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We show an application of the functional-renormalization-group aided density functional theory to the
homogeneous electron gas with arbitrary spin polarization, which gives an energy density functional in the local
spin density approximation. The correlation energy per particle is calculated at arbitrary Wigner–Seitz radius rs

and spin polarization ζ . In the high-density region, our result shows good agreement with Monte Carlo (MC)
data. The agreement with MC data is better in the case of small spin polarization, while the discrepancy increases
as the spin polarization increases. The magnetic properties given by our numerical results are also discussed.
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I. INTRODUCTION

Density functional theory [1–3] is a powerful framework
for many-body systems employed in various fields, including
condensed matter physics, quantum chemistry, and nuclear
physics. The accuracy of DFT depends on an energy density
functional (EDF) [4], which returns the ground-state energy
as a functional of the ground-state density. Although the
Hohenberg–Kohn theorem [1] guarantees the existence of the
exact EDF, it does not provide a microscopic way to derive
EDF; hence its development is a long-standing problem.

A useful framework for the construction of EDF is the
effective action formalism [5–8]. In this formalism, Polonyi,
Sailer, and Schwenk [9,10] put forward an approach inspired
by the functional renormalization group (FRG) [11–14]. We
refer to this approach as the functional-renormalization-group
aided density functional theory (FRG-DFT). This approach
is based on a functional differential equation, called flow
equation, in a closed form of the effective action, which
corresponds to the free-energy density functional multiplied
by the temperature [5–7]. For such a closed form of equa-
tion, some systematic approximation methods were proposed
[9,15–17]. The FRG-DFT has been numerically applied to
low-dimensional toy models [15–21] including a mimic of the
nuclear systems [18–20], and, recently, applied to electronic
systems [22,23], where we achieved the first application to
the two- and three-dimensional cases in the study of the ho-
mogeneous electron gas (HEG) and EDFs for electrons are
constructed in the local density approximation.

In the previous works of the FRG-DFT [9,10,15–23], the
EDF of the total particle-number density has been studied.
The Hohenberg–Kohn theorem guarantees that the ground-
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state properties are determined by the total particle-number
density. However, the Kohn–Sham scheme [2], which is a
commonly used method in DFT, has limited power when
formulated based on the EDF of total particle number: Al-
though it is suitable for accurate analysis of the ground-state
energy and density, the calculations of other quantities are not
always straightforward [24]. A way to extend the Kohn–Sham
scheme is introducing EDF depending on additional densities
[25]; one of such generalizations is taking into account the
particle-number densities of each spin component to describe
the magnetic properties [26]. Such a formulation of EDF
for multicomponent systems can also be directly applied to
analyses of nuclear matter, which is an infinite system of
nucleons composed of various components such as protons,
neutrons, and hyperons [27–37]. In the context of the FRG-
DFT, the EDF depending on the pairing density in addition
to the particle-number density to describe superfluid systems
was discussed in Ref. [38].

As for electron systems, a simple EDF of the particle-
number densities of each spin component is that in the local
spin density approximation (LSDA), in which the exchange-
correlation part of the EDF Exc[ρ↑, ρ↓] is approximated as

Exc[ρ↑, ρ↓] ≈
∫

dx (ρ↑(x) + ρ↓(x))εxc(ρ↑(x), ρ↓(x)), (1)

where εxc(ρ↑, ρ↓) is the exchange-correlation energy per par-
ticle, i.e., energy density, of the HEG of densities of particles
with up spin ρ↑ and down spin ρ↓. At some values of ρ↑
and ρ↓, εxc(ρ↑, ρ↓) has been obtained by the quantum Monte
Carlo (QMC) calculations [39]. The QMC results are of sig-
nificance not only for the construction of EDF [40–42] but
also for the discussion of the properties of the HEG itself:
In three dimensions, the existence of the phase transitions
from paramagnetic phase to partially polarized or ferromag-
netic phase and from ferromagnetic phase to Wigner crystal
is predicted [40,43–50], although the predicted values of the
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transition densities are not always similar among these works.
In two dimensions, the existence of the ferromagnetic phase is
indicated by Refs. [51–56], while it is suggested in Ref. [57]
that the ferromagnetic phase is never stable compared to the
paramagnetic one.

Since the QMC results are available only at a few values
of the densities due to the numerical cost, an empirical fitting
function for the data is needed to obtain the value of EDF
at arbitrary densities. In our previous work [23], we applied
the FRG-DFT for the calculation of the correlation energy
per particle in the spin-unpolarized (paramagnetic) case. We
obtained the values at many values of density, namely 65 536
points in the Wigner–Seitz radii rs ∈ [10−6 a.u., 100 a.u.),
which enables us to determine EDF almost without the de-
pendence on the fitting function.

In this paper, we extend our works [22,23] to the case of
arbitrary spin polarization ζ = (ρ↑ − ρ↓)/(ρ↑ + ρ↓). We give
a formulation of the FRG-DFT with arbitrary spin polarization
and dimensions. In the vertex expansion, which is a functional
Taylor expansion around densities of interest, we give the flow
equations for the density correlation functions at arbitrary or-
der. The correlation energy per particle εc(rs, ζ ) is calculated
at various rs and ζ in the three- and two-dimensional cases.
In the high-density region, our result shows good agreement
with QMC data as a result of the fact that our correlation
energy reproduces the exact behavior at high density given
by the Gell-Mann–Brueckner (GB) resummation [58,59]. The
agreement with QMC data is better in the case of small spin
polarization, while the discrepancy increases as the spin po-
larization increases, which causes the absence of the magnetic
phase transition predicted by the QMC calculations.

We also discuss the interpolation function fc(rs, ζ ) defined
by

fc(rs, ζ ) = εc(rs, ζ ) − εc(rs, 0)

εc(rs, 1) − εc(rs, 0)
, (2)

which characterizes the ζ dependence of EDF. Since εc at only
a few values of ζ and rs are available in QMC calculation,
interpolation with respect to ζ is demanded to obtain εc for
arbitrary ζ to perform LSDA calculations, as similar to the
interpolation with respect to rs. A popular approach to deter-
mine εc(rs, ζ ) [24,26] is the approximation fc(rs, ζ ) ≈ fx(ζ )
with the interpolation function for the exchange part fx(ζ )
given analytically. We find the deviation of fc(rs, ζ ) from
fx(ζ ) at small rs, where the FRG-DFT gives accurate results.

This paper is organized as follows: In Sec. II, we show
an FRG-DFT formalism with arbitrary spin polarization and
dimensions. The flow equations for the density correlation
functions at arbitrary order are given. The expression for the
correlation energy density is given in the case of the second-
order truncation. It is analytically shown that the expression
reproduces the GB resummation at high density. Our numeri-
cal results are presented in Sec. III. We show the result of the
rs and ζ dependencies of the correlation energy and discuss
the magnetic properties given by our calculation. Section IV
is devoted to the conclusion. In the Appendix, we give the
derivation of Eqs. (15) and (16).

