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Possible quantum nematic phase in a colossal magnetoresistance material
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EuB6 has for a long time captured the attention of the physics community, as it shows a ferromagnetic phase
transition leading to a insulator the metal transition together with colossal magnetoresistance (CMR). EuB6

has a very low carrier density, which is known to drastically change the interaction between the localised Eu
moments and the conduction electrons. One of early triumphs of the quantum theory in condensed matter was
the presence of Fermi surface, which is intimately linked to the symmetry of the underlying crystal lattice. This
symmetry can be probed by angle dependent magnetoresistance oscillations (AMRO) measurements. Here, we
present AMRO measurements that show that in EuB6 this symmetry is broken, possibly indicating the presence
of a quantum nematic phase. We identify the region in the temperature-magnetic field phase diagram where the
magnetoresistance shows twofold oscillations instead of the expected fourfold pattern. Quantum nematic phases
are analogous to classical liquid crystals. Like liquid crystals, which break the rotational symmetry of space, their
quantum analogs break the point-group symmetry of the crystal due to strong electron-electron interactions, as in
quantum Hall states, Sr3Ru2O7, and high-temperature superconductors. This is the same region where magnetic
polarons were previously observed, suggesting that they drive the nematicity in EuB6. This is also the region
of the phase diagram where EuB6 shows a colossal magnetoresistance (CMR). This novel interplay between
magnetic and electronic properties could thus be harnessed for spintronic applications.

DOI: 10.1103/PhysRevB.105.035104

I. INTRODUCTION

One of the great successes of the quantum theory of solids
was the finding that electrons in crystals largely behave as
a quantum gas of free particles. It was soon understood that
the interactions between electrons can change their behavior
into that of a quantum liquid leading among other things to
a modified mass of the quasiparticles. However, unlike in
classical liquids, where a suspension of rod-like molecules can
lead to anisotropic interactions and the occurrence of nematic
phases in liquid crystals, the point-like nature of electrons
and their interactions seems at first not to lend itself to the
formation of a quantum nematic. So, it was quite a surprise
when experiments, first in ultraclean quantum Hall systems
[1] and later in Sr3Ru2O7 [2], indicated the presence of an
electronic nematic phase.

*Regroupement Québécois sur les Matériaux de Pointe (RQMP).

Strong electronic correlations are believed to be at the
source of theses exotic electronic liquids, as theoretically first
predicted for the case of a doped two-dimensional Mott in-
sulator [3] due to the melting of a striped phase, and later
for quantum Hall systems [4]. Quantum nematics were also
discovered in the high-temperature cuprate superconductors
[5–9], as well as in the iron arsenide superconductors [10–12],
where the relation between the nematic order and supercon-
ductivity, and its relation to the close-by structural instability
are hotly debated. Pomeranchuk was the first to describe the
mechanism by which a Fermi surface can spontaneously break
the rotational symmetry [13].

This mechanism has been invoked in the case of the cuprate
superconductors [14,15], and it may also play a role in the
iron arsenides [10]. Nematic order is also found in CeRhIn5,
a heavy fermion superconductor, where it is most likely re-
lated to a spin texture [16]. Nematicity found in CeB6 [17]
suggests that a nematic state can be observed in 3D materials
such as the hexaborides, and is not only linked to 2D and
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quasi-2D systems, opening possibilities for more complex
quantum materials. Here, we describe a novel type of nematic
order in the hexaboride EuB6, which due to CMR effects
associated with the nematic phase carries the potential to play
a new role in spintronics. In spintronics, the spin degrees of
freedom are used to obtain transistor action, leading to the
promise of a lower energy consumption and the unification of
storage and processing components.

The interplay between the electronic and magnetic prop-
erties of EuB6 are still the subject of controversy despite its
simple cubic crystal structure (Pm3m). EuB6 has a very low
charge carrier density [18,19] (≈1019 cm−3), these carriers
couple to localized Eu 4 f moments, which are pure spin with
S = 7/2, but whether it should be considered as a semimetal
or semiconductor is still an ongoing debate [20–23]. EuB6

becomes ferromagnetic at TC = 12.6 K, accompanied by an
order of magnitude reduction in resistivity and CMR [24]
in the vicinity of TC. The specific heat of EuB6 shows an
additional anomaly at TM = 15.5 K [24–26]. This temperature
coincides with the first anomaly in the electrical resistivity. In
the literature, this anomaly in the electrical resistivity is typ-
ically associated with the percolation transition of magnetic
polarons. At this temperature, the polarons begin to overlap,
releasing the trapped charge carriers, which consequently low-
ers the resistivity [27].

