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Long-range hopping and indexing assumption in one-dimensional topological insulators
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In this paper, we show that the introduction of long-range hoppings in one-dimensional topological insu-
lator models implies that different possibilities of site indexing must be considered when determining the
bulk topological invariants in order to avoid the existence of hidden symmetries. The particular case of
the extended Su-Schrieffer-Heeger chain is addressed as an example where such behavior occurs. In this model,
the introduction of long-range hopping terms breaks the bipartite property and a band inversion occurs in the band
structure as the relative values of the hopping terms change, signaling a crossover between hopping parameter
regions of “influence” of different chiral symmetries. Furthermore, edge states become a linear combination of
edgelike states with different localization lengths and reflect the gradual transition between these different chiral
symmetries.
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I. INTRODUCTION

Topological insulators (and superconductors) are catego-
rized according to their dimension and to general symmetries
that protect gapless boundary modes [1,2]. One of the latter
is the chiral symmetry or sublattice symmetry which protects
the zero energy edge states of bipartite lattices such as the Su-
Schrieffer-Heeger (SSH) model due to the anticommutation of
the chiral operator C (the difference of the projection operators
in the two sublattices of the system) and the Hamiltonian.
It is usual in the case of translational invariant Hamiltoni-
ans to assume that the latter is equivalent to the relation
CH (k)C−1 = −H (k), where implicitly a choice of unit cell
has been undertaken. Furthermore, several topological invari-
ants such as the Zak’s phase [3] or the Chern number [4] rely
on the knowledge of Bloch eigenstate |u±(k)〉 throughout the
Brillouin zone and also reflect a particular choice of unit cell.
Each choice of unit cell implies a particular subdivision of the
lattice into sublattices.

In this paper, we argue that, in the case of linear chains
with long-range hoppings (beyond nearest neighbor and that
may break the bipartite property), several choices of site in-
dexing should be considered in order to correctly describe
their bulk topological behavior, which correspond to different
representations of the tight-binding Hamiltonian as a linear
chain. If the indexing is not the “correct” one, the topological
protection of edge states may be associated with a hidden
chiral symmetry [5–9], which cannot be written as a differ-
ence of projection operators onto the sublattices defined by
the unit cell. This will be expected in particular if a band
inversion occurs in the band structure of the linear chain as
the relative values of the hopping terms change. In order to
illustrate the previous arguments, we consider in this paper
the chiral symmetry protected topological SSH insulator and
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add to it long-range hopping terms [10–22] in such a way that
the Hamiltonian eigenbasis remains the same and the usual
SSH chiral operator remains a mapping operator between
eigenstates of the Hamiltonian (allowing us to compare it
with new chiral operators). This model is simply the extended
SSH chain with next-nearest-neighbor (NNN) hoppings. For
certain evolutions of the ratio between hopping parameters, a
band inversion will occur signaling a crossover between pa-
rameter regions of “influence” of different chiral symmetries
(regions where the Hamiltonian can be adiabatically changed
in order to recover a chiral symmetry).

We also present an analytical and numerical study of the
topological edge states of this extended SSH chain in the
presence of open boundary conditions (OBC), and show that
they reflect clearly the indexing problem and the existence of
different chiral symmetries. The extended hopping terms im-
ply that the edge states cannot be generated from degenerate
bulk states and this leads to the existence of two localization
lengths in the real-space dependence of the edge states. In a
log plot, such behavior is clearly observed as well as the exis-
tence of competition between the different chiral symmetries
in the edge state profile in the crossover region.

This paper is organized in the following way. In Sec. II, we
introduce in general terms the indexing problem. In the next
section, we construct the extended SSH model and discuss
the indexing problem in this model. In Sec. IV, we address
limiting cases of the extended SSH model where a chiral
symmetry is present. In Sec. IV, we present a discussion of
the edge states in this model. Finally we conclude.