II. FORMALISM

We consider the HEG with the homogeneous density ρ and
the inverse temperature β neutralized by the background ions
with the same density. In order to apply our formalism to the
three- and two-dimensional cases, we present the formulation
in a general spatial dimension D. The action in the imaginary-
time formalism is given by

S[ψ,ψ∗] = Sel[ψ,ψ∗] + Sint[ψ,ψ∗], (3a)

Sel[ψ,ψ∗] =
∑

s

∫
X

ψ∗
s (Xε )

(
∂τ − 1

2
∇2

)
ψs(X ),

Sint[ψ,ψ∗] = 1

2

∫∫
X, X ′

U2b(X, X ′)ρ̂	(X )ρ̂	(X ′). (3b)

Here, we have introduced the following notations: X = (τ, x)
with the imaginary time τ and spatial coordinate x, the co-
ordinate integral

∫
X = ∫ β

0 dτ
∫

dx, ρ̂	(X ) = ∑
s ρ̂s(X ) − ρ

with the electron field ψs(X ) having spin s and the electron
density operator ρ̂s(X ) = ψ∗

s (Xε )ψs(X ), and the simultaneous
Coulomb interaction,

U2b(X, X ′) = 1

|x − x′|δ(τ − τ ′). (4)

The interaction term Sint contains not only the electron-
electron interaction term but also the electron-ion and ion-ion
ones, which cancel each other, and consequently avoid the
divergence from the Hartree term in the infinite system [22].
Additionally, Xε = (τ + ε, x) with a positive infinitesimal ε

has been introduced so that the corresponding Hamiltonian is
normal ordered.

A. FRG-DFT flow equation

Following Refs. [9,10], we analyze the evolution of the sys-
tem with respect to the gradual change of the strength of the
two-body Coulomb interaction [Eq. (4)]. For this purpose, the
evolution parameter λ ∈ [0, 1] is attached to the interaction
term Sint[ψ,ψ∗] as follows:

Sλ[ψ,ψ∗] = Sel[ψ,ψ∗] + λSint[ψ,ψ∗]. (5)

This action becomes that for a noninteracting system at λ = 0
and Eq. (3a) at λ = 1.

Our previous works [22,23] were focused on EDFs of the
total density. In the present study, we extend our analysis to
the case of EDFs for spin-polarized systems. For this purpose,
we introduce the generating functional for the correlation
functions for ρ̂↑, ↓(X ):

Zλ[J↑, J↓] =
∫∫

Dψ Dψ∗ e−Sλ[ψ,ψ∗]+∑
s

∫
X ρ̂s (X )Js (X ). (6)

The Legendre transformation of the generating functional
for connected correlation functions Wλ[J↑, J↓] = ln Zλ[J↑, J↓]
gives the effective action:

�λ[ρ↑, ρ↓] = sup
J↑, J↓

(∑
s

∫
X

ρs(X )Js(X ) − Wλ[J↑, J↓]

)

=
∑

s

∫
X

ρs(X )Jsup, λ, s[ρ↑, ρ↓](X )

− Wλ[Jsup, λ, ↑[ρ↑, ρ↓], Jsup, λ, ↓[ρ↑, ρ↓]]. (7)
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Here, the external field Jsup, λ, s[ρ↑, ρ↓], which gives the supre-
mum of the first line of Eq. (7), satisfies

δWλ[Jsup, λ,↑[ρ↑, ρ↓], Jsup, λ,↓[ρ↑, ρ↓]]

δJs(X )
= ρs(X ). (8)

The equilibrium densities ρeq, s(X ) are determined through

δ�λ[ρeq, ↑, ρeq, ↓]

δρs(X )
= μs, (9)

where μs is the chemical potential of the electrons with the
spin component s. In this case, Eq. (7) becomes

�λ[ρeq,↑, ρeq,↓] =
∑

s

μs

∫
X

ρeq, s(X ) − Wλ[μ↑, μ↓], (10)

because of Jsup, λ, s[ρeq,↑, ρeq,↓](X ) = μs, which is obtained
by the relation,

δ�λ[ρ↑, ρ↓]

δρs(X )
= Jsup, λ, s[ρ↑, ρ↓](X ). (11)

Since Wλ[μ↑, μ↓]/β is the grand potential, �λ[ρeq,↑, ρeq,↓]
gives the free energy multiplied by β. At zero temperature,
ρeq, s(X ) and β−1�λ[ρeq,↑, ρeq, ↓] are reduced to the ground-
state density and energy, respectively. Therefore, the EDF of
densities with each spin component is given as follows [15]:

Eλ[ρ↑, ρ↓] = lim
β→∞

β−1�λ[ρ↑, ρ↓], (12)

which is a natural extension of the relation between EDF of
total density and the effective action [5,7].

The evolution of �λ[ρ↑, ρ↓] can be described by a func-
tional differential equation. This equation is derived in the
same manner as EDFs for total density [10,15,18,19,22] and
reads

∂λ�λ[ρ↑, ρ↓] = 1

2

∫∫
X, X ′

U2b(X − X ′)

[
ρ	(X )ρ	(X ′) +

∑
s, s′

�
(2)−1
λ, ss′ [ρ↑, ρ↓](Xε′ , X ′) −

∑
s

ρs(X )δ(x − x′)

]
. (13)

Here, we have introduced ρ	(X ) = ∑
s ρs(X ) − ρ and the inverse of the second derivative of the effective action

�
(2)−1
λ, ss′ [ρ↑, ρ↓](X, X ′) defined through the following relation:

∑
s′′

∫
X ′′

�
(2)−1
λ, ss′′ [ρ↑, ρ↓](X, X ′′)

δ2�λ[ρ↑, ρ↓]

δρs′′ (X ′′) δρs′ (X ′)
= δss′δ(X − X ′), (14)

where δ(X − X ′) = δ(τ − τ ′)δ(x − x′) with X = (τ, x) and X ′ = (τ ′, x′).

B. Vertex expansion

In principle, �λ[ρ↑, ρ↓] is obtained by solving Eq. (13) with using the noninteracting system as the initial condition. In
practice, however, some approximation for �λ[ρ↑, ρ↓] is needed to solve Eq. (13) due to difficulty of direct numerical treatment
of functional differential equations. Following Refs. [9,10], we introduce the vertex expansion scheme, where a functional
Taylor expansion at some densities of interest is applied and the differential equations for the Taylor coefficients of �λ[ρ↑, ρ↓]
are truncated at some order. As derived in the Appendix, these differential equations up to an arbitrary order read in terms of the
density correlation functions as follows:

∂λ�λ[ρ↑, ρ↓] = 1

2

∫∫
X, X ′

U2b(X − X ′)

[
ρ	(X )ρ	(X ′) +

∑
s, s′

G(2)
λ, ss′ (Xε′ , X ′) −

∑
s

ρs(X )δ(x − x′)

]
, (15)

∂λG(m)
λ, s1···sm

(X1, . . . , Xm) =
∑

s

∫
X

G(m + 1)
λ, s,s1···sm

(X, X1, . . . , Xm)∂λJsup, λ, s[ρ↑, ρ↓](X )

−1

2

∑
s

∫∫
X, X ′

U2b(X, X ′)
(
ρ	(X )G(m + 1)

λ, ss1···sm
(X ′, X1, . . . , Xm) + ρ	(X ′)G(m + 1)

λ, ss1···sm
(X, X1, . . . , Xm)

)

−1

2

∑
s, s′

∫∫
X, X ′

U2b(X, X ′)

(
G(m + 2)

λ, ss′s1···sm
(Xε′ , X ′, X1, . . . , Xm) − G(m + 1)

λ, ss1···sm
(X, X1, . . . , Xm)δss′δ(x − x′)

+
m−1∑
k=1

1

k! (m − k)!