Magnetic polarons are expected to be important in EuB6

due to its low carrier density and they were indirectly indi-
cated by a number of experiments [26,28–33]. Heuristically,
magnetic polarons are composite objects that form when
charge carriers polarize a puddle of local moments and be-
come trapped in that puddle [34]. This mechanism is thought
to be behind the large CMR effect in EuB6. Since the
merger of these polarons leads to a substantially enhanced
charge mobility, magnetic polarons in EuB6 were directly
identified through a small angle neutron scattering (SANS)
experiment [35], while scanning tunneling microscopy (STM)
shows that EuB6 is electronically inhomogeneous in the same
temperature region [27]. True ferromagnetic order, however,
is established only at TC [24,36]. Neutron diffraction on a
single crystal of boron 11B enriched EuB6 oriented along
(001) showed (100) and (110) peaks [36]. This is consis-
tent with a propagation vector of (000). A group theoretical
analysis using ISOTROPY [37] for this space group and
propagation vector suggests a magnetic space group, which
is lower than the original Pm3m, as pointed out by Sül-
low and collaborators [26]. This scenario with a transition
in two steps is supported by various experimental tech-
niques, such as resistivity and magnetization measurements
[24,38], nonlinear Hall effect [30], or muon-spin rotation
[29]. These previous experiments all show a linear upward
trend of the phase boundary for the phase diagram due to
magnetic polarons. In particular, the SANS experiment pro-
vided clear evidence for the presence of magnetic polarons in
EuB6 [35].

In this paper, we use angle-dependent magnetoresistance
oscillations (AMRO) to map out the quantum nematic phase
in EuB6 and show that it exists in the region of the phase
diagram where magnetic polarons are observed, just below
the phase line TQN in the (H, T ) phase diagram, as indi-
cated by magnetostriction measurements [32] and by our

measurements of the complex part χ ′′ of the magnetic AC
susceptibility χAC = χ ′ − iχ ′′.

The AMRO technique has been previously used with par-
ticular success in the case of metals with two-dimensional
Fermi surfaces, such as organic conductors [39,40] and
Sr2RuO4 [41]. Later, this technique was successfully used to
demonstrate the presence of a Fermi surface in the overdoped
high-temperature superconductor Tl2Ba2CuO6+δ [42], as well
as in YBa2Cu3O6.58 [9]. As the Fermi surface of most mate-
rials is not spherical, including the one of EuB6, the electrons
no longer move on circular orbits. This leads to an angu-
lar dependence of the magnetoresistance and consequently
to angle-dependent oscillations in the magnetoresistance. In
EuB6 previous studies showed a fourfold AMRO pattern at
high magnetic fields [43]. A twofold AMRO pattern breaking
the axis symmetry was subsequently reported by Glushkov
et al. [44], however this was attributed to demagnetization
effects. Here, measuring multiple samples allowed us to sep-
arate the demagnetization effects from the AMRO signal,
and to definitively determine the presence of an additional
AMRO component, which suggests the presence of a quantum
nematic in EuB6.

II. METHODS

The EuB6 single crystals used in our study were grown
by the same method as previously used for the sample in
Refs. [24–26]. Single crystals were flux-grown with a ratio
of 14 mg of EuB6 powder per gram of Al flux. The mixture
was heated in an Al2O3 crucible using a vertical tube furnace
to 1500 ◦C at a rate of 200 ◦C/hour in a flow of high purity
Ar. The mixture was held at that temperature for 10 hours and
then cooled down to 1000 ◦C at a rate of 5 ◦C/hour [45]. The
crystals were separated from the Al flux in boiling sodium
hydroxide.

Specific heat Cp was measured from 0.4 to 30 K using
a Quantum Design Physical Properties Measurement System
(PPMS) with a 3He insert. Magnetic susceptibility was mea-
sured using a Quantum Design PPMS AC susceptibility op-
tion. The AC susceptibility χAC is defined by χAC = χ ′ − iχ ′′.
For these measurements, the field was applied along [111]
with an oscillating component of 5 Oe at a frequency of 77 Hz.

