sharp cutoff towards
zero around n = LA.

verified that the numerical EHSM eigenvalues are insensitive
to the cutoff δ.

The leading eigenvalues pA,n of the EHSM for several
different parameters in 2D and 1D are shown in the main text
Fig. 2 in a descending order (the values of pA,n/LA are plot-
ted). In 2D, we show the results for A subregion sizes LAx =
5, 10, 15 (corresponding to LA = 50, 100, 150), while in 1D,
we show the results for A subregion sizes LA = 10, 30, 50.
The logarithm ln10 pA,n of the eigenvalues pA,n with respect
to ln10 n are shown in Fig. 7. We now discuss the results for
extended fermions and localized fermions, respectively.

3. Conserved quantities of extended free fermions

Figures 7(a) and 7(c) shows the results for t = 1 and W =
0, in 1D and 2D, respectively. In this case, the single-particle
states of the entire system are delocalized plane waves. As
shown in Figs. 7(a) and 7(c), in this case with extended
single-particle fermion eigenstates, we find the eigenvalues
pA,n decays to 0 around n = zLA (which corresponds to the
sharp drop in the log-log plot in Fig. 7), where z = 3 for 1D,
and 3 � z � 7 in 2D. Indeed, if we examine the subregion A
which has open boundary condition in the x direction (and
periodic boundary condition in the y direction in 2D), we can
approximately find 3LA single-body conserved quantities in
1D and 3LA to 7LA single-body conserved quantities in 2D,
which agree well with the EHSM eigenoperators, as we will
explain below.

a. The 1D case

We first examine the 1D model. Assume the x coordinate
of subregion A of the 1D lattice ranges from 1 to LA. With
an open boundary condition, the subregion A eigenstates are
standing waves with creation operators

c†
A,kx

− c†
A,−kx√

2
, (D7)

where c†
A,kx

= 1√
LA

∑
j∈A e−ikxx j c†

xi
, and the momentum takes

values kx = πmx
LA+1 , mx ∈ Z+ and 1 � mx � LA. The Hamilto-

nian can thus be written as

HA = −
∑
kx>0

2t cos kx

(
c†

A,kx
− c†

A,−kx√
2

)(
cA,kx − cA,−kx√

2

)
= −

∑
kx>0

t cos kx
[(

c†
A,kx

cA,kx + c†
A,−kx

cA,−kx

)
− (

c†
A,−kx

cA,kx + c†
A,kx

cA,−kx

)]
. (D8)

One can then easily see the following quantities are con-
served:

T̃ A
kx

= c†
A,kx

cA,kx + c†
A,−kx

cA,−kx ,

P̃A
kx

= c†
A,−kx

cA,kx + c†
A,kx

cA,−kx . (D9)

By Fourier transformation, these conserved quantities can be
linear recombined into the real space form:

T A
x =

∑
kx

eikxxT̃ A
kx

≈
∑

xi,x+xi∈A

(c†
xi+xcxi + c†

xi
cxi+x ) (0 � x < LA),

PA
x =

∑
kx

e−ikxxP̃A
kx

≈
∑

xi,x−xi∈A

c†
x−xi

cxi (2 � x � 2LA), (D10)

which satisfy the approximately commuting criterion in
Eq. (13). In particular, we see that there are LA nonvanishing
operators T A

x (0 � x < LA), and approximately 2LA nonvan-
ishing operators PA

x (2 � x � 2LA).
The linear combinations of the 3LA operators in Eq. (D10)

then give the 3LA eigenoperators with nonzero EHSM eigen-
values pA,n (n > 0) for 1D extended fermions. To see this, we
investigate the numerically obtained EHSM eigenoperators
Q

(n)
of extended free fermions in 1D. From Eq. (D3), we know

that Q
(n)

is of the fermion bilinear form

Q
(n)
A = γ

(n)
A IA +

∑
i, j∈A

κ
(n)
A,i jc

†
ri

cr j , (D11)
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n=1 n=2 n=3 n=7 n=14 n=23

n=1 n=3 n=9 n=10 n=11 n=14

(a)

(b)

1D free fermions, t=1, W=0, L=500, LA=10

1D free fermions, t=0.1, W=1, L=500, LA=10

FIG. 8. The single-body matrices κ
(n)
A,i j [as defined in Eq. (D11)] of eigenoperators Q

(n)
(n � 1) for 1D free fermions, where the entire

system size is L = 500, and subregion size is LA = 10. The x and y axes of each panel give the row and column indices of the matrices κ
(n)
A,i j ,

with i, j sorted along the lattice of subregion A from the left to the right. The colorbar values for each n are given in units of the maximal
absolute value of matrix element κ

(n)
A,i j . (a) shows several examples for t = 1, W = 0 where the fermions are extended, while (b) shows a few

examples for t = 0.1 and W = 1 where the fermions are localized.

where γ
(n)

A is some constant, and κ
(n)
A,i j is a matrix of size

LA × LA. Numerically, we find that the n = 0 quantity is dom-
inantly Q

(0)
A ∝ IA, while for n � 1 we approximately have

tr(Q
(n)
A ) = 0. In Fig. 8(a), we plot examples of the matrices

κ
(n)
A,i j (n � 1) for 1D free fermions with t = 1, W = 0, L =

500, and LA = 10, where the horizontal and vertical axis are
the row and column indices of the matrices κ

(n)
A,i j . We find Q

(n)
A

with 1 � n � LA are approximately dominated by linear com-
binations of T A

x in Eq. (D10), while Q
(n)

with LA < n � 3LA

are approximately dominated by linear combinations of PA
x in

Eq. (D10).