∑
σ∈Sm

G(k + 1)
λ, ssσ (1)···sσ (k)

(X, Xσ (1), . . . , Xσ (k) )G
(m − k + 1)
λ, s′sσ (k+1)···sσ (m)

(X ′, Xσ (k+1), . . . , Xσ (m) )

)
,

(16)
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FIG. 1. Diagrammatic representation of Eqs. (15) and (16). The wavy lines represent the two-body interaction U2b(X − X ′). The numbers
1, 2, ..., m attached to the diagrams of the correlation functions G(2)

λ , G(3)
λ , . . . , G(m+2)

λ stand for the sets of the coordinate and spin (X1, s1),
(X2, s2), ..., (Xm, sm ), respectively.

where m � 1 is an integer, Sm stands for the symmetry group of order m, and the m-point density correlation function is defined
by

G(m)
λ, s1···sm

(X1, . . . , Xm) = δmWλ[Jsup, λ, ↑[ρ↑, ρ↓], Jsup, λ, ↓[ρ↑, ρ↓]]

δJs1 (X1) . . . δJsm (Xm)
. (17)

The diagrammatic representation of Eqs. (15) and (16) is given in Fig. 1. Note that Eq. (16) at m = 1 should be regarded
as an equation describing the evolution of Jsup, λ, s[ρ↑, ρ↓](X ) since the left-hand side is already determined by ∂λG(1)

λ, s1
(X1) =

∂λρs1 (X1) = 0 as obtained from Eq. (8).

C. Application to LSDA

Our purpose is the application to the LSDA EDF, which is described in terms of the effective action by

�xc, λ[ρ↑, ρ↓] ≈
∫

X
(ρ↑(X ) + ρ↓(X ))εxc, λ(ρ↑(X ), ρ↓(X )). (18)

Here, �xc, λ[ρ↑, ρ↓] is given by the exchange-correlation part of the effective action,

�xc, λ[ρ↑, ρ↓] = �λ[ρ↑, ρ↓] − �λ=0[ρ↑, ρ↓] − 1

2

∫∫
X, X ′

λU2b(X − X ′)ρ	(X )ρ	(X ′),

with the second and third terms of the right-hand side corresponding to the kinetic and Hartree terms, respectively, and
εxc, λ(ρ↑, ρ↓) is the exchange-correlation energy per particle obtained in the homogeneous case with densities ρ↑ and ρ↓.
Actually, Eq. (18) is reduced to the conventional definition of LSDA for EDF Eq. (1) as obtained from Eq. (12) with the
density independent of the imaginary time ρs(X ) = ρs(x). By putting Eq. (18) into Eq. (15), we have an equation to determine
εxc, λ(ρ↑, ρ↓):∫

X
(ρ↑(X ) + ρ↓(X ))∂λεxc, λ(ρ↑(X ), ρ↓(X )) ≈ 1

2

∫∫
X, X ′

U2b(X − X ′)

[∑
s, s′

G(2)
λ,ss′ (Xε′ , X ′) −

∑
s

ρs(X )δ(x − x′)

]
. (19)

Particularly, Eq. (19) becomes exact at the homogeneous limit [60]. Given the homogeneous densities ρs satisfying ρ↑ + ρ↓ = ρ,
Eq. (19) is reduced to

∂λεxc, λ(ρ↑, ρ↓) = 1

2ρ

∫
X

U2b(X )

[∑
s, s′

G(2)
λ, ss′ (Xε′ , 0) − ρδ(x)

]
. (20)

Here, we have used G(2)
λ, ss′ (Xε′, X ′) = G(2)

λ, ss′ (Xε′ − X ′, 0), which follows from the translational symmetry. Equation (20) is further
reduced to the equation for the correlation part εc, λ(ρ↑, ρ↓) = εxc, λ(ρ↑, ρ↓) − εx, λ(ρ↑, ρ↓):

∂λεc, λ(ρ↑, ρ↓) = 1

2ρ

∑
s, s′

∫
X

U2b(X )
[
G(2)

λ, ss′ (Xε′ , 0) − G(2)
λ=0,ss′ (Xε′ , 0)

]
, (21)

which is obtained by use of the expression for the exchange part εx, λ(ρ↑, ρ↓):

εx, λ(ρ↑, ρ↓) = λ

2ρ

∫
X

U2b(X )

[∑
s, s′

G(2)
λ=0, ss′ (Xε′ , 0) − ρδ(x)

]
. (22)

The analytic result of εx, λ(ρ↑, ρ↓) is known as follows [61,62]:

εx, λ(ρ↑, ρ↓) = −λaD

rs

[
1 + (21/D − 1) fx(ζ )

]
. (23)
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Here, ζ = (ρ↑ − ρ↓)/ρ is the spin polarization and rs is the Wigner–Seitz radius given by rs = (VDρ )−1/D with VD=2 = π and
VD=3 = 4π/3 being the volume of a D-dimensional unit sphere. The interpolation function fx(ζ ) is defined by

fx(ζ ) = (1 + ζ )(D+1)/D + (1 − ζ )(D+1)/D − 2

2(D+1)/D − 2
. (24)

The coefficient aD is given by a2 = 4
√

2/(3π ) and a3 = 3[3/(16π )]2/3. The momentum representation is a convenient choice
for the homogeneous case. Then, Eqs. (16) and (21) are written as follows:

∂λεc, λ(ρ↑, ρ↓) = 1

2ρ

∑
s, s′

∫
P

Ũ (p)eiP0ε′[
G̃(2)

λ, ss′ (P) − G̃(2)
λ=0, ss′ (P)

]
, (25)

∂λG̃(m)
λ, s1...sm

(P1, . . . , Pm−1) =
∑

s

G̃(m + 1)
λ, ss1...sm

(0, P1, . . . , Pm−1)∂λJsup, λ, s(ρ↑, ρ↓)

−1

2

∫
p
Ũ (p)

(∫
P0

eiP0ε′ ∑
s, s′

G̃(m + 2)
λ, ss′s1...sm

(P,−P, P1, . . . , Pm−1) −
∑

s

G̃(m + 1)
λ, ss1...sm

(0, P1, . . . , Pm−1)

)

−1

2

m−1∑
k=1

1

k! (m − k)!

∑
σ∈Sm

Ũ

(
k∑

i=1

pσ (i)

)∑
s

G̃(k + 1)
λ, ssσ (1)...sσ (k)

(
−

k∑
i=1

Pσ (i), Pσ (1), . . . , Pσ (k−1)

)

×
∑

s′
G̃(m − k + 1)

λ, s′sσ (k+1)...sσ (m)

(
−

k∑
i=1

Pσ (i), Pσ (k+1), . . . , Pσ (m−1)

)
. (26)

Here, we have introduced the four-vector P = (P0, p) with the imaginary frequency P0 and the spatial momentum p and
∫

P =∫
dP0/(2π )

∫
d p/(2π )D. The Fourier components G̃(m)

λ, s1...sm
(P1, . . . , Pm−1) and Ũ (p) are defined as follows:

(2π )4δ

(
m∑

i=1

Pi

)
G̃(m)

λ, s1...sm
(P1, . . . , Pm−1) =

∫
X1, ..., Xm

ei
∑m

i=1 Pi·Xi G(m)
λ, s1...sm

(X1, . . . , Xm),

Ũ (p) =
∫

X
eiP·XU2b(X ) =

{
2π/|p| (D = 2),

4π/|p|2 (D = 3).
(27)

In Eq. (26), one of Pσ (1), ..., Pσ (m) becomes Pm, which stands for Pm = −∑m−1
i=1 Pi.