Resistivity was measured for temperatures between 1.8 and
300 K and magnetic fields between 0 and 9 T with a PPMS
rotator using four-point contact with spot-welded gold wires.
Measurements of angle-dependent magnetoresistance oscilla-
tions (AMRO) were made by rotating the applied magnetic
field H in a plane perpendicular to the current. Measurements
were made up to μ0H = 2 T. At the measured temperatures,
no hysteresis was observed. The experiment was done on mul-
tiple samples with different cross sections, and aspect ratios.
A list of the samples and their dimensions is given in Table I.
An image of the main sample #1 is shown in the Appendix
(Fig. 7).

For a sample with a rectangular cross section perpendicular
to the current direction, rotation of the applied magnetic field
H in the plane perpendicular to the current leads to a change
in the induction B due to demagnetization effects. This effect
appears even though the magnitude of H is constant and gives
rise to a twofold AMRO contribution adem.
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TABLE I. The demagnetization factors for the measured sam-
ples. The second, third, and fourth columns list the sample
dimensions, where L is the length along [100], t the thickness along
[001], and w the width along [010]. The fourth column is the ratio
between the demagnetization factor along the two different direc-
tions D010/D001. The sixth column is the difference in internal field
between the [001] and [010] directions for H = 0.5 T and T = 15 K.

Sample L t w B001 − B010

# (mm) (mm) (mm) D010/D001 (mT)

1 2.413 0.428 0.437 0.983 –6.3
2 2.040 0.590 0.562 1.046 15.5
3 7.89 0.514 0.550 0.94 –23.8
4 4.32 0.650 0.507 1.25 85.9
5 5.090 0.459 0.648 0.73 –119.2
6 1.47 0.143 0.866 0.19 –501.9

III. RESULTS AND DISCUSSION

We start the discussion of our results by presenting the
AMRO measurements on the sample with an almost square
cross section (sample #1 in Table I) in Fig. 1, where the
demagnetization effects are smallest. The geometry used in
the measurement is schematically shown in Fig. 1(a). In our

convention, we define the angle θ = 0 when the field is ap-
plied along [001]. The field rotates in the (100)-plane around
the direction of the current, which flows parallel to [100]. In
order to eliminate any contribution from the Hall effect to the
AMRO, we measured the AMRO for both +H , and −H , and
averaged the values.

As can be seen in Fig. 1(c), for this sample the AMRO
signal disappears for temperatures above 50 K in an applied
field of 0.5 T. Below 50 K, the strongest AMRO component
is a fourfold oscillation a4 from the Fermi surface. This con-
tribution is expected from the band structure of EuB6, which
has a cubic lattice. Such a fourfold oscillation has previously
been reported [43,44]. However, for temperatures close to TM ,
where the specific heat shows a first anomaly [24–26], and
magnetic fields below 1 T, there are two different twofold con-
tributions the AMRO, which dominate the AMRO response:
a smaller twofold component adem, which is commensurate
with the fourfold component a4 from the Fermi surface and
an a2 component, which is shifted with respect to the a4, and
the adem signal. This is particularly visible in the traces taken
at 11 K, which were taken in different applied magnetic fields,
as shown in Fig. 1. Applied fields above 2 T almost completely
suppress the twofold components, as can be seen in Fig. 1(e)
for a temperature of 14 K.
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FIG. 1. Angle-dependent magnetoresistance oscillations (AMRO) in a sample of almost square cross section (sample #1) (a) Schematics
of the measurement geometry: for measuring the perpendicular magnetoresistance ρ⊥, the applied magnetic field H is rotated by an angle θ

in the (100)-plane from [001] to [010], thus maintaining H perpendicular to the current flowing along [100]. (b) and (c) show the oscillatory
component of ρ⊥ − ρ0 vs the field angle θ for μ0 H = 0.5 T at different temperatures. (d) shows the resistivity at 4 K and 2 T used to
determine the experimental rotator angle θ0 = −2.3◦ at which H ‖ [001]. The solid line is the fit to a fourfold contribution. This figure also
shows the typical noise in our AMRO measurements; these uncertainties were taken into consideration when fitting the AMRO oscillations.
(e) Perpendicular magnetoresistance ρ⊥ − ρ0 vs θ at T = 14 K for different applied fields. (f) Comparison of the different AMRO components
at 14 K and 1 T, as described by Eq. (1).
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Thus, a full description of the AMRO requires three com-
ponents:

ρ(H, T, θ ) = ρ0(H, T )(1 + a2 sin 2θ + a4 cos 4θ

+ adem cos 2θ ), (1)

where adem is due to demagnetization effects when the sample
cross section deviates from being square, a4 is a fourfold
component, and a2 a symmetry breaking contribution. This
shift result in peak position for the twofold components at
roughly 37◦. In Eq. (1), all the values are given as a fraction
of the mean resistivity value ρ0(T, H ).