b. The 2D case

We now turn to the 2D case, which is more complicated.
Assume the x coordinate of subregion A ranges from 1 to LA,x,

and the y coordinate is periodic with total length Ly. The total
number of sites in subregion A is LA = LA,xLy. Subregion A
then has an open boundary condition in the x direction and a
periodic boundary condition in the y direction. Therefore the
subregion A eigenstates are standing waves in the x direction,
the creation operators of which are given by

c†
A,kx,ky

− c†
A,−kx,ky√

2
, (D12)

where c†
A,kx,ky

= 1√
LA

∑
j∈A e−ikxx j−ikyy j c†

xi,yi
is the momentum

k eigenstate, kx = πmx
LA,x+1 , ky = 2πmy

Ly
, which take values mx ∈

Z+, 1 � mx � LA,x and my ∈ Z, 0 � my � Ly − 1. Accord-
ingly, the subregion A Hamiltonian HA can be diagonalized
into

HA =
∑
kx>0

∑
ky

ε(k)

(
c†

A,kx,ky
− c†

A,−kx,ky√
2

)(
cA,kx,ky − cA,−kx,ky√

2

)

= 1

2

∑
kx>0

∑
ky

ε(k)
[(

c†
A,kx,ky

cA,kx,ky + c†
A,−kx,ky

cA,−kx,ky

) − (
c†

A,−kx,ky
cA,kx,ky + c†

A,kx,ky
cA,−kx,ky

)]
, (D13)

where ε(k) = −2t (cos kx + cos ky). Therefore, similar to the 1D case, one can prove the following quantities are conserved
quantities and mutually commuting:

T̃ A
kx,ky

= c†
A,kx,ky

cA,kx,ky + c†
A,−kx,ky

cA,−kx,ky , P̃A,1
kx,ky

= c†
A,−kx,ky

cA,kx,ky + c†
A,kx,ky

cA,−kx,ky . (D14)

One can linear recombine these conserved quantities approximately into the following conserved quantities in the real space:

T A
x,y =

∑
kx,ky

eikxx+ikyyT̃ A
kx,ky

≈
∑

xi,x+xi∈A

(
c†

xi+x,yi+ycxi,yi + c†
xi,yi+ycxi+x,yi

)
(0 � x < LA,x, 0 � y < Ly),
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PA,1
x,y =

∑
kx,ky

e−ikxx+ikyyP̃A,1
kx,ky

≈
∑

xi,x−xi∈A

c†
x−xi,yi+ycxi,yi (2 � x � 2LA,x, 0 � y < Ly). (D15)

where all the fermion operators c†
r and cr are restricted within subregion A. Here y j identified with y j + Ly, and x, y ∈ Z.

Therefore, for quantity T A
x,y, we can take 0 � x � LA,x − 1 and 0 � y � Ly − 1, which in total yields about LA = LA,xLy linearly

independent quantities T A
x,y. In contrast, for quantity PA,1

x,y , the x coordinate can take values 2 � 2LA,x, while 0 � y � Ly − 1.
Therefore there are in total 2LA − 1 linearly independent quantities PA

x,y. These 3LA quantities T A
x,y and PA,1

x,y satisfy the
approximately commuting criterion in Eq. (13), and are thus expected to contribute to the EHSM.

In addition, since the single-particle energy εk is even in kx and ky, there are two another sets of conserved quantities
commuting with the 2D Hamiltonian HA in Eq. (D13):

P̃A,2
kx,ky

= c†
A,kx,−ky

cA,kx,ky + c†
A,kx,ky

cA,kx,−ky , P̃A,3
kx,ky

= c†
A,−kx,−ky

cA,kx,ky + c†
A,kx,ky

cA,−kx,−ky . (D16)

However, they do not commute with T̃ A
kx,ky

and P̃A,1
kx,ky

in Eq. (D14). Nevertheless, if we Fourier transform them, they can be
rewritten as

PA,2
x,y =

∑
kx,ky

eikxx−ikyyP̃A,2
kx,ky

≈
∑

xi,x−xi∈A

c†
xi+x,y−yi

cxi,yi (−LA,x < x < LA,x, 0 � y < Ly),

PA,3
x,y =

∑
kx,ky

e−ikxx−ikyyP̃A,3
kx,ky

≈
∑

xi,x−xi∈A

c†
x−xi,y−yi

cxi,yi (2 � x � 2LA,x, 0 � y < Ly). (D17)

Therefore altogether we have 2LA operators PA,2
x,y , and 2LA operators PA,3

x,y .
If one examines the commutation errors of the 4LA additional operators in Eq. (D17) with the 3LA conserved operators in

Eq. (D15), one finds that ∣∣∣∣[T A
x,y, PA, j

x′,y′
]∣∣∣∣∣∣∣∣T A

x,yPA, j
x′,y′

∣∣∣∣ ∼
∣∣∣∣[PA,1

x,y , PA, j
x′,y′

]∣∣∣∣∣∣∣∣PA,1
x,y PA, j

x′,y′
∣∣∣∣ ∝ 1√

LA
= 1√

LA,xLy
( j = 2 and 3). (D18)

This seems not satisfying the criterion Eq. (13). However, by noting that the boundary between A and B in our setup has a size
lAB = 2Ly, thus lAB

LA
= 2

LA,x
, we can rewrite the above equation as∣∣∣∣[T A

x,y, PA, j
x′,y′

]∣∣∣∣∣∣∣∣T A
x,yPA, j

x′,y′
∣∣∣∣ ∼

∣∣∣∣[PA,1
x,y , PA, j

x′,y′
]∣∣∣∣∣∣∣∣PA,1

x,y PA, j
x′,y′

∣∣∣∣ ∝
√

LA,x

Ly

lAB

LA
( j = 2 and 3). (D19)