In this paper, we consider the vertex expansion up to the second order. The first and second order of Eq. (26) read

0 =
∑

s

G̃(2)
λ, ss1

(0)∂λJsup, λ, s(ρ↑, ρ↓) − 1

2

∫
p
Ũ (p)

(∫
P0

eiP0ε′ ∑
s, s′

G̃(3)
λ, ss′s1

(P,−P) −
∑

s

G̃(2)
λ, ss1

(0)

)
, (28)

∂λG̃(2)
λ, s1s2

(P1) =
∑

s

G̃(3)
λ, ss1s2

(0, P1)∂λJsup, λ, s(ρ↑, ρ↓) − Ũ (p1)
∑
s, s′

G̃(2)
λ, ss1

(−P1)G̃(2)
λ, s′s2

(P1)

−1

2

∫
p
Ũ (p)

(∫
P0

eiP0ε′ ∑
s, s′

G̃(4)
λ, ss′s1s2

(P,−P, P1) −
∑

s

G̃(3)
λ, ss1s2

(0, P1)

)
. (29)

By canceling ∂λJsup, λ, s(ρ↑, ρ↓) in these equations, we have

∂λG̃(2)
λ, s1s2

(P1) = −Ũ (p1)
∑
s, s′

G̃(2)
λ, ss1

(−P1)G̃(2)
λ, s′s2

(P1) + Cλ, s1s2 (P1), (30)

Cλ, s1s2 (P1) = −1

2

∫
p
Ũ (p)

∫
P0

eiP0ε′ ∑
s, s′

(
G̃(4)

λ, ss′s1s2
(P,−P, P1) −

∑
t, t ′

G̃(3)
λ, ts1s2

(0, P1)
[
G̃(2)

λ
(0)

]−1

tt ′ G̃(3)
λ, ss′t ′ (P,−P)

)
, (31)

where [G̃(2)
λ (0)]−1

tt ′ is the inverse of G̃(2)
λ, tt ′ (0) with respect to

the spin indices t and t ′. As shown in Eq. (31), Cλ, s1s2 (P1) is
composed of higher-order correlation functions.

As in our previous works [22,23], we ignore the λ depen-
dence of Cλ, s1s2 (P1) as

Cλ, s1s2 (P1) ≈ Cλ=0, s1s2 (P1). (32)

Applying this approximation and summing up the spin in-
dices, Eqs. (25) and (30) are rewritten as follows:

∂λεc, λ(ρ↑, ρ↓)= 1

2ρ

∫
P

Ũ (p)eiP0ε′[
G̃(2)

λ
(P)−G̃(2)

λ=0(P)
]
, (33)

∂λG̃(2)
λ

(P1) ≈ −Ũ (p1)
[
G̃(2)

λ
(P1)

]2 + Cλ=0(P1), (34)
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where we have introduced the total density correlation func-
tions:

G̃(m)
λ

(P1, . . . , Pm−1) =
∑

s1, ..., sm

G̃(m)
λ, s1...sm

(P1, . . . , Pm−1), (35)

and

Cλ=0(P1) =
∑
s, s′

Cλ=0,ss′ (P1). (36)

The solution of Eq. (34), which has the form of the Riccati
equation, can be obtained analytically with respect to λ. With
this solution, the λ integral in Eq. (33) is performed analyti-
cally. The solutions read

G̃(2)
λ=1(P) = G̃(2)

λ=0(P)
1 + (BP/AP ) tanh BP

1 + (AP/BP ) tanh BP
, (37)

εc, λ=1(ρ↑, ρ↓) = 1

2ρ

∫
P

[
ln

(
cosh BP + AP

BP
sinh BP

)
− AP

]
,

(38)

where

AP = Ũ (p)G̃(2)
λ=0(P), (39a)

BP =
√

Ũ (p)Cλ=0(P). (39b)

The quantity Cλ=0(P1) is given by the density
correlation functions in the noninteracting case
G̃(m)

λ=0, s1...sm
(P1, . . . , Pm−1):

G̃(m)
λ=0, s1...sm

(P1, . . . , Pm−1)

= −
∑

σ∈Sm−1

∫
P′

m−1∏
k=0

G̃F,sσ (k)sσ (k+1)

(
k∑

i=1

Pσ (i) + P′
)

, (40)

where G̃F,ss′ (P) is the propagator of the free fermion defined
by

G̃F,ss′ (P = (ω, p)) = δss′G̃F(pF,s; P = (ω, p))

= δss′
eiωε

iω − ξs(p)
, (41)

with ξs(p) = p2/2 − p2
F,s/2 and the Fermi momentum pF,s =

2π (ρs/VD)1/D. In Eq. (40), σ (0) is defined by σ (0) = σ (m).
For efficient numerical calculation of Cλ=0(P1), a technique
in Refs. [22,23] can be used: It is convenient to describe
Cλ=0(P1) in terms of the total density correlation function
G̃(m)

λ=0(pF; P1, . . . , Pm−1) for spin unpolarized systems with the
Fermi momentum pF, which is defined by

G̃(m)
λ=0(pF; P1, . . . , Pm−1)

= −2
∑

σ∈Sm−1

∫
P′

m−1∏
k=0

G̃F

(
pF;

k∑
i=1

Pσ (i) + P′
)

, (42)

and related to Eq. (40) as

G̃(m)
λ=0, s1...sm

(P1, . . . , Pm−1)

= 1

2

(
m−1∏
k=1

δsksk+1

)
G̃(m)

λ=0(pF,s1 ; P1, . . . , Pm−1). (43)

Then, Cλ=0, s1s2 (P1) is written as follows:

Cλ=0, s1s2 (P1) = δs1s2

2
Cλ=0(pF,s1 ; P1), (44)

where

Cλ=0(pF; P1) = − 1

2

∫
p
Ũ (p)

∫
P0

eiP0ε′
[

G̃(4)
λ=0(pF; P,−P, P1)

− G̃(3)
λ=0(pF; P,−P)G̃(3)

λ=0(pF; P1,−P1)

G̃(2)
λ=0(pF; 0)

]
.

(45)

As shown in Refs. [22,23], the momentum integrals in
Eq. (45) can be reduced to double integrals, which reduces
the computational time and enables us to calculate εc, λ=1 in a
few minutes even on a laptop computer for each set of (rs, ζ ).