In order to find the correct mechanical zero of the rotator,
we first measured the AMRO at 4 K and in a field of 2 T
shown in Fig. 1(d), where the twofold oscillations are strongly
suppressed. We then fitted this set of data to

ρ(H, T, θ ) = ρ0(H, T )(1 + a4 cos(4(θ + γ ))), (2)

which allowed us to determine the mechanical offset γ of
2.3 ± 0.3◦. In the following, we then shifted the origin to this
value. A fit of Eq. (1) together with the resulting is shown in
Fig. 1(f) for 14 K in a field of 1 T for sample #1. We then
proceeded to extract the amplitudes for the three components
to the AMRO by fitting Eq. (1) for sample #1 in Table I.
The results are shown in Fig. 2. The signal from the Fermi
surface a4 starts to pick up strength below 20 K. Its strength
increases continuously with decreasing temperature and in-
creasing field. However, the symmetry breaking contribution
a2 to the AMRO goes through a maximum as a function of de-
creasing temperature. This signal starts to pick up in strength
below 20 K then goes through a maximum, which is roughly
centered at TC of 12.6 K, and then becomes weaker toward the
lowest measured temperatures. The symmetry breaking con-
tribution a2 also goes through a maximum of increasing field.
a2 is strongest for 0.25 T but decreases for higher fields. A
detailed discussion of the demagnetization contribution adem

is given in the Appendix.

A. Fermi surface contribution a4 to the AMRO

More interesting are the a4 and a2 components to the
AMRO. First we are going to discuss the a4 component, which
is due to the fact that EuB6 has an anisotropic Fermi surface,
as shown in Fig. 3. This finding is in agreement with the
results of a previous AMRO study on EuB6 [43], where the
same rotation axis was used. Conventional metals possess a
three-dimensional Fermi surface, which is the position of the
long-lived electronic excitations in reciprocal space, which
determine their electronic properties at low temperatures [42].
These excitations, as well as the geometry of Fermi sur-
face can be probed by measuring the AMRO. The AMRO
oscillations can be calculated using the Shockley-Chambers
tube integral form of the Boltzmann transport equation, where
we have assumed an isotropic mean-free-path [47].

The Fermi surface of EuB6 was previously observed by de
Haas-van Alphen (dHvA) measurements at 0.4 K [46]. The
experimentally observed Fermi surface has a cubic symmetry
with symmetric ellipsoids at the X points of the Brillouin zone
(see to the right of Fig. 3). A similar Fermi surface was also
seen in angle resolved photoemission (ARPES) [48], which
agrees well with band structure calculations [20]. As the
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FIG. 2. Amplitude of the different AMRO components vs the
temperature. (a) Amplitude a2 of the twofold symmetry breaking
components, (b) amplitude a4 of the fourfold component due to the
shape of the Fermi surface, and (c) amplitude adem of the demagne-
tization for applied magnetic fields of 0.01 T (purple stars), 0.25 T
(red circles), 0.5 T (blue square), 1 T (orange diamonds), and 2 T
(green triangles). This data was taken on sample #1 in Table I.

FIG. 3. (Left) The angular dependence of the resistivity tensor in
a magnetic field of 1 T as calculated from Eq. (3) is illustrated by
the black line. The data are taken from sample #1 at 4 K and 1 T
and fitted with Eq. (1) (red-dash line). (Right) The Fermi surface of
EuB6, as observed by dHvA [46]. The gray outer ellipsoids show the
electron pockets and the yellow inner ellipsoids the holes. There are
a total of six half ellipsoids in one unit cell for both electrons and
holes.
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which is delineated by Hall effect and SANS measurements, and above the ferromagnetic transition line.

dHvA measurements did not indicate a splitting of the Fermi
surface, and tunneling experiments indicate a spin-spitting of
the Fermi surface only in the ferromagnetic state, we did not
take spin-splitting into consideration in our modeling.