II. INDEXING ASSUMPTION

Let us consider a linear chain with finite range extended
hopping terms and a unit cell with n sites, where n is even.
Instead of the shortest unit cell associated with the transla-
tional symmetry, we consider a larger unit cell with size at
least large enough so that hopping terms within the unit cells
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FIG. 1. (a) Linear chain with finite range extended hopping terms
and a unit cell with n sites such that only hopping terms within the
unit cells (Hi,i) or between consecutive unit cells (Hi,i+1) are present.
(b) Reinterpretation of the linear chain as a ladder with a rung with n
sites. Different indexings of the ladder sites generate different linear
chains.

and between consecutive unit cells are present; see Fig. 1(a).
This chain can be interpreted as a ladder with a rung of n sites
as shown in Fig. 1(b). Our chain has n sublattices (all with
the same cardinality) and the site j belongs to the sublattice
[( j + 1)mod n] − 1. If the ladder was our starting point, then
the original linear chain would be obtained with a zig-zag
indexing of the sites in the ladder shown in Fig. 1(b); that
is, our linear chain constitutes a particular path in our ladder
that generates a periodic sequence of nearest-neighbor (NN)
hoppings as well as of the longer range hopping terms. The
respective periodicity defines the unit cell of the linear chain
and it should be obvious that an infinite number of different
paths exist, but in general with larger unit cells.

Starting from a ladder and given some hopping terms dis-
tribution, it should be possible to find the path (or paths)
corresponding to the shortest unit cell (which may be smaller
than the number of sites in each rung). Given one of these
paths, one can circularly permutate the indexing of sites in
a given sublattice without increasing the unit cell, but at the
cost of introducing longer range hopping terms in general.
If we permutate in a noncircular way the sites in a given
sublattice, the unit cell size will increase or one may even
lose completely the translational invariance in the linear chain
(but a hidden translational invariance will be present in the
Hamiltonian). One would naturally assume that the indexing
corresponding to the shortest unit cell would allow for the full
topological characterization of the linear chain, but there is a
subtle problem concerning the protecting symmetries of the
edge states when our linear chain has long-range hopping that
we explain in the following.

Given our ladder of n sites per rung, it is possible to change
the hopping parameters so that a single path is present such

that all sites are only connected to their nearest neighbors
in the corresponding linear chain. This chain is bipartite (with
the odd and even sublattices having the same cardinality) and
therefore it has chiral symmetry reflecting the existence of
hopping terms only between even and odd sublattices. One
may ask how many different such chiral symmetries (as a sim-
plification, we consider only the chiral symmetries reflecting
a partition of the lattice into two sublattices with the same
cardinality, but the argument can in principle be generalized
to any ratio of the sublattice cardinalities) can be found given
an n-site unit cell (the ladder rung) and allowing only changes
in the magnitudes of the hopping terms (no on-site poten-
tials are introduced). This can be answered considering the
possible linear paths (with only nearest-neighbor hopping)
that generate different sublattices. Note that these linear paths
include a single hopping term between consecutive unit cells
since we can do a circular permutation of indexing within the
sublattices in order to ensure that. The number of different
chiral symmetries is n(n − 1)/2 and the simplest topological
linear chain corresponding to each chiral symmetry is an SSH
chain with staggered hopping terms.

Given a particular linear path and the respective NN linear
chain, the introduction of long-range hopping terms between
the odd and even sublattices will not break the chiral symme-
try of the linear chain, so one can say each chiral symmetry
corresponds to a particular region of the ladder tight-binding
parameter space. Furthermore, besides the region where the
chiral symmetry is present, there is a region of influence of
chiral symmetry which is the region in the hopping parameter
space of the general Hamiltonian (that does not have chiral
symmetry due to the long-range hoppings) where the Hamilto-
nian can be adiabatically deformed into the Hamiltonian with
chiral symmetry.

In the general case of the ladder, one will have several
coexisting choices of linear paths with larger and smaller unit
cells as we will see in the next section. If we start from a ladder
Hamiltonian with chiral symmetry and the respective shortest
unit cell is considered, as one varies the hopping terms, one
may approach another chiral symmetry point in the parameter
space. If one wants to avoid the existence of hidden symme-
tries in the respective topological characterization, there are
two possibilities: (i) to consider a larger unit cell such that the
new chiral operator can be represented in a single unit cell;
(ii) to change the indexing of sites in order to obtain the unit
cell corresponding to the chiral symmetry point. In the next
section, we will illustrate all these arguments in the case of
the extended SSH chain.

III. MODEL

In this section, we arrive at the NNN SSH model following
a particular reasoning motivated by the indexing problem; that
is, we start from the premise that the introduction of long-
range hopping should not change the Hamiltonian eigenbasis
(it should remain the same as that of the usual SSH chain)
in order for the usual chiral operator of the SSH chain to
remain a mapping operator between the same eigenstates of
the Hamiltonian. This will allow for a comparison between
that operator with the new one associated with a new chiral
symmetry; see Sec. IV. Note that the extended SSH has been
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addressed in the past in several works [10–22], but as far as
we know its indexing problem has never been discussed.