D. Validity of the approximation

We discuss the validity of our approximation described
by Eq. (32). First, we show that the resultant εc, λ=1 given
by Eq. (38) reproduces the exact result at the dense limit
given by the GB resummation, which is given by the random
phase approximation and the second-order exchange term.
To show this, we employ the following scaling rules for
Cλ=0, s1s2 (pF; P1) and G̃(2)

λ=0, s1s2
(pF; P1):

G̃(2)
λ=0, s1s2

(pF; P1) = aD−2G̃(2)
λ=0, s1s2

(
pF

a
;

(
P0

1

a2
,

p1

a

))
, (46a)

Cλ=0,s1s2 (pF; P1) = aD−3Cλ=0,s1s2

(
pF

a
;

(
P0

1

a2
,

p1

a

))
, (46b)

for an arbitrary number a. By applying these rules to Eqs. (35),
(36), (43), and (44) with a = r−1

s and using rs pF,s = 2π [(1 +
sζ )/(2V 2

D )]1/D, we obtain

G̃(2)
λ=0(P1) = r2−D

s G̃(2)
λ=0(P1), (47a)

Cλ=0(P1) = r3−D
s Cλ=0(P1). (47b)

Here, we have introduced P1 = (r2
s P0

1 , rs p1) and

G̃(2)
λ=0(P1) = 1

2

∑
s

G̃(2)
λ=0

(
2π

(
1 + sζ

2V 2
D

)1/D

; P1

)
, (48a)

Cλ=0(P1) = 1

2

∑
s

Cλ=0

(
2π

(
1 + sζ

2V 2
D

)1/D

; P1

)
, (48b)

which are independent of rs except for P1. Using Eqs. (47a)
and (47b), and Ũ (p) = rD−1

s Ũ (p) given by Eq. (27), we obtain
the scaling for AP and BP as follows:

AP = rsAP, (49a)

BP = rsBP, (49b)

where we have introduced

AP = Ũ (p)G̃(2)
λ=0(P), (50a)

BP =
√

Ũ (p)Cλ=0(P), (50b)

which are independent of rs except for P. Changing the inte-
gral variable P to P in Eq. (38) and using rs = (VDρ )−1/D,
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we have

εc, λ=1(ρ↑, ρ↓) = V 1/D
D

2r2
s

∫
P

(
ln

[
cosh (rsBP ) + AP

BP

sinh (rsBP )

]
− rsAP

)
. (51)

By expanding this equation with respect to rs, we obtain

εc, λ=1(ρ↑, ρ↓) = V 1/D
D

2r2
s

∫
P

[
ln (1 + rsAP ) − rsAP + (rsBP )2

2

]
+ O(rs)

= 1

2ρ

∫
P

[
ln

(
1 + Ũ (p)G̃(2)

λ=0(P)
) − Ũ (p)G̃(2)

λ=0(P)
] + 1

4ρ

∫
P

Ũ (p)Cλ=0(P) + O(rs). (52)

The first term of the last line is the contribution from the random phase approximation. By performing the frequency integrals,
the second term is evaluated as follows:

1

4ρ

∫
P

Ũ (p)Cλ=0(P) = 1

2ρ

∑
s

∫∫∫
p, p′, p′′

Ũ (p)Ũ (p + p′ + p′′)
p · (p + p′ + p′′)

θ (−ξs(p′))[1 − θ (−ξs(p + p′))]

× θ (−ξs(p′′))[1 − θ (−ξs(p + p′′))], (53)

which is identical to the expression for the second-order exchange term [58]. In summary, Eq. (52) is identical to the expression
for the GB resummation.

Although our approximation reproduces the exact behavior at rs → 0 as shown above, the flow of the higher-order correlation
functions becomes important for the accurate calculation as rs increases. This can be seen from Eq. (26) at arbitrary order roughly:
For simplicity, we consider the case of λ = 0. The following scaling holds:

G̃(m)
λ=0, s1...sm

(P1, . . . , Pm−1) = r2m−2−D
s G̃(m)

λ=0, s1...sm
(P1, . . . , Pm−1), (54)

where G̃(m)
λ=0, s1...sm

(P1, . . . , Pm−1) is a function independent of rs given by

G̃(m)
λ=0, s1...sm

(P1, . . . , Pm−1) = 1

2

(
m−1∏
k=1

δsksk+1

)
G̃(m)

λ=0

(
2π

(
1 + s1ζ

2V 2
D

)1/D

; P1, . . . , Pm−1

)
. (55)

By use of this scaling, we find that the flow represented by
Eq. (26) at λ = 0 behaves as

∂λG̃(m)
λ, s1...sm

(P1, . . . , Pm−1)

G̃(m)
λ, s1...sm

(P1, . . . , Pm−1)

∣∣∣∣∣
λ=0

∼ rs, (56)

which shows that G̃(m)
λ, s1...sm

(P1, . . . , Pm−1) rapidly evolves
as rs increases. This result indicates that the evolution of
G̃(m � 3)

λ, s1...sm
(P1, . . . , Pm−1), which is ignored in our approxima-

tion given by Eq. (32), becomes important for the accuracy at
large rs.

III. NUMERICAL RESULTS

In this section, we show the numerical results for HEG.
Figure 2 shows the FRG-DFT results of εc, λ=1 in three dimen-
sions in the paramagnetic (ζ = 0) and ferromagnetic (ζ = 1)
states, together with the results by the diffusion Monte Carlo
(DMC) simulation and the GB resummation, as functions of
the Wigner–Seitz radius rs.1 The DMC results are obtained
by subtracting the kinetic and exchange energies per parti-
cle from the total energy per particle given in Table IV in
Ref. [39], which summarizes the results in Refs. [48,50]. For

1There is a tiny difference between the result of FRG-DFT at ζ = 0
in this work and that in Fig. 1 in Ref. [23]. We find that a coefficient
is underestimated in the numerical code to obtain the latter one. The
present result is based on a corrected code.

both cases of ζ = 0 and 1, the FRG-DFT reproduces the
results by the GB resummation and the discrepancies between
the FRG-DFT and DMC results decrease as rs becomes close

0 20 40 60 80 100

rs

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

ε c

FRG-DFT (ζ = 0)

FRG-DFT (ζ = 1)

DMC (ζ = 0)

DMC (ζ = 1)
0 1 2 3 4 5

rs

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

ε c

GB (ζ = 0)

GB (ζ = 1)

FIG. 2. Correlation energy per particle εc for three-dimensional
(D = 3) homogeneous electron gas in the cases of ζ = 0 (param-
agnetic) and 1 (ferromagnetic) calculated by using the FRG-DFT
(this work) and DMC shown as functions of Wigner–Seitz radius rs.
The data of DMC calculations are obtained from the values in Table
IV in Ref. [39], which summarizes the results in Refs. [48,50]. The
inset is the enlarged view in 0 � rs � 5, where the results by the GB
resummation are also shown.
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TABLE I. Absolute difference 	εc = |εFRG
c − εDMC

c | and relative difference 	εc/|εDMC
c | between the FRG-DFT result εFRG

c (this work) and
DMC result εDMC

c [39] at rs = 1, 2, 3, 5, 10, 50, and 100 a.u. and ζ = 0 and 1.

rs (a.u.) 1 2 3 5 10 50 100

ζ = 0 	εc × 104 6.0 16.4 17.9 16.1 9.9 3.6 5.5
	εc/|εDMC

c | (%) 1.0 3.7 4.8 5.7 5.3 6.2 17.0
ζ = 1 	εc × 104 5.6 20.1 24.9 29.2 31.1 19.6 13.0

	εc/|εDMC
c | (%) 1.8 8.5 12.6 18.9 29.5 54.8 62.6

to 0, which is also indicated by the relative differences shown
in Table I. On the other hand, the increase of the relative
differences at larger rs is due to the ignorance of the flow of the
higher-order correlation functions as discussed in Sec. II D.
In the case of ζ = 1, FRG-DFT overestimates εc compared
to DMC. This is a natural result since the truncation up to
the second order breaks the Pauli-blocking condition [18,19],
which allows two electrons with the same spin to get closer
to each other and increases the energy. At ζ = 0 and rs �
40 a.u., FRG-DFT underestimates εc with smaller deviation
compared to the case of ζ = 1 as indicated in the absolute and
relative differences shown in Table I. This suggests that the
correlation between two electrons with the different spins is
underestimated and compensates the overestimation coming
from the correlation between those with the same spin.