The Fermi surface of EuB6 has an electron pocket radius
ratio of 1.8, and a ratio of 1.6 for the holes. The ARPES
data [48] allows us to estimate the radius of 0.1 Å−1 for the
ellipsoids. The temperature dependence of the amplitudes of
the dHvA oscillations [18] gives an effective mass of (0.225 ±
0.01)me for the electrons and (0.313 ± 0.02)me for the holes.
Here, me is the electron mass. Using all these parameters, we
can calculate the conductivity tensor when a field is applied to
the system through the Chambers formula [49,50]:

σi j =
∑

α

e2

4π3

m∗
α

h̄2kF,α

∫
Sα

vi,α (k, 0) d2k

×
∫ ∞

0
v j,α (k, t )e−t/τ dt (3)

where Sα is the Fermi surface sheet associated with band α,
kF,α is the Fermi momentum of band α defined as kF,α =

3
√

3π2nα , where nα is the corresponding charge carrier den-
sity. The sum is over all occupied bands α, where vi,α is the
velocity component of band α (either electron or hole), and τ

is the quasiparticle lifetime.
In EuB6, there is no anisotropy in the quasiparticle lifetime,

unlike what is observed in some cuprates [9]. Also, for EuB6,
the product of cyclotron frequency ωc and τ is greater than
one, therefore the quasiparticles on the Fermi surface com-
plete at least one orbit before they scatter [42]. This removes
some of the complexity in fitting, which affects the shape of
the AMRO oscillations. Furthermore, since the Fermi pockets
in EuB6 are far from the Brillouin zone boundaries, we can
neglect large variation in the density of states due to a van
Hove singularity [51].

We performed a theoretical modeling to gain further insight
into our AMRO observations by using the relaxation time
approximation for the conductivity. AMRO has been instru-

mental in the early understanding of the band structure of
metals [52,53]. More recently for example, it provided clear
evidence for a nematic state and a symmetry-breaking of the
Fermi surface in a high-Tc superconductor [9]. From Eq. (3),
a fourfold oscillation in ρ⊥ is expected when the magnetic
field is rotated in the b − c plane (see Fig. 3) due to the C4

symmetry of the Fermi surface. The calculation at a applied
field of 1 T gives an amplitude a4 of −0.07, which is lower
than the amplitude of -0.06 found at 4 K. This is valid since
the amplitude keep decreasing with temperature (see Fig. 2),
and the temperature in the calculations was zero. The resulting
fourfold oscillatory component is shown in Fig. 3. The overall
constant resistivity differs strongly with the experimental data,
which is due mainly by approximation and initial parameters.
The value was scaled in Fig. 3 to make the comparison. Fur-
ther improvement to the numerical calculation will be done to
investigate the symmetry breaking.

B. Symmetry breaking contribution a2 to the AMRO

Finally, we will discuss the new symmetry breaking con-
tribution a2. The symmetry breaking twofold contribution is
not due to aluminum inclusion from the flux growth, as those
would contribute a fourfold pattern, which is in phase with
the a4 component of the AMRO as discussed in further de-
tail in Appendix B. The a2 contribution breaks the inversion
symmetry, which is in agreement with the spin-split Fermi
surface observed in a recent ARPES study [54]. This breaking
of symmetry would also suggest that we are observing a chiral
quantum nematic. A transition to a Fermi surface with a chi-
ral superstructure (see Ref. [55], and references therein) was
found in theoretical attempts to explain the ferromagnetism in
La doped CaB6 [55–57]. However, later it was experimentally
determined that the ferromagnetism in La doped CaB6 [58]
is rather due to extrinsic impurities [59,60]. This mechanism,
requires a semi-metallic band structure, which in semi-
metallic or small gap divalent hexaborides depends on the
distance between the boron cages in neighboring unit cells
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(a)

(b)

(c)

(d)

FIG. 5. Comparison of the AMRO signal around TM and at ap-
plied fields of 0.25, and 0.5 T for (a) sample #6, (b) sample #1,
(c) sample #2, and (d) sample #4. The black lines are a fit to Eq. (1).

[20–23]. Under the influence of electron-electron interaction
these systems show the tendency to form a helical superstruc-
ture [55]. However, it is not possible to reconcile a transition
from this twofold symmetry to a higher fourfold symmetry as
sequence of second order phase transitions, as a second order
phase transition has to always lower the symmetry.

The colors in Fig. 4 show the strength of the symmetry
breaking component a2 of the AMRO, as determined from
the size of the twofold contribution to ρ⊥ varying as sin(2θ ),
where θ is the angle of the applied field in the plane per-
pendicular to the current [Fig. 1(a)]. The symmetry breaking
component appears below the TM line in the phase diagram
demarked by magnetostriction [32] and χ ′′ given in Sec. III C.
Also, this signal is only seen in nearly cubic samples. Figure 5
shows how noncubic samples deviate from the sin 2θ because
of demagnetization. This effect is explained in more detail in
Appendix A.
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FIG. 6. Imaginary part of the magnetic susceptibility. χ ′′ vs tem-
perature for different applied fields. The second maximum in χ ′′

coincides with where the AMRO is strongest.