Let us then consider a one-dimensional (1D) tight-binding
model with nonsymmetric bands ε±

k , but with the same eigen-
basis of the SSH model, {|u±(k)〉}. Note that, since we
fixed the eigenbasis, the usual SSH chiral operator Ĉ1|ψ±

k 〉 =
|k〉 ⊗ Ĉk |u±(k)〉 is still valid as a mapping operator between
eigenstates (a given state in one band has the respective
pair in the other band). This chiral operator is written in
terms of the Bloch eigenstates |u±(k)〉 of the Hamiltonian
Hk as Ĉ1 = ∑

k Ĉ1(k) with Ĉ1(k) = |u+(k)〉 〈u−(k)| + H.c.,
with Hk |u±(k)〉 = ε±(k) |u±(k)〉, and ε+(k) = −ε−(k) if the
bands are symmetric. If the bands are nonsymmetric, one
loses the anticommutation relation between this operator and
the Hamiltonian (which is no longer bipartite). This im-
plies that the mapping operator is still given by Ĉ1(k) =
|u+(k)〉 〈u−(k)| + H.c., but with ε+(k) �= −ε−(k). Further-
more, topological invariants such as the Zak’s phase that
are calculated from this eigenbasis remain exactly the same
with quantified values and a discontinuity when t1 = t2. The
matrix representation of H (k) in this eigenbasis is H (k) =
diag[ε+(k), ε−(k)], where ε+(k) > ε−(k),∀k, except at a par-
ticular choice of the parameters where the gap closes. The
matrix representation in the “Wannier” basis {|k; A〉, |k; B〉} is

H (k) =
[

εd (k) εo(k)e−iφ(k)

εo(k)eiφ(k) εd (k)

]
, (1)

where we have diagonal terms εd (k) = [ε+(k) + ε−(k)]/2
and off-diagonal terms εo(k) = [ε+(k) − ε−(k)]/2. The above
matrix has no σz component and that implies that a winding
vector can still be defined in the xy plane.

In the case of the usual SSH model, we have εo(k)eiφ(k) =
t1 + t2eiak and εd (k) = 0, and therefore ε±(k)eiφ(k) = ±(t1 +
t2eiak ). The Fourier transform of the diagonal terms is zero and
the off-diagonal term is 1

N

∑
k eik( j−l )(t1 + t2eiak ) = t1δ jl +

t2δ j,l+1 and 1
N

∑
k eik( j−l )(t1 + t2e−iak ) = t1δ jl + t2δ j,l−1, so

we obtain correctly the SSH model.
In the general case of the Hamiltonian in Eq. (1), we will

have long-range hoppings and on-site potentials. In this paper,
we consider a simple case where we keep the SSH model
conditions except for ε+(k) + ε−(k) = 4α cos(ka); that is,

H (k) =
[

2α cos(ka) t1 + t2e−iak

t1 + t2eiak 2α cos(ka)

]
. (2)

The real-space Hamiltonian in the Wannier basis
{| j; A〉, |l; B〉} is obtained from Hjl = 1

N

∑
k eik( j−l )H (k).

Since 1
N

∑
k eik( j−l )[ε+(k) + ε−(k)] = α(δ j,l+1 + δ j,l−1) and

εo(k)eiφ(k) = t1 + t2eiak

=
√

2t1t2 cos(ak) + t2
1 + t2

2 eiφ(k), (3)

one obtains an SSH tight-binding model with next-nearest-
neighbor hoppings, as depicted in Fig. 2(a), whose real-space
Hamiltonian is written as

H =
∑

j

[t1c†
jAc jB + t2c†

jBc j+1A (4)

+α(c†
jAc j+1A + c†

jBc j+1B) + H.c.]. (5)
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FIG. 2. (a) Usual indexing of the SSH chain with next-nearest-
neighbor hopping α. (c) New indexing with the indexing being
flipped every other rung. Note that for finite t1 the unit cell has
four sites (and we should consider a ladder with a four-site rung).
(b),(d) Linear chain corresponding to the indexing in (a) and (c),
respectively, using a shortened representation for the long-range
hoppings, whose numbers indicate the distance between connected
sites. In (b) [(d)], the red (blue) hopping terms break the bipartite
condition (that is, they are hopping terms between sites on the same
sublattice).