For the purpose of discussing stability of phases, we show
the FRG-DFT results of the total energy per particle εtotal for
arbitrary spin polarization at rs = 1, 10, 50, and 100 a.u. in
Fig. 3. For comparison, this figure also shows the DMC results
and the Hartree–Fock results. The latter are given by

εtotal(rs, ζ ) ≈ εkin(rs, ζ ) + εx, λ=1(rs, ζ ), (57)

where the kinetic term εkin and the exchange term εx are given
by

εkin(rs, ζ ) = 3

10

(
9π

4

)2/3 (1 + ζ )5/3 + (1 − ζ )5/3

2r2
s

, (58)

and Eq. (23), respectively. According to the DMC results
[48], a second-order phase transition to spin-polarized states is
found at rs = 50 ± 2 a.u. and the system becomes (partially)
spin-polarized states for larger rs and unpolarized ones for
smaller rs. In contrast to this, the unpolarized state is stable
even in rs � 50 a.u. in the FRG-DFT result.

Next, we shall discuss the interpolation function fc(rs, ζ )
defined in Eq. (2). In Fig. 4(a), the results for rs = 1, 5, 10, 50,
and 100 a.u. calculated by using the FRG-DFT are shown as
functions of ζ . For comparison, DMC results and the interpo-
lation function for the exchange part fx(ζ ) defined in Eq. (24)
are also shown. Figure 4(b) shows the relative deviation
of fc(rs, ζ ) from fx(ζ ): [ fc(rs, ζ ) − fx(ζ )]/ fx(ζ ). A conven-
tional approximation for fc(rs, ζ ) [Eq. (2)] is fc(rs, ζ ) ≈
fx(ζ ) [24,26]. Actually, the DMC results in Fig. 4 suggest
that this approximation is valid for rs � 10 a.u. However, the
FRG-DFT results show stronger rs dependence. Particularly,
the deviation of the FRG-DFT results from fx(ζ ) can be seen
in small rs, where the FRG-DFT is accurate, as well as in large
rs. The deviation from fx(ζ ) also can be seen in the DMC
results in rs � 5 a.u.

Finally, we mention the case of two dimensions. Figure 5
shows the FRG-DFT and DMC results of rs dependence of εc

at ζ = 0 and 1. The FRG-DFT result at ζ = 0 is the same as
that in Ref. [22]. The DMC results are obtained from the total
energies given in Refs. [52,53,57], which are summarized in
Table VI in Ref. [39]. In dense cases, reproducing the exact
results at rs = 0 a.u. given by the GB resummation, the FRG-
DFT results agree with the DMC results. On the other hand,
the discrepancy between the FRG-DFT and DMC results
increases as the system becomes dilute and the FRG-DFT,
respectively, gives underestimated and overestimated results
at ζ = 0 and 1 in comparison with DMC. This behavior of εc
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rs = 1a.u.
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ε t
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FIG. 3. Total energy per particle εtotal at rs = 1, 10, 50, and
100 a.u. calculated by using the FRG-DFT shown as functions of
ζ . The results from the Hartree–Fock approximation and DMC are
also shown. The data of DMC calculations are taken from Table IV
in Ref. [39], which summarizes the results in Refs. [48,50].
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FIG. 4. (a) Interpolation function fc(rs, ζ ) for rs = 1, 5, 10, 50,
and 100 a.u. calculated by using the FRG-DFT as functions of ζ .
For comparison, DMC results [48,50] and fx(ζ ) [Eq. (24)] are also
shown. (b) Relative deviation of fc(rs, ζ ) from fx(ζ ). The data at
ζ = 0, where fx(ζ ) = 0, are excluded. The DMC data at rs = 1 a.u.

are out of the range of the figure.

favors the paramagnetic phase even if the system is dilute as
in the case of three dimensions.

IV. CONCLUSION

We have developed the functional-renormalization-group
aided density functional theory (FRG-DFT) for the de-
scription of arbitrary spin-polarized systems and achieved
numerical derivation of the correlation energy per particle of
homogeneous electron gas εc with arbitrary density and spin
polarization, which gives the energy density functional in the
local spin density approximation. The hierarchical flow equa-
tions for the density correlation functions have been derived
up to arbitrary order based on the FRG-DFT flow equa-
tion. Our numerical calculation has been performed based
on the second-order truncation for the hierarchical equa-
tions. Our correlation energy per particle reproduces the exact
behavior at the high-density limit given by the Gell-Mann–
Brueckner resummation and agrees with the diffusion Monte
Carlo (DMC) results in relatively high-density cases. On the
other hand, the discrepancy between the FRG-DFT and DMC

0 10 20 30 40

rs

−0.200

−0.175

−0.150

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

ε c FRG-DFT (ζ = 0)

FRG-DFT (ζ = 1)

DMC (ζ = 0)

DMC (ζ = 1)

GB (ζ = 0)

GB (ζ = 1)

FIG. 5. Correlation energy per particle εc at ζ = 0 and 1 given by
the FRG-DFT, DMC, and GB resummation in the two-dimensional
(D = 2) case. The data of DMC calculations are obtained from
the values in Table VI in Ref. [39], which summarizes the results
in Refs. [52,53,57]. The values at rs = 0 given by the FRG-DFT
(and the GB resummation), which are finite in contrast to the three-
dimensional case, are shown as the red and blue circles for ζ = 0 and
1, respectively.

results becomes significant in the spin-polarized case in com-
parison with the spin-unpolarized case as the system becomes
dilute. In contrast to DMC results, the correlation energy given
by FRG-DFT stabilizes the spin-unpolarized state even in
dilute cases. We have also discuss the interpolation function
fc(rs, ζ ), which characterizes the ζ dependence of εc. We have
found the deviation from the interpolation function for the
exchange part at small rs, where the FRG-DFT gives accurate
results.

The growth of the discrepancy in the spin-polarized case
may be attributed to the effect of the Pauli blocking, which
is broken in our approximation. In order to retain the Pauli-
blocking effect, one may introduce a correction factor to the
four-point density correlation function [18]. When applying
this method, it is required to solve the flow equation numer-
ically with respect to the evolution parameter λ. This is in
contrast to the fact that the flow equation can be solved analyt-
ically in the approximation in this paper. The introduction of
another approximation scheme valid even for dilute systems
also may change the situation. In Ref. [63], a possibility of
using small expansion parameters within some frameworks
including the derivative expansion is discussed. As for the
application of the derivative expansion in the framework of
the functional renormalization group based on density, there
is a work for classical liquids [64].