C. Magnetic susceptibility

In order to better map out the (H, T ) phase diagram, and
delineate the region where we observe a quantum nematic
in the AMRO, we carried out the AC susceptibility. The AC
susceptibility is a complex value and reads χAC = χ ′ − iχ ′′,
where the real component χ ′, related to the reversible magne-
tization process, and the imaginary component χ ′′ is related
to losses due to the irreversible magnetization process and
energy absorbed from the field [61]. One such example are
the vortices in type-II superconductors, which are topological
defects of an homogeneous order parameter.

Figure 6 shows the second order magnetic susceptibility
χ ′′. The peak in χ ′′ at the lower temperature corresponds to
the ferromagnetic transition, while the peak at higher temper-
atures corresponds to where the signal of magnetic polarons
is strongest. The positions of the high-temperature peaks are
shown as red squares in Fig. 4. This phase boundary coincides
with the increase in anisotropic resistivity signal, which sug-
gests a strong connection between nematicity and magnetic
polarons in EuB6.

IV. OUTLOOK

The role electronic phase separation and magnetic polarons
[3,62] play in high-temperature superconductivity clearly mo-
tivates the need for a model system for studying magnetic
polarons. In EuB6, the regions of the (H, T ) phase dia-
gram where SANS indicates magnetic polarons and where
AMRO displays quantum nematicity coincide, providing
strong evidence that both nematicity and magnetic polarons
originate from the same electronic correlations. This makes
our results on EuB6 particularly important, as unlike the high-
temperature superconductors, EuB6 possess a high degree of
structural order without a nearby lattice instability [63]. EuB6

is thus an excellent model system to study quantum nematic-
ity. Further, the presence of both an electronic nematic and
colossal magnetoresistance suggests that EuB6 can be used as
a novel platform for spintronic devices [64]. This promises
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a way to harness strong electronic correlations for spintronic
applications, and motivates the search for other materials with
magnetic polarons.
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APPENDIX A: DEMAGNETIZATION CONTRIBUTION
TO THE AMRO

We carried out magnetoresistance measurements on an
EuB6 sample with an almost square cross section (sample #1
in Table I, with D010/D001 = 0.983, as shown in Fig. 7). The
demagnetization contribution can be calculated, if we know
the magnetoresistance as a function of the magnetization (see
for example [26]), using the formula for the demagnetiza-
tion factor [68], we can then calculate this contribution. The
contribution adem from the demagnetization to the AMRO
depends on both the internal magnetic field B and the magne-
toresistance ∂ρ

∂B . The demagnetizing factor D for rectangular
ferromagnetic prisms was given by [68]. If for example the
sample does not have a square cross section [for example,
t ([001]) < w([010]), as shown in Fig. 1(a)], then if D001 >

D010, rotating the sample around the direction of the current
flow ([100]) from the [001] direction to the [010] direction is
equivalent to an increase in the magnetic field (
B = B001 −
B010 < 0). As the magnetoresistance ∂ρ

∂B is negative, the ef-
fect of demagnetization would be that 
ρdemag ≈ ∂ρ

∂B
B > 0.
Thus for such a sample, the ρ(B ‖ [001]) > ρ(B ‖ [010]).

For a given direction, the internal field in a sample is
defined as [69]:

B/μ0 = H0 + M − HD (A1)

= H0 + M − DM (A2)

FIG. 7. Dimensions of sample #1. For this sample, the demagne-
tization factors are D100 = 0.080, D010 = 0.46, and D001 = 0.46. For
the contacts we spot-welded gold wires with a diameter of 25 μm to
the sample.
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FIG. 8. Specific heat and electrical resistivity of EuB6 . (a) Mag-
netic specific heat capacity CM = Cp − Cph after subtraction of the
phonon contribution Cph of EuB6 at zero field. The curves correspond
to 0 T (full circles) and 5 T (empty circles). The black line is a
fit to the mean field model for the heat capacity [65]. A field of
0.1 T was used for the zero field data. The red dashed line is a
fit to a spin wave contribution, which is proportional to T 3/2e−
/T

[66]. It gives a gap of 
 = 1.11 ± 0.03 K similar to the one reported
by NMR techniques [67]. Contrary to previous work [25], we only
see a shoulder at the onset of TM instead of a second peak in CM .
(b) Electrical resistivity ρ at zero field, and its temperature derivative
∂ρ/∂T vs temperature for the sample used in the main text.