The respective bands are ε±(k) = εd (k) ± |εo(k)|.
For general values of the hopping parameters, this model

falls into the AI symmetry class due to the absence of a
chiral symmetry. The chiral symmetry is recovered when the
chain becomes bipartite, moving this model into the BDI class
[1,2]; that is, it has time reversal, particle-hole, and chiral
symmetries.

A. Spectrum of the extended SSH chain

The introduction of NNN hoppings destroys the bipartite
property of the SSH chain and this is reflected by the fact that
the spectrum is no longer symmetric. In Fig. 3, we show the
evolution of the spectrum for the SSH tight-binding model
with NNN hopping α for a chain with 21 unit cells plus
one site and adopting the indexing of Fig. 2(a). On the right
side, α = 0 and one has the usual SSH chain with hopping
parameters t1/t2 = 2. This chain has a right edge state (shown
on the right of Fig. 3), where the usual subdivision into two
sublattices is evident from the fact the edge state has zero
amplitudes on one sublattice (indicated by the x symbols),
reflecting the usual SSH chiral symmetry. This edge state
survives as we increase α, but gains finite amplitude in the
latter sublattice. In Fig. 3, we increase α up to 0.2 and then,
keeping α fixed, we change t1 from t1/t2 = 2 to t1/t2 = 0 (left
limit). The left limiting case again shows a chiral spectrum
but with different chiral symmetry reflecting a different unit
cell or, equivalently, different choices of sublattices. The need
for a different indexing in the left limiting case is signaled
by the bottom band inversion at t1/t2 ≈ 0.4 and is evident in
the amplitude profile of the corresponding edge state shown
on the left (for visual clarity, we show instead the edge state
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FIG. 3. On the left, spectrum as a function of t1/t2 (with α/t2 = 0.2) for the SSH tight-binding model with next-nearest neighbor hopping
α for a chain with 21 unit cells plus one site [with a t1 (t2) link at the left (right) edge] and adopting the indexing of Fig. 2(a). On the right,
spectrum as a function of α/t2 (with t1/t2 = 2). The left and right limiting cases show a chiral spectrum, but with different chiral symmetry
reflecting a different unit cell or, equivalently, different choices of sublattices. The need for a different indexing in these two cases is signaled
by the bottom band inversion and is evident in the amplitude profile of the corresponding edge states shown on the left (for visual clarity, we
show instead the edge state corresponding to α/t2 = 0.4) and on the right. The circle sizes indicate the relative amplitudes and the colors reflect
the phases (blue is zero; red is π ). Parity values and the respective Zak’s phases are shown assuming the indexing of Fig. 2(a).

corresponding to α/t2 = 0.4). This band inversion implies
multiple level crossings (as shown in Fig. 3) and this implies
that the usual reasoning of adiabatic transformation can only
be applied from the left (right) to this indexing crossover
point. That is, the topological properties to the left of this
point (t1/t2 < 0.4) in Fig. 3 cannot be adiabatically connected
to those of the SSH model (with α = 0).

Parity values and the respective Zak’s phases are also
shown in Fig. 3 assuming the indexing of Fig. 2(a). Since the
Bloch eigenbasis remains the same throughout this evolution,
they are the same as the usual SSH chain, except for the
change in parity associated with the bottom band inversion.
As in the case of the usual SSH model, a discontinuity in
the phases of the components of |u1(k)〉 occurs (assuming a
smooth gauge) when the gap is closed at t1 = t2. At this point,
the Zak’s phase is also discontinuous (and quantified), since
it is calculated from the eigenstates of the Hamiltonian (or,
equivalently, the parity of the k = π states). Another disconti-
nuity is present at the phase of the off-diagonal matrix element
of the Block Hamiltonian. Note that, since the eigenstates are
the same as that of the usual SSH model, the Hamiltonian has
inversion symmetry.