Therefore, for subregion A with a fixed aspect ratio: (i) if
LA,x 
 Ly, the 4LA additional operators PA, j

x,y ( j = 2 and 3)
satisfy the criterion in Eq. (13), and thus one would expect 7LA

approximately conserved quantities Q(n)
A with EHSM weights

pA,n > 0.
(ii) If LA,x � Ly, the 4LA additional operators PA, j

x,y ( j =
2 and 3) would not satisfy Eq. (13), in which case one expects
only 3LA approximately conserved quantities Q(n)

A (given by
Eq. (D15) with pA,n > 0. This is also the quasi-1D limit of the
2D system, and thus in agreement with the 1D case.

In Fig. 9, we plot the logarithm of EHSM eigenvalues
pA,n for 2D extended free fermions with different subregion
A aspect ratios LA,x/Ly. Indeed, as expected above, we find
the cutoff of nonzero pA,n is at zLA, with z → 3 if LA,x � Ly,
and z → 7 if LA,x 
 Ly. Intriguingly, we see the criterion in
Eq. (13) for conserved quantities contributing to the EHSM
works well.

4. Conserved quantities of localized free fermions

In Figs. 7(b) and 7(d) [see also the main text Figs. 1(b)
and 1(d)], we set the parameters to t = 0.02, W = 1 (in 2D)
and t = 0.1, W = 1 (in 1D), respectively, in which case the
single-particle states are strongly localized. In this case, we
find the EHSM eigenvalues pA,n has a sharp cutoff around

n ≈ LA: the eigenvalues pA,n with n > LA become vanish-
ingly small compared to those with n < LA. This can be seen
more clearly in the main text Figs. 1(b) and 1(d), and can
also be seen by noting the kink around n = LA in Figs. 7(b)
and 7(d). This is because in the strongly localized limit, the
single-particle eigenstates are almost localized on each site,
namely, the lth eigenstate fermion operators f †

l ≈ c†
rl

. As a
result, one expect no long range entanglement, and the entan-
glement Hamiltonian in Eq. (D3) almost only contains local
fermion bilinear terms c†

rl
crl (l ∈ A). This would only yield

LA linearly independent eigenoperators Q
(n)
A with nonzero pA,n

(1 � n � LA), which are approximately the linear combina-
tions of 2c†

rl
crl − 1 (so written that it is traceless). Besides,

numerically we find Q
(0) ∝ IA.

In Fig. 8(b), we have plotted the κ
(n)
A,i j (n � 1) of the eigen-

operators Q
(n)
A (defined in Eq. (D11)) for 1D free fermions

with t = 1, W = 0, L = 500, and LA = 10. In the panels, the
x and y axis are the row and column indices of the matrices
κ

(n)
A,i j . As one can see, for 1 � n � LA, the eigenoperators Q

(n)
A

are linear combinations of the occupation numbers of single-
particle localized wave functions. Two examples with n > LA
(n = 11, 14) are also shown in Fig. 8(b), which become less
localized. Accordingly, their EHSM eigenvalues pA,n are van-
ishingly small compared to those of n � LA.
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FIG. 9. The logarithm of the EHSM eigenvalues, ln10 pA,n, plot-
ted versus n for 2D extended fermions. The full system size is
L = LxLy, Lx = 60, and Ly = 10, with periodic boundary condition
in both directions. The subregion A size is LA = LA,xLy, with open
boundary in the x direction and periodic in the y direction. The cal-
culation is done for LA,x = 3, 5, 10, 15, 20, respectively. The dashed
line shows the cutoff position of pA,n where it drops to almost zero
[see also main text Fig. 2(a) for the plot of pA,n]. The cutoff ap-
proaches 7LA when LA,x 
 Ly, and approaches 3LA when LA,x � Ly.

APPENDIX E: THE EHSM OF THE 1D XYZ MODEL
IN A MAGNETIC FIELD

1. EHSM eigenvalues and entanglement entropies

We numerically study the EHSM of the 1D XYZ model,
to which we can add either uniform or disordered magnetic
fields. The model Hamiltonian is given by the main text
Eq. (11), which we rewrite here:

H =
L∑

j=1

[Jxσ j,xσ j+1,x + Jyσ j,yσ j+1,y + Jzσ j,zσ j+1,z

+ (B + δB j ) · σ j]. (E1)

Here σ j,ν (ν = x, y, z) are the Pauli matrices on site j. We
have added both a uniform magnetic field B, and a random
magnetic field δB j with each component δBj,ν indepen-
dently randomly distributed in the interval [−BR,ν , BR,ν] (ν =
x, y, z), in which BR is given. We perform the exact diagonal-
ization of model (E1) for a 1D lattice with L = 14 sites with
periodic boundary condition. We then calculate the EHSM in
subregion A of sizes LA up 7 (half of the system size).

In calculating the entanglement Hamiltonians, an en-
tanglement Hamiltonian may have a diverging part if its
corresponding reduced density matrix has an exactly zero
eigenvalue. This may happen when the Hilbert space is frag-
mented into noncommunicating subspaces. Such exactly zero
eigenvalues usually does not occur in ρA if the system is
delocalized, in which case such fragmented Hilbert subspace
would involve both subregions A and B, thus is not a closed
subspace within the Hilbert space of subregion A. However,
if the system is localized, one may end up with almost or

exact zero eigenvalues in ρA. In this case, we substitute the
(almost) zero eigenvalues by a small number ε > 0 to avoid
divergence. We find the behaviors of the EHSM eigenvalues
are rather insensitive to the small number cutoff ε. Here we
take ε to 10−16.