A great goal of studies of the FRG-DFT is systematic
inclusion of the gradient effect. In dilute cases, particularly,
this is important for the description of the Wigner crystal. One
of the ways to realize this in our framework may be the use
of the derivative expansion. Methods to describe solid-liquid
phase transition developed for the classical DFT [65] are also
expected to give hints for the treatment of the Wigner crystal.

035105-9



TAKERU YOKOTA AND TOMOYA NAITO PHYSICAL REVIEW B 105, 035105 (2022)

ACKNOWLEDGMENTS

The authors thank Haozhao Liang for discussions at the
early stage of this work. T.Y. was supported by the RIKEN

Special Postdoctoral Researchers Program. T.N. was sup-
ported by the Grants-in-Aid for JSPS fellows (Grant No.
19J20543). Numerical computation in this work was carried
out at the Yukawa Institute Computer Facility.

APPENDIX: DERIVATION OF EQS. (15) AND (16)

In this Appendix, we show the derivation of Eqs. (15) and (16). Equation (15) is derived from Eq. (13) and

�
(2)−1
λ, ss′ [ρ↑, ρ↓](X, X ′) = G(2)

λ, ss′ (X, X ′). (A1)

The derivation of this relation is as follows: Differentiating Eq. (8), we have

∑
t

∫
Y

δJsup, λ, t [ρ↑, ρ↓](Y )

δρs′ (X ′)
δ2Wλ[Jsup, λ,↑[ρ↑, ρ↓], Jsup, λ, ↓[ρ↑, ρ↓]]

δJt (Y ) δJs(X )
= δss′δ(X − X ′). (A2)

By use of Eqs. (11) and (17), this is rewritten as

∑
t

∫
Y

δ2�λ[ρ↑, ρ↓]

δρs′ (X ′) δρt (Y )
G(2)

λ, ts(Y, X ) = δss′δ(X − X ′), (A3)

which is equivalent to Eq. (A1).
The following relation is useful for the derivation of Eq. (16):

∑
s

∫
X

G(2)
λ, sm+1s(Xm+1, X )

δ

δρs(X )
G(m)

λ, s1...sm
(X1, . . . , Xm) = G(m + 1)

λ, s1...sm+1
(X1, . . . , Xm+1). (A4)

This is obtained by differentiating Eqs. (11) and (17):

δ

δρs(X )
G(m)

λ, s1...sm
(X1, . . . , Xm) = δ

δρs(X )

δmWλ[Jsup, λ,↑[ρ↑, ρ↓], Jsup, λ, ↓[ρ↑, ρ↓]]

δJs1 (X1) · · · δJsm (Xm)

=
∑
sm+1

∫
Xm+1

δJsup, λ, sm+1 [ρ↑, ρ↓](Xm+1)

δρs(X )

δm+1Wλ[Jsup, λ, ↑[ρ↑, ρ↓], Jsup, λ, ↓[ρ↑, ρ↓]]

δJs1 (X1) · · · δJsm (Xm) δJsm+1 (Xm+1)

=
∑
sm+1

∫
Xm+1

δ2�λ[ρ↑, ρ↓]

δρs(X ) δρsm+1 (Xm+1)
G(m + 1)

λ, s1...sm+1
(X1, . . . , Xm+1). (A5)

Multiplying �
(2)−1
λ to both sides and using Eq. (A1), we have Eq. (A4).

The derivation of Eq. (16) is based on the mathematical induction. As a first step, we derive the equation for m = 1.
Differentiating Eq. (13), we have

∂λ

δ�λ[ρ↑, ρ↓]

δρs1 (X1)
= 1

2

∫∫
X, X ′

U2b(X − X ′)[ρ	(X )δ(X ′ − X1) + ρ	(X ′)δ(X − X1)]

+ 1

2

∫∫
X, X ′

U2b(X − X ′)

[∑
s, s′

δG(2)
λ, ss′ (Xε′ , X ′)

δρs1 (X1)
− δ(X − X1)δ(x − x′)

]
. (A6)

Multiplying G(2)
λ and using Eqs. (A4) and (11), we obtain

∑
s

∫
X

G(2)
λ, s1s(X1, X )∂λJsup, λ, s[ρ↑, ρ↓](X )

= 1

2

∑
s

∫∫
X, X ′

U2b(X − X ′)
[
ρ	(X )G(2)

λ, ss1
(X ′, X1) + ρ	(X ′)G(2)

λ, ss1
(X, X1)

]

+ 1

2

∫∫
X, X ′

U2b(X − X ′)

[∑
s s′

G(3)
λ, ss′s1

(Xε′ , X ′, X1) −
∑

s

δ(x − x′)G(2)
λ, ss1

(X, X1)

]
. (A7)

Remembering ∂λG(1)
λ, s(X1) = ∂λρs(X1) = 0, one finds that Eq. (A7) is equivalent to Eq. (16) in the case of m = 1.
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Next, we assume that Eq. (16) holds for m = j and derive the equation for m = j + 1. Differentiating Eq. (16) for m = j
with respect to the density, multiplying G(2)

λ , and using Eq. (A4), we obtain

∑
s

∫
X

G(2)
λs j+1s(Xj+1, X )∂λ

δ

δρs(X )
G( j)

λ, s1...s j
(X1, . . . Xj )

=
∑
s s′

∫∫
X, X ′

G( j + 1)
λ, ss1...s j

(X, X1, . . . Xj )G
(2)
λ, s j+1s′ (Xj+1, X ′)∂λ

δJsup, λ, s[ρ↑, ρ↓](X )

δρs′ (X ′)

+
∑

s

∫
X

G( j + 2)
λ, ss1...s j+1

(X, X1, . . . Xj+1)∂λJsup, λ, s[ρ↑, ρ↓](X )

− 1

2

∑
s s′

∫∫
X, X ′

U2b(X, X ′)
(
G(2)

λ, s′s j+1
(X, Xj+1)G( j + 1)

λ, ss1...s j
(X ′, X1, . . . Xj ) + G(2)

λ, s′s j+1
(X ′, Xj+1)G( j + 1)

λ, ss1...s j
(X, X1, . . . Xj )

)

− 1

2

∑
s

∫∫
X, X ′

U2b(X, X ′)
(
ρ	(X )G( j + 2)

λ, ss1...s j+1
(X ′, X1, . . . Xj+1) + ρ	(X ′)G( j + 2)

λ, ss1...s j+1
(X, X1, . . . Xj+1)

)

− 1

2

∑
s s′

∫∫
X, X ′

U2b(X, X ′)

(
G( j + 2)

λ, ss′s1...s j+1
(Xε′ , X ′, X1, . . . Xj+1) − G( j + 2)

λ, ss1...s j+1
(X, X1, . . . Xj+1)δss′δ(x − x′)

+
j−1∑
k=1

1

k! ( j − k)!