= H0 + (1 − D )M(T, H, HD ) , (A3)

Here, H0 is the applied field and M is the magnetization
as a function of H and HD . Here we assumed a uniform
magnetization in our samples, which are cuboids, whereas
strictly speaking, the magnetization is only uniform for ellip-
soids. The difference in the internal magnetic field, for when
the magnetic field is applied along a different geometric axis,
can then be calculated using demagnetization factor [68]. If
we know the magnetization for a given applied field, we can
then compute the internal field, which is the sum of the applied
magnetic field plus the induced magnetization corrected by
the demagnetization. We can find the induced magnetization
for a given applied field with the help of Eq. (A3), using
a mean field approximation [65]. The use of a mean field
approximation for finding the magnetization is justified, since
it describes the field dependence of the specific heat well, as
is shown in Fig. 8.

To find the magnetization, we numerically solve the fol-
lowing set of equations [65]:

M = M0BJ (x), (A4)

BJ (x) = 2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

( x

2J

)
, (A5)

x = gJμB

kBT
(μ0H0 + (λ − D )μ0M ), (A6)

λ = 3kBTC

Ng2μ2
Bμ0J (J + 1)

. (A7)
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FIG. 9. Magnetoresistance vs magnetization. Here, M0 is the
value for the saturation magnetization of EuB6 and ρ(H ) the elec-
trical resistivity in an applied field of H . The blue circles show the
magnetoresistance of the sample with a square cross section (sample
#1) as 1 − ρ(H )/ρ(H = 0) at 15 K(open), and at 20 K (closed).
The green squares show the magnetoresistance of the sample with
a square cross section (sample #2) as 1 − ρ(H )/ρ(H = 0) at 15
K(open), and at 20 K (closed). The calculation of M accounts for
demagnetization. For all, the magnetic field was applied along [001].
The solid, dotted and dash lines are a fit to equations a power law.
The solid pink points are data reported previously by Süllow et al.
[70], which follows 1 − ρ(H )/ρ(H = 0) ∼ 75( M

M0
)2.

Here, BJ (x) is the Brillouin function, J is the total angular
momentum of 7

2 of EuB6, TC the Curie-Weiss temperature of
12.6 K, the g factor is 2 and N is the number of magnetic
atoms per volume. However, in order to be able to calculate
the demagnetization contribution adem, the magnetization de-
pendence of the electrical resistivity has to be measured.

Madjumdar and Littlewood proposed that the magne-
toresistance in metallic ferromagnets, and doped magnetic
semiconductors should be negative, and proportional to the
square field induced magnetization [71]. In their theory, this
behavior is due to the suppression of the magnetic fluctuations
by the applied magnetic field. Such a behavior was reported by
[26], i.e., 1 − ρ(H )

ρ(H=0) ∼ ( M
M0

)2. The results of these measure-
ments are shown in Fig. 9 for 15 K and 20 K. For comparison
we also show data extracted from [70]. Our data does follow a
power law:

1 − ρ(H )

ρ(H = 0)
= 65

(
M(H )

M0

)2

for T = 20 K

(A8)

1 − ρ(H )

ρ(H = 0)
= 11.6

(
M(H )

M0

)1.33

for T = 15 K ,

(A9)

and agrees with the exponent of two at low field above
TM. Using the factor found in Eqs. (A8) and (A9) and the
charge carrier concentration, we can determine the position
of our measurements in the plot presented by Madjumdar and
Littlewood. Our factor C is equal to 65, our charge carrier
concentration is 5 × 1019 cm−3 at low field and temperature
of 20 K and our magnetic correlation length is 4.18 Å. The
charge carrier concentration was taken from Hall coefficient

D[010]/D[001]
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

2

4

6

8

a*
de

m
 (

x1
00

)

FIG. 10. Twofold contribution to the AMRO. The open circles
show the amplitude a∗

dem retrieved from the fit of Eq. (1) vs the ration
of the demagnetization factors, D010

D001
for all samples at 15 K and in

an applied field of 0.5 T. The amplitude was normalized as a∗
dem =

ρ0 (T =15 K,H=0.5 μ0 T)
ρ0 (T =15 K,H=0) adem for a comparison with the data. The solid line

a fit of adem ∝ ( D010
D001

)2. The dashed line is the calculated amplitude
using the demagnetization and the CMR as given by Eq. (A9) as
described in the text.