The bottom band inversion is also evident in the left top
plot of Fig. 3 as well as the need for a π shift in the bottom
band so that the spectrum becomes symmetric as expected
due to the presence of a chiral symmetry. It is not possible
to describe the latter chiral symmetry using the unit cell of
Fig. 2(a), even despite the fact that this remains a perfectly
valid unit cell when NNN hoppings are introduced. Therefore,
in the general case where α �= 0, other indexings may need to
be considered depending on the relative values of the hopping
terms. In Fig. 2(c), we show a different possible indexing
that implies a four-site unit cell. In Figs. 2(b) and 2(d), the
indexings of (a) and (c) are represented in a linear chain
where we indicate the long range hoppings using a shortened
representation (that may be clearer if one wishes to increase
their number).

IV. INDEXING AND CHIRAL SYMMETRY IN LIMITING
CASES

To recap, there are two simple limits of our extended SSH
model where a chiral symmetry is present.
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A. Nearest-neighbor SSH chain (α = 0)

Setting α = 0 in our extended SSH chain of Fig. 2, there is
a natural indexing of sites which is displayed in Fig. 2(a). The
maximum number of finite Hamiltonian matrix elements in
each row (this is equivalent to the coordination number of each
site) is two; then one has a NN tight-binding model and one
numbers the sites following the path of finite matrix elements.
For this indexing, this bipartite model has a sublattice of even
sites connected to the odd sublattice sites in such a way that
ti j �= 0 if |i − j| = 1. This model has a chiral symmetry and
the respective chiral operator is the difference of the projection
operators into the even and odd sublattices. This description
can be applied to any other limit of the model where a single
path of hopping terms is present.

B. Other chiral case t1 = 0

Assuming an even stricter condition, t1 = α = 0, one has
decoupled dimers and two flat bands of energies t2 and −t2
corresponding respectively to bonding and antibonding dimer
states. These dimers can be connected in several ways in order
to generate chains with only NN hoppings. One is to add hor-
izontal hoppings alternating between the top and the bottom
[green lines in Fig. 2(c)] and another is to do it as in the SSH
model [green lines in Fig. 2(a)]. This leads to the different
indexings in Figs. 2(c) and 2(a). These two ways obviously
imply different chiral operators, reflecting the choice of even
and odd sublattices.

Considering t1 = 0, α �= 0, and the indexing of Fig. 2(a),
the Hamiltonian is H (k) = 2α cos(ak)1̂ + t2σ̂x, where t2 is
assumed as an intracell coupling, and the system can be
mapped onto two simple tight-binding chains [of bonding (an-
tibonding) states with on-site potentials t2 (−t2) and hopping
constant α]. These two chains have identical band dispersions
apart from the energy shift 2t2,

ε±(k)/|t2| = α

|t2| cos(ka) ± 1, (6)

with |u±(k)〉 = [±1 1]T
/
√

2. Apparently this model does
not have a chiral symmetry and the absence of a k-dependent
phase in |u±(k)〉 may lead one to assume incorrectly that no
topological phase can be present. Despite the fact that, at the
gap closing point, t1 = 0 and α/|t2| = 0.5, the bands do not
touch, a topological transition does occur at this point with the
appearance of edge states (note that if one considers a four-
site unit cell, this leads to the folding of the bands and the
bands touch at the gap closing point). Again, this reflects the
fact that the model is bipartite in this limit, but the respective
sublattices are not the same as those of the initial SSH model
and the respective translational operator of the two-site unit
cell is also not the same (see Fig. 2). Therefore, in order to
correctly understand the topological phase, the new indexing
of the sites of Fig. 2(c) is required.

Let us denote the indexing of Fig. 2(a) by n and the in-
dexing of the sites of Fig. 2(c) by n̄. Considering the four-site
unit cell of Fig. 2(c) [note that, for t1 = 0, one has a two-site
unit cell with the indexing of Fig. 2(c) as easily concluded
from Fig. 2(d), but the four-site unit cell makes the change
of indexing easier to understand], then the bonding (+) and

antibonding (−) states are

|ψn(k)〉± = |2k〉 ⊗

⎡
⎢⎣

ψ4

ψ5

ψ6

ψ7

⎤
⎥⎦

±

= 1

2
|2k〉 ⊗

⎡
⎢⎢⎣

±1
1

±eika

eika

⎤
⎥⎥⎦, (7)

and using the new indexing they become

|ψn̄(k)〉± = |2k〉 ⊗

⎡
⎢⎣

ψ4̄
ψ5̄
ψ6̄
ψ7̄

⎤
⎥⎦

±

= |2k〉 ⊗

⎡
⎢⎣

ψ4

ψ5

ψ7

ψ6

⎤
⎥⎦

±

= 1

2
|2k〉 ⊗

⎡
⎢⎢⎣

±1
1

eika

±eika

⎤
⎥⎥⎦. (8)

Therefore, the band of bonding states is the same for both
indexings, but in the case of the antibonding band the Bloch
eigenstates, when using the indexing of Fig. 2(c) and a two-
site unit cell, become |k + π〉 ⊗ |u−(k + π )〉 and this implies
a π shift in the momentum of the bottom band.