∑
σ∈S j

G(k + 2)
λ, ssσ (1)...sσ (k)s j+1

(X, Xσ (1), . . . , Xσ (k), Xj+1)G( j − k + 1)
λ, s′sσ (k+1)...sσ ( j)

(X ′, Xσ (k+1), . . . , Xσ ( j) )

+ G(k + 1)
λ, ssσ (1)...sσ (k)

(X, Xσ (1), . . . , Xσ (k) )G
( j − k + 2)
λ, s′sσ (k+1)...sσ ( j)s j+1

(X ′, Xσ (k+1), . . . , Xσ ( j), Xj+1)
])

. (A8)

The left-hand side is evaluated through the derivative of Eq. (A4) with respect to λ:

∑
s

∫
X

G(2)
λ, s j+1s(Xj+1, X )∂λ

δ

δρs(X )
G( j)

λ, s1...s j
(X1, . . . , Xj )

= ∂λG( j + 1)
λ, s1...s j+1

(X1, . . . , Xj+1)
∑

s

∫
X

∂λG(2)
λ, s j+1s(Xj+1, X )

δ

δρs(X )
G( j)

λ, s1...s j
(X1, . . . , Xj ). (A9)

By use of Eq. (A2), this is rewritten as follows:

∑
s

∫
X

G(2)
λ, s j+1s(Xj+1, X )∂λ

δ

δρs(X )
G( j)

λ, s1...s j
(X1, . . . , Xj )

= ∂λG( j + 1)
λ, s1...s j+1

(X1, . . . , Xj+1)

−
∑
s s′

∫∫
X, X ′

∂λG(2)
λ, s j+1s(Xj+1, X )

∑
t

∫
Y

δJsup, λ, t [ρ↑, ρ↓](Y )

δρs(X )
G(2)

λ, ts′ (Y, X ′)
δ

δρs′ (X ′)
G( j)

λ, s1...s j
(X1, . . . , Xj ). (A10)

By differentiating Eq. (A2) with respect to λ, we have

∑
s

∫
X

∂λG(2)
λ, s j+1s(Xj+1, X )

δJsup, λ, t [ρ↑, ρ↓](Y )

δρs(X )
= −

∑
s

∫
X

G(2)
λ, s j+1s(Xj+1, X )∂λ

δJsup, λ, t [ρ↑, ρ↓](Y )

δρs(X )
. (A11)

By use of this relation and Eq. (A4), Eq. (A10) is rewritten as follows:

∑
s

∫
X

G(2)
λ, s j+1s(Xj+1, X )∂λ

δ

δρs(X )
G( j)

λ, s1...s j
(X1, . . . , Xj )

= ∂λG( j + 1)
λ, s1...s j+1

(X1, . . . , Xj+1) +
∑

s t

∫∫
X,Y

G( j + 1)
λ, ts1...s j

(Y, X1, . . . , Xj )G
(2)
λ, s j+1s(Xj+1, X )∂λ

δJsup, λ, t [ρ↑, ρ↓](Y )

δρs(X )
. (A12)
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The second term of this equation and the first term in the right-hand side of Eq. (A8) cancel each other. The last term in the
right-hand side of Eq. (A8) is deformed as follows:

j−1∑
k=1

1

k! ( j − k)!

∑
σ∈S j

[
G(k + 2)

λ, ssσ (1)......sσ (k)s j+1
(X, Xσ (1), . . . , Xσ (k), Xj+1)G( j − k + 1)

λ, s′sσ (k+1)......sσ ( j)
(X ′, Xσ (k+1), . . . , Xσ ( j) )

+ G(k + 1)
λ, ssσ (1)......sσ (k)

(X, Xσ (1), . . . , Xσ (k) )G
( j − k + 2)
λ, s′sσ (k+1)......sσ ( j)s j+1

(X ′, Xσ (k+1), . . . , Xσ ( j), Xj+1)
]

=
∑
σ∈S j

[
j∑

k=2

1

(k − 1)! ( j − k + 1)!
G(k + 1)

λ, ssσ (1)......sσ (k−1)s j+1
(X, Xσ (1), . . . , Xσ (k−1), Xj+1)G( j − k + 2)

λ, s′sσ (k)......sσ ( j)
(X ′, Xσ (k), . . . , Xσ ( j) )

+
j−1∑
k=1

1

k! ( j − k)!
G(k + 1)

λ, ssσ (1)......sσ (k)
(X, Xσ (1), . . . , Xσ (k) )G

( j − k + 2)
λ, s′sσ (k+1)......sσ ( j)s j+1

(X ′, Xσ (k+1), . . . , Xσ ( j), Xj+1)

]

=
∑
σ∈S j

1

k! ( j + 1 − k)!

[
j∑

k=2

kG(k + 1)
λ, ssσ (1)......sσ (k−1)s j+1

(X, Xσ (1), . . . , Xσ (k−1), Xj+1)G( j − k + 2)
λ, s′sσ (k)......sσ ( j)

(X ′, Xσ (k), . . . , Xσ ( j) )

+
j−1∑
k=1

( j + 1 − k)G(k + 1)
λ, ssσ (1)......sσ (k)

(X, Xσ (1), . . . , Xσ (k) )G
( j − k + 2)
λ, s′sσ (k+1)......sσ ( j)s j+1

(X ′, Xσ (k+1), . . . , Xσ ( j), Xj+1)

]

=
∑
σ∈S j

1

k! ( j + 1 − k)!

[
j∑

k=1

kG(k + 1)
λ, ssσ (1)......sσ (k−1)s j+1

(X, Xσ (1), . . . , Xσ (k−1), Xj+1)G( j − k + 2)
λ, s′sσ (k)......sσ ( j)

(X ′, Xσ (k), . . . , Xσ ( j) )

+
j−1∑
k=1

( j + 1 − k)G(k + 1)
λ, ssσ (1)......sσ (k)

(X, Xσ (1), . . . , Xσ (k) )G
( j − k + 2)
λ, s′sσ (k+1)......sσ ( j)s j+1

(X ′, Xσ (k+1), . . . , Xσ ( j), Xj+1)

]

−
∑
σ∈S j

1

j!

[
G(2)

λ, ss j+1
(X, Xj+1)G( j + 1)

λ, s′sσ (1)...sσ ( j)
(X ′, Xσ (1), . . . , Xσ ( j) ) + G( j + 1)

λ, ssσ (1)...sσ ( j)
(X, Xσ (1), . . . , Xσ ( j) )G

(2)
λ, s′s j+1

(X ′, Xj+1)
]

=
∑

σ∈S j+1

j∑
k=1

1

k! ( j + 1 − k)!
G(k + 1)

λ, ssσ (1)...sσ (k)
(X, Xσ (1), . . . , Xσ (k) )G

( j − k + 2)
λ, s′sσ (k+1)...sσ ( j+1)

(X ′, Xσ (k+1), . . . , Xσ ( j+1))

− G(2)
λ, ss j+1

(X, Xj+1)G( j + 1)
λ, s′s1...s j

(X ′, X1, . . . , Xj ) − G( j + 1)
λ, ss1...s j

(X, X1, . . . , Xj )G
(2)
λ, s′s j+1

(X ′, Xj+1). (A13)

By substituting Eqs. (A12) and (A13) into Eq. (A8), we obtain Eq. (16) for m = j + 1. Therefore, Eq. (16) holds for all integers
m � 1.
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