measurements. These values place us in the same region as
other EuB6 experiments [70]. The first indication that adem is
indeed due to demagnetization comes from the fact that it is
commensurate with the a4 component from the Fermi surface.
As this component is linked to the shape of the cross section,
and the crystal habit is given by the cubic symmetry of EuB6,
this is the expected behavior. We used Eq. (A9) to calculate
the twofold AMRO component adem due to a combination of
demagnetization effects and a large CMR in EuB6. The result
of this calculation is shown in Fig. 10 as the red dashed line
for a temperature of 15 K, and in an applied magnetic field
of 0.5 T. Here, we calculated adem as function of the ratio of
the demagnetization factor D010

D001
using a sample length L of

1 mm.

APPENDIX B: ALUMINUM INCLUSIONS

Previous interpretations of dHvA Fermi surface measure-
ments of SmB6 were plagued by aluminum inclusions, see
Refs. [72,73]. It was found that the aluminum inclusions are
epitaxial single crystals co-oriented with the (100) direction
SmB6. We would expect the same growth direction for alu-
minum inclusions in EuB6. Such inclusion, if present, would
then lead to fourfold AMRO pattern [74], with the same angle
dependence as observed at high temperatures and high mag-
netic fields in EuB6. Thus, the lowering of the symmetry in the
AMRO from fourfold to twofold in EuB6 cannot be explained
by the presence of epitaxial aluminum inclusions.

APPENDIX C: AMRO CALCULATIONS

In Eq. (3) of the main text we calculated a numerical
integral over the Fermi surface S, which is shown in Fig. 3
of the main text. The total Fermi energy for one closed pocket
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(for example the electron band at position X) is [75]:

EF = V

(2π )3

h̄2

2m∗

∫∫∫
{ k2

x
k2
a
+ k2

y

k2
a
+ k2

z
k2
b
�1}

dkxdkydkz

× (
k2

x + k2
y + k2

z

)
(C1)

EF /N = h̄2

2m∗ k2
F , where (C2)

k2
F = 4

15

(
2k2

a + k2
b

)
, (C3)

where ka is the minor axis and kb is the major axis of the
elliptical pockets. These axes are linked to the volume of
the Fermi volume, and hence, to the charge carrier density.
So, we can obtain the minor axis from the ratio of the radii
R∗ = kb/ka, and the density of charge carriers n as

ka =
3
√

3π2n√
4
15 (2 + R∗2)

(C4)

Here, n and R∗ will be different for the two bands (electrons
and holes). The velocity of the charge carriers was calculated
as follows:

v(k) = 1

h̄
∇kE (k) (C5)

and

E (k) = h̄2

2m∗ k2 (C6)

where k is a wave vector on the Fermi surface. For the propa-
gation of the particle along a trajectory on the Fermi surface,

TABLE II. Experimental data used for the AMRO calculations

Values Electron band Hole band

R∗ [18] 1.6 1.8
m∗ [38] 0.24 0.29
τ [50] 8.5 cm−1 8.5 cm−1

n [38] 6.7 × 1019 cm−3 6.1 × 1019 cm−3

n [19] 3.23 × 1019 cm−3 3.05 × 1019 cm−3

ncalc 5 × 1019 cm−3 5 × 1019 cm−3

we use the following equation of motion:

h̄
dk
dt

= qv(k) × B(θ, ϕ), (C7)

where B is the applied magnetic field at specific angles θ and
ϕ. The integral over time was taken from 0 to 9τ , giving time
for the particle to do more than one revolution around the
Fermi surface and for the integral to converge. In the case
of EuB6 the scattering rate 1/τ reported by Ref. [50] 1/τ =
8.5 cm−1 = 4.05 × 1010 s−1 is smaller than the cyclotron
frequency (ωc = eB(1 T)

2πm∗ = 1.2 × 1011 s−1). This means that in
EuB6 the electrons complete more than one revolution around
the Brillouin zone before they scatter. Also, in EuB6 the Fermi
pockets are far from the Brillouin zone boundaries. As a
consequence, for EuB6 the contribution from an anisotropic
scattering rate can be neglected. This is very different from the
situation in Tl2Ba2Cu1O6+δ [76]. In order to speed up calcula-
tions, we also assumed a uniform density of the charge carri-
ers. All the values used the calculations are found in Table II.
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