The bulk Hamiltonian of the chain in Fig. 2(d), assum-
ing a unit cell of sites {2, 3} and t1 = 0, is H (k) = [t2 +
2α cos(ak)]σ̂x, the eigenvalues are ±[t2 + 2α cos(ak)], and
the respective eigenstates are again |u±(k)〉 = [±1 1]T

/
√

2,
that is, they are independent of k for this choice of unit cell.
The respective Zak’s phase is zero for both bands and this is
expected since, if the site 1 is absent in Fig. 2(d), no edge
state will be present. The same occurs in the case of the old
indexing of Fig. 2(b), but note that a shift of one site in the unit
cell leads to a finite Zak’s phase and this agrees with the fact
that for the choice of OBC of Fig. 2 an edge state is observed.

The correct chiral operator C2 that protects the edge states
in this case requires two two-site unit cells if one works with
the indexing of sites in Fig. 2(a), but a single two-site unit
cell using the indexing of sites in Fig. 2(c). Using the former
indexing, we have in the Wannier basis of two unit cells

C2 =

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎦, (9)

or in the two-band Bloch basis,

C2(k) = |εk,+〉〈εk+π,−| + |εk,−〉〈εk+π,+| + H.c., (10)

or, equivalently,

C2H (k)C−1
2 = −H (k + π ). (11)

Similar operators have been found in Refs. [5,6]. This expres-
sion implies that by using the indexing of Fig. 2(a) the chiral
operator C2 cannot be defined as an operator acting only in
|u±(k)〉 as in the case of the SSH model (unless we use a larger
unit cell with four sites) and, in fact, this operator reflects a
hidden chiral symmetry for that indexing. If the indexing of
Fig. 2(c) is used, the chiral operator C2 can now be written as
an operator (with the usual form) acting only in |u±(k)〉, but
not the chiral operator C1, that is, the chiral symmetry of the
SSH chain becomes a hidden chiral symmetry if we choose
the indexing of Fig. 2(c). Note that this implies that, since the
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edge states for t1 = 0 are eigenstates of this chiral operator C2,
the “unit cell” for the edge state shown at the left of Fig. 3 has
four sites using the indexing of Fig. 2(a) and two sites using
the indexing of Fig. 2(c).

V. EDGE STATES OF THE EXTENDED SSH CHAIN

Let us now discuss the characteristics of the edge states
in the general case where t1 �= 0 and α �= 0. In several recent
works [23–29], it has been assumed that edge states in 1D
topological insulators can be determined from the bulk Hamil-
tonian using the substitution eik → c in the bulk Hamiltonian,
reflecting the assumption of an ansatz

|ψedge〉 j = c j |u(c)〉 = c j

[
ψA

ψB

]
(12)

(where j is the unit cell index) in the eigenvalue equation of
the infinite system. Here we show that the presence of long-
range hopping in the SSH chain modifies this ansatz, due to
the competition of the two chiral symmetries associated with
the two limits t1 = 0 and α = 0 (reflecting the two indexings
of Fig. 2 and the respective even and odd sublattices).

Assuming the unit cell (A = 5, B = 6) shown in Fig. 2(a),
the eigenvalue equation for the edgelike states in the infinite
chain generates the following equations:

εc jψA = αψAc j−1 + αψAc j+1 + t1ψBc j + t2ψBc j−1, (13)

εc jψB = t1ψAc j + t2ψAc j+1 + αψBc j−1 + αψBc j+1, (14)

which can be rewritten as a matrix equation:

ε

[
ψA

ψB

]
=

[
α(c + 1/c) t1 + t2/c

t1 + t2c α(c + 1/c)

][
ψA

ψB

]
. (15)

The respective characteristic polynomial is quadratic in c (and
quadratic in ε) if α = 0, but becomes quartic in c (remaining
quadratic in ε) if α �= 0. Therefore, for each energy value ε,
we have two c solutions [one