In the main text Fig. 3, we diagonalize the EHSM for the
ensemble � containing all the N eigenstates of the full region,
with equal weights wα = 1/N for all the eigenstates, and plot
the EHSM eigenvalues pA,n with respect to n. The six panels
of main text Fig. 3 correspond to six different representative
sets of parameters (labeled at the top of the panels, see also
below), and the sizes of subregion A we examined are LA =
4, 5, 6, 7. Figure 10 shows the log-log plot of the main text
Fig. 3, namely, log10 pA,n as a function of log10n.

Figure 11 shows the subregion A (size LA = 7) entangle-
ment entropies

SA(α) = −tr(ρA(α) ln ρA(α)) (E2)

of all the eigenstates |α〉 of the full region plotted versus the
eigenstate energies Eα . The parameters of the 6 panels are the
same as those in the main text Fig. 3 (and Fig. 10).

We first briefly describe the properties of the six sets of
parameters in the six panels of the main text Figs. 3(a)– 3(f)
[as well as Figs. 10(a)–10(f) and 11(a)–11(f)].

(a)(Jx, Jy, Jz ) = (1, 1, 1), B = (0, 0, 10−10), BR =
(0, 0, 0). This is the isotropic case with equal spin couplings in
all directions, known as the XXX model. In our calculations,
we have added a very small magnetic field in the z direction
to pin the energy eigenstates also into eigenstates of

∑
j σ j,z,

an obvious conserved quantity. The XXX model is known to
be integrable (exactly solvable) by the Bethe ansatz, and a
class of local and quasilocal conserved quantities have been
derived in Refs. [9,10].

(b)(Jx, Jy, Jz ) = (0.5, 0.5, 1), B = (0, 0, 0), BR =
(0, 0, 0). This set of parameters with Jx = Jy gives the
XXZ model, which is also integrable, and has a class of local
conserved quantities [9].

(c)(Jx, Jy, Jz ) = (0.5, 0.8, 1), B = (0, 0, 0), BR =
(0, 0, 0). This is the generic XYZ model with three spin
couplings unequal. The model is still integrable, and a class
of local conserved quantities can be found [9].

(d)(Jx, Jy, Jz ) = (0.5, 0.8, 1), B = (0, 0, 1), BR =
(0, 0, 0). This is the generic XYZ model in a uniform
magnetic field B. It is proved that local conserved quantities
do not exist for such a model [46]. However, this does not
rule out the existence of quasilocal conserved quantities.

(e)(Jx, Jy, Jz ) = (0.5, 0.5, 1), B = (0, 0, 0), BR =
(0, 0, 5). This set of parameters give an XXZ model with
a random magnetic field in the z direction. This model is
expected to be in the MBL phase when the random magnetic
field BR,z is above a threshold. The MBL phase is argued to
have numerous localized (quasi)local conserved quantities,
making the system (approximately) integrable.

(f)(Jx, Jy, Jz ) = (0.5, 0.5, 1), B = (0, 0, 0), BR =
(1, 0, 1). This is the XXZ model with independent random
magnetic fields in the x and the z direction. In this case, we
find the model is fully chaotic: the level spacing statistics
shows the Wigner-Dyson statistics of the gaussian orthogonal
ensemble (GOE), and the entanglement entropy of all
the eigenstates show a perfect volume law [Fig. 11(f)].
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(Jx,Jy,Jz)=(1,1,1),B=(0,0,10   ),B   =0R
-10 (Jx,Jy,Jz)=(0.5,0.5,1),B=0,B   =0R (Jx,Jy,Jz)=(0.5,0.8,1),B=0,B   =0R

(Jx,Jy,Jz)=(0.5,0.8,1),B=(0,0,1),B   =0R (Jx,Jy,Jz)=(0.5,0.5,1),B=0,B   =(0,0,5)R (Jx,Jy,Jz)=(0.5,0.5,1),B=0,B   =(1,0,1)R

FIG. 10. The log-log plot of log10 pA,n vs log10n for the EHSM of the 1D XYZ model, calculated for an ensemble � of all the eigenstates
|α〉 of the full system with equal weights wα . The full system size is L = 14, and subregion A has size LA = 4, 5, 6, 7. The parameters in each
panel are the same as those in each panel of the main text Fig. 3, namely, this figure is the log-log plot of the main text Fig. 3. In (a)–(c) where
the magnetic fields are zero, the XYZ model is translationally invariant and known to be integrable. Within the system size studied here, we
find pA,n decays approximately as pA,n ∝ n−s, where the exponent s ≈ 1. In (e) where there is a random magnetic field in the z direction, the
state is known to be in the MBL phase (see Fig. 11 for entanglement entropy evidence), which has localized quasilocal conserved quantities.
Accordingly, we find pA,n also decays approximately as a power law pA,n ∝ n−s, but the exponent s ≈ 1.5–2 is larger than that in (a)–(c).

Accordingly, we find only pA,0 and pA,1 are obviously
nonzero [main text Fig. 3(f)], which correspond well to
the only two local subregion conserved quantities of the
trivial identity matrix IA and the subregion Hamiltonian
HA.

In the cases (a)–(d), as shown in Figs. 11(a)–11(d), the
majority eigenstates show a volume law entanglement en-
tropy, and this is due to the existence of extended quasiparticle
states in the system. In case (e) [Fig. 11(e)] where the system
shows many-body localization, most eigenstates have small
entanglement entropy due to the area law nature of the states.
While in the fully chaotic case (f) [Fig. 11(f)], the eigenstates
show perfect volume law entanglement entropies.

From the log-log plot of the EHSM eigenvalues pA,n versus
n in Fig. 10, we find that within the limited system size we
studied, pA,n of integrable systems approximately decay as
a power law pA,n ∝ n−s. For parameters in Figs. 10(a)–10(c)
where the XYZ model is known to be analytically integrable,
we find approximately pA,n ∝ n−s, with the exponent s ≈ 1.
For Fig. 10(e), which is in the MBL phase, we also see pA,n ∝
n−s for a considerable range of n, with s ≈ 1.5–2. More ex-
amples of MBL phase is shown in Fig. 12, where we see that
the decaying exponent s has no obvious dependence on the
parameters (generically around s ≈ 1.5–2.5), as long as the

system is in the MBL phase. When the random magnetic field
increases [Fig. 12(b)], pA,n deviates more from the power-law
decaying behavior, possibly because the system is closer to a
noninteracting system (dominated by random fields).

Overall, for interacting integrable models, within the small
system sizes we studied, we find power-law decay is a good
fit for the EHSM eigenvalues pA,n. Enlarging the system size
for interacting models is numerically difficult, and we leave
the study of larger system sizes in the future.

In contrast, in Fig. 10(f), which is fully chaotic, the decay-
ing behavior of pA,n clearly deviates from a simple power-law
decay. In the main text Fig. 3, one can see that only pA,0 and
pA,1 are large, and we find their eigenoperators approximately
give the identity IA and subregion Hamiltonian HA.

2. How well the EHSM eigenoperators are conserved quantities

In this subsection, we test how well the EHSM eigenvec-
tors (eigenoperators) Q

(n)
A (which are matrices in the Hilbert

space) are conserved quantities in subregion A. To examine
this, for each normalized eigenoperator Q

(n)
A , we define a
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FIG. 11. The entanglement entropy of all the eigenstates, where the full system size L = 14, and subregion A has a size LA = 7. The
parameters in each panel is chosen the same as those in each panel of the main text Fig. 3.

commutator-anticommutator ratio

r (n)
A = tr

( − [
Q

(n)
A , HA

]2)
tr
({

Q
(n)
A , HA

}2) , (E3)

where HA is the Hamiltonian in subregion A as defined in main
text Eq. (2), while [A, B] = AB − BA and {A, B} = AB + BA
stand for commutator and anticommutator, respectively. For
Hermitian operators Q

(n)
A , one has r (n)

A � 0. If r (n)
A is close to

zero, Q
(n)
A will be a good conserved quantity of subregion A.

In Table I below, we list the commutator-anticommutator
ratio of the first 7 EHSM eigenoperators Q

(n)
A (0 � n � 6) for

the XYZ model with six groups of parameters given in the
main text Fig. 3 (see also Fig. 11), where the total system

size L = 14 and subsystem size LA = 7. As we can see, all
the ratios r (n)

A are close to zero, indicating they are indeed
approximate subregion A conserved quantities.

3. Extracted subregion conserved quantities for the XXZ model

In this section, we discuss how the EHSM eigenoperators
Q

(n)
A look like for the XXX model [main text Fig. 3(a)] and

the XXZ model [main text Fig. 3(b)]. Recall that the eigen-
operators Q

(n)
A are sorted in the order of descending EHSM

eigenvalues pA,n (n � 0).
In Table II, we calculate the overlap between the numer-

ical EHSM eigenoperators Q
(n)
A and various operators MA in

FIG. 12. More examples of log-log plot of the EHSM eigenvalues for systems in the MBL phase, where the full system size L = 14, and
subregion A has a size LA = 7. The parameters are labeled in each panel, which are all in the MBL phase.
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TABLE I. The commutator-anticommutator ratio r (n)
A for the leading seven EHSM eigenoperators Q

(n)
A of the XYZ model, where the

parameters are as labeled in the panels (a)–(f) of main text Fig. 3 (also Fig. 11), and the full system and subsystem sizes are L = 14 and
LA = 7.

Fig. 3 label XYZ model parameters r (0)
A r (1)

A r (2)
A r (3)

A r (4)
A r (5)

A r (6)
A

(a) (Jx, Jy, Jz ) = (1, 1, 1), B = (0, 0, 10−10 ), BR = (0, 0, 0) 0.0001 0.0014 0.0010 0.0067 0.0356 0.0443 0.1615
(b) (Jx, Jy, Jz ) = (0.5, 0.5, 1), B = (0, 0, 0), BR = (0, 0, 0) 0.0001 0.0011 0.0011 0.0018 0.0476 0.0804 0.0240
(c) (Jx, Jy, Jz ) = (0.5, 0.8, 1), B = (0, 0, 0), BR = (0, 0, 0) 0.0004 0.0012 0.0423 0.0356 0.0799 0.0188 0.0314
(d) (Jx, Jy, Jz ) = (0.5, 0.8, 1), B = (0, 0, 1), BR = (0, 0, 0) 0.0001 0.0005 0.0010 0.0035 0.0025 0.0145 0.0143
(e) (Jx, Jy, Jz ) = (0.5, 0.5, 1), B = (0, 0, 0), BR = (0, 0, 5) 0.0000 0.0001 0.0001 0.0002 0.0005 0.0004 0.0002
(f) (Jx, Jy, Jz ) = (0.5, 0.5, 1), B = (0, 0, 0), BR = (1, 0, 1) 0.0002 0.0008 0.0048 0.0092 0.0294 0.0166 0.0190

subregion A, which is defined as

ξ
(
Q

(n)
A , MA

) = tr
(
Q

(n)
A MA

)
||MA|| . (E4)

Note that we have normalized ||Q(n)
A || = 1. The parameters are

as defined in the main text Fig. 3(a) (the XXX model) and in
the main text Fig. 3(b) (the XXZ model), in both cases the
magnetic field is zero.

In particular, we examine the overlaps of Q
(n)
A with the

known analytical local conserved quantities Pn (n = 3, 4)
[8,9] generated by a boost operator K , as defined below. We
first define the 3 × 3 matrix J = diag(Jx, Jy, Jz ). We can the
rewrite the XYZ model without magnetic field Hamiltonian

H and define the Boost operator K as

H =
∑

j

σ j · (Jσ j+1), K =
∑

j

jσ j · (Jσ j+1). (E5)

Accordingly, a series of local conserved quantities are given
by P3 = c3[K, H], and Pn = cn[K, Pn−1], where cn are only
number factors which we choose for convenience. Note that
Pn is generically n-supported, namely, all the terms in Pn are
supported by no more than n neighboring sites. Here we only
study the first two conserved quantities derived in this way,
which are explicitly

P3 = 1

2
[K, H] =

∑
j

(Jσ j ) · [σ j+1 × (Jσ j+2)] (E6)

TABLE II. The overlap of EHSM eigenoperators Q
(n)
A with various operators in subregion A, where the model parameters are given by

the main text Fig. 3(a) (the zero field XXX model with (Jx, Jy, Jz ) = (1, 1, 1)) and the main text Fig. 3(b) (the zero field XXZ model with
(Jx, Jy, Jz ) = (0.5, 0.5, 1)), respectively. The full system size is L = 14, and the subregion A size is LA = 7.

Model parameter XXX model (main text Fig. 3(a)) XXZ model [main text Fig. 3(b)]

Overlap ξ with Q
(0)
A Q

(1)
A Q

(2)
A Q

(3)
A Q

(4)
A Q

(0)
A Q

(1)
A Q

(2)
A Q

(3)
A Q

(4)
A

IA −0.995 0.010 −0.041 0.040 0.027 0.989 0.047 −0.035 −0.088 −0.011
HA 0.043 −0.026 −0.963 0.061 0.091 −0.077 0.895 −0.283 −0.210 0.082∑

i σz,i 0.012 0.979 −0.023 0.024 −0.0156 0.059 0.355 0.768 0.463 0.098∑
i σx,i 0 0 0 −0.0002 −0.0003 0 0 0 0 0∑
i σx,iσx,i+1 0.027 −0.009 −0.558 −0.023 0.187 −0.015 0.372 −0.234 0.092 −0.144∑
i σy,iσy,i+1 0.027 −0.009 −0.558 −0.022 0.187 −0.015 0.372 −0.234 0.092 −0.144∑
i σz,iσz,i+2 0.011 −0.018 0.033 0.516 −0.152 −0.039 −0.006 0.324 −0.515 −0.007∑
i σx,iσx,i+2 0.019 −0.001 0.005 0.327 0.210 0.006 −0.012 0.022 −0.051 0.192∑
i σy,iσy,i+2 0.019 −0.001 0.005 0.327 0.210 0.006 −0.012 0.023 −0.050 0.192∑
i σz,iσz,i+3 0.021 −0.015 0.022 0.321 −0.263 −0.040 −0.024 0.251 −0.361 −0.265∑
i σx,iσx,i+3 0.027 −0.0003 −0.0007 0.170 0.058 −0.006 0.001 0.003 0.001 0.020∑
i σy,iσy,i+3 0.027 −0.0003 −0.0008 0.170 0.058 −0.006 0.001 0.003 0.001 0.020∑
i σz,iσz,i+4 0.008 −0.014 0.002 0.261 −0.236 −0.017 −0.018 0.174 −0.264 −0.203∑
i σx,iσx,i+4 0.013 −0.001 −0.015 0.143 0.005 0.003 0.003 0 −0.012 0.005∑
i σy,iσy,i+4 0.013 −0.001 −0.015 0.143 0.005 0.003 0.003 0 −0.012 0.005∑
i σz,iσz,i+1σz,i+2σz,i+3 −0.022 −0.001 −0.010 0.067 −0.099 0.039 0.035 −0.006 −0.112 0.009∑
i σz,iσx,i+1σx,i+2σz,i+3 −0.004 −0.0006 −0.033 −0.077 −0.230 −0.001 0.043 −0.038 0.032 −0.438∑
i σz,iσy,i+1σy,i+2σz,i+3 −0.004 −0.0006 −0.033 −0.077 −0.230 −0.001 0.043 −0.038 0.032 −0.438∑
i σx,iσz,i+1σz,i+2σx,i+3 −0.004 −0.0001 −0.044 −0.093 −0.215 0.002 0.017 −0.015 0.010 −0.080∑
i σy,iσz,i+1σz,i+2σy,i+3 −0.004 −0.0001 −0.044 −0.093 −0.215 0.002 0.017 −0.015 0.010 −0.080∑
i σx,iσy,i+1σy,i+2σx,i+3 −0.004 −0.0004 −0.047 −0.093 −0.215 0.001 0.031 −0.025 0.023 −0.172∑
i σy,iσx,i+1σx,i+2σy,i+3 −0.004 −0.0004 −0.047 −0.093 −0.215 0.001 0.031 −0.025 0.023 −0.172

P3 0 0 0 0 0 0 0 0 0 0
Porth

4 0.018 −0.007 −0.107 0.095 −0.506 −0.001 0.082 −0.075 0.066 −0.681
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(a) (b) (c) (d)

FIG. 13. [(a)–(c)] The EHSM spectrum for β
(n)
A (α) with a standard deviation given by Eq. (F3), where the cutoff of nonzero pA,n is set as

zLA = 100, and the exponent r = 0, 0.5 and 1 in (a)–(c), respectively. The inset in (c) shows that (pA,n)1/2r is linear in (1 − n
zLA

) near n = zLA.

(d) (pA,n)1/2 plotted versus n for the 2D extended fermions with parameters given in the main text Fig. 2(a). The linear dispersion near the
cutoff pA,n indicates an effective exponent r = 1.

and

P4 = 1

4
[K, P3]

=
∑

j,ν

[∑
μ

|εμνλ|JμJλσ j,μσν, j+1(Jμσν, j+2σμ, j+3

− Jνσμ, j+2σν, j+3)

+
∑
μ �=ν

J2
μJνσν, jσν, j+1 + JxJyJzσν, j−1σν, j+1

]
, (E7)

where εμνλ is the Levi-Civita symbol. We note that P3 is or-
thogonal to HA (tr(P3HA) = 0), but P4 is not orthogonal to the
physical Hamiltonian HA, namely, tr(HAP4) �= 0. Therefore
we define a conserved quantity Porth

4 orthogonal to HA as

Porth
4 = P4 − tr(P4HA)

||HA||2 HA. (E8)

Besides, we have tr(P3Porth
4 ) = 0.

To a good approximation, we find generically Q
(0)
A ∝ IA in

all the cases. For the XXZ models shown in Table II, the first
two nontrivial conserved quantities Q

(1)
A and Q

(2)
A are almost

the linear combinations of the subregion Hamiltonian HA and
the total z-direction spin

∑
i σz,i. We find the third conserved

quantity to be approximately

Q
(3)
A ≈

∑
j

∑
��1

[ζz(l )σz, jσz, j+l +ζ⊥(l )(σx, jσx, j+l + σy, jσy, j+l )]

+ ζ ′ ∑
j

σz, j, (E9)

FIG. 14. The EHSM spectrum by assuming β
(n)
A (α) has a stan-

dard deviation given by Eq. (F4), where the exponent s = 1 (a) and
2 (b). From the inset log-log plot, it is clear that the spectrum pA,n is
power-law decaying as n−s.

where ζz(l ) and ζ⊥(l ) decay as l grows, and ζ ′ is some con-
stant. For the example of the XXX model, ζ ′ ≈ 0. The fourth
conserved quantity Q

(4)
A is dominated by 4-support operators.

Accordingly, it has a major overlap with the 4-supported local
conserved quantity Porth

4 in Eq. (E8). In particular, we note that

none of the conserved quantities Q
(n)
A have a nonzero overlap

with the local conserved quantity P3.

APPENDIX F: FITTING THE BEHAVIORS
OF EHSM SPECTRA

We have shown that the free fermion EHSM spectra have
a cutoff in n where pA,n vanishes, while for the (small size)
integrable interacting XYZ model, the EHSM spectra decays
exponentially without a clear cutoff. This might be because
unlike free models where the entanglement Hamiltonians are
single-body terms, interacting models allow more many-body
terms in their entanglement Hamiltonians, which we leave for
the future studies. In this section, we show that these EHSM
spectra decaying behaviors fit certain probability distributions

of the weights β
(n)
A (α) of conserved quantities in the entangle-

ment Hamiltonians.
We first rewrite the main text Eq. (7) in terms of a set of

Frobenius orthonormal eigenoperators Q
(n)
A into

HA
E (α) =

∑
n

β
(n)
A (α)Q

(n)
A . (F1)

For states |α〉 in an ensemble � (with uniform weights wα =
1

N�
), we assume β

(n)
A (α) satisfies a Gaussian random distribu-

tion with mean value β
(n)
0 and standard deviation σ (n), namely,

〈β (n)
A (α)〉� = β

(n)
0 ,

√〈(
β

(n)
A (α) − β

(n)
0

)2〉
�

= σ (n). (F2)

We can then calculate the EHSM eigenvalues pA,n of such
an ensemble, which can be easily obtained by diagonalizing
the correlation matrix defined in Eq. (C3), which has matrix

elements here KA,αα′ = 1
N�NA

∑
n β

(n)
A (α)β

(n)
A (α′).

Numerically, we find the mean value β
(n)
0 does not quali-

tatively affect the behavior of the EHSM eigenvalues pA,n for
n > 0, but only mainly affect the value of pA,0. Since we are
interested in the decaying behavior of pA,n at n > 0, hereafter
we shall set β

(n)
0 = 0.
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FIG. 15. The EHSM spectrum of the 1D XYZ model calculated from the approximate “eigenstates” in Eq. (G1) by the time-evolution of
some noneigenstate. The time T varies from 10 to 10 000. The initial state is chosen to be a tensor product of random local spins. The model
parameters are given on top of each row and are the same within each row. Row 1 [(a)–(e)] is in the extended integrable phase, row 2 [(f)–(j)]
is in the MBL phase, and row 3 [(k)–(o)] is in the fully chaotic phase. The number of random energies Ẽα is N� = 500, and Ẽα are randomly
chosen within an energy window smaller than the energy range of the model.

1. Free fermions

First, we find the free fermion EHSM spectra near their
cutoffs in the main text Fig. 2 can be roughly fitted by a

random distribution of β
(n)
A (α) with standard deviations

σ (n) = σ (0)
(

1 − n

zLA

)r
, (r � 0) (F3)

where zLA is the number of nonzero pA,n in the EHSM spectra
(z is an order 1 number). Figures 13(a)–13(c) show three
examples of EHSM spectra for zLA = 100, N� = 1000, and
standard deviations in Eq. (F3), where the exponent r = 0, 0.5
and 1, respectively. The most prominent feature is that the
eigenvalues pA,n ∝ (1 − n

zLA
)2r near n = zLA [see for instance,

the inset of Fig. 13(c)]. By comparing with the free fermion
EHSM spectra in main text Fig. 2, we find the situations fit
roughly with the following parameters:

(i) For delocalized fermions in D = 1, 2 dimensions, the
exponent r ≈ 0.5D. In the 1D case as shown in the main text
Fig. 2(c), we find r ≈ 0.5, as pA,n is roughly linear in (1 −

n
zLA

) as n approaches the cutoff zLA [similar to Fig. 13(b)],
with z = 3 in 1D. In the 2D case shown in main text Fig. 2(a),
r ≈ 1, which can be seen more clearly from Fig. 13(d), where
(pA,n)1/2 is roughly linear in (1 − n

zLA
) near the cutoff at

n = zLA. The cutoff in 2D is roughly at z ≈ 5 if the subregion
has LA,x � LA,y (LA,x is the size perpendicular to the subregion
boundary), while is reduced towards z → 3 when LA,x > LA,y

which is more 1D-like.

(ii) For localized fermions in D = 1, 2 dimensions, we find
the exponent is roughly r ≈ 0.5(D − 1), and the cutoff is
at z = 1 independent of the spatial dimension. In 1D [main
text Fig. 2(d)], the sharp edge of pA,n dropping towards zero
resembles the spectra in Fig. 13(a), suggesting r ≈ 0 in the
strong disorder limit. In 2D shown in the main text Fig. 2(b),
pA,n tends to zero linearly near n = LA, which indicates an
exponent r = 0.5.

2. Interacting integrable XYZ models

We now turn to the fitting of the EHSM spectrum of the
integrable interacting XYZ models, which has a power-law
decaying behavior pA,n ∝ n−s. This behavior is well-fitted by

assuming the standard deviation of β
(n)
A (α) is also power-law

decaying:

σ (n) = σ (0)n−s/2, (n > 0, s > 0). (F4)

In Figs. 14(a) and 14(b), we have plotted the EHSM spectrum

for the β
(n)
A (α) standard deviations given by Eq. (F4) with the

exponent s = 1 and s = 2, respectively. In the inset log-log
plots, one can clearly see that pA,n decays as a power law n−s.
Such a behavior is the same as the actual EHSM spectra calcu-
lated for the integrable XYZ model parameters (see Fig. 10).
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APPENDIX G: EHSM FROM TIME EVOLUTION
OF NONEIGENSTATES

In some cases, one only knows the time evolution |ψ (τ )〉
of a noneigenstate |ψ (0)〉 from time 0 to T . If the time T is
long enough, one may choose a set of random energies {Ẽα}
(α ∈ �), and define a set of approximate “eigenstates”

|̃α〉T = 1

NT (α)

∫ T

0
dτeiẼατ |ψ (τ )〉, (G1)

where NT (α) is the normalization factor. An exact energy
eigenstate |α′〉 of energy Eα′ are expected to have an overlap

|〈α′ |̃α〉|2 ∝ sin2[(Ẽα−Eα′ )T/2]
(Ẽα−Eα′ )2 . Therefore, as T → ∞, the state

|̃α〉T is expected to resemble the energy eigenstate with energy
closest to Ẽα . We can then calculate the EHSM spectrum for
the set of states |̃α〉T generated from |ψ (τ )〉.

Here we do the calculations for the 1D XYZ model with
the same parameters L = 14, LA � 7 as studied in the main
text Fig. 3, and we choose the initial state |ψ (0)〉 to be a
tensor product state of randomly chosen on-site spin states.
We then generate N� = 500 random energies Ẽα within the
energy range of the model’s spectrum, and diagonalize the
EHSM of states |̃α〉T in Eq. (G1).

Figure 15 shows the EHSM for different time period T
(from 10 to 10 000) starting from the same the initial state

|ψ (0)〉, where the parameters are in the extended integrable
phase [(a)–(e)], in the MBL phase [(f)–(j)], and in the fully
chaotic phase [(k)–(o)], respectively. We find that the EHSM
spectrum stabilizes as T ∼ 100. As expected, in the integrable
cases [(a)–(j)], a power-law tail of the EHSM eigenvalues
exist, while in the fully chaotic case [(k)–(o)], only pA,0 and
pA,1 are significantly nonzero.

However, we note that the EHSM eigenoperators ob-
tained in this way are less mutually commuting than those
obtained from exact eigenstates. This is because |̃α〉T are
only approximate eigenstates, for which the entanglement
Hamiltonians would be less commuting with the physical
Hamiltonian. Unless T approaches the order of the Hilbert
space dimension N = dL (here N = 214 ≈ 16 000), the states
|̃α〉T would not be able to reproduce accurate enough subre-
gionally (quasi)local conserved quantities. The only exception
is the physical Hamiltonian, which emerge as the first non-
trivial subregionally (quasi)local conserved quantity pretty
accurately at small T (�10).

In reality, the time evolution of noneigenstates may be
numerically calculated less costly by trotterization (i.e., by
dividing time T into small steps). This may provide a more
efficient way to observe the behavior of the EHSM spectrum,
which we showed in Fig. 15 requires less time T . However, for
the recovery of subregionally conserved quantities, T ∼ dL

might be required, for which the error of trotterization will
become large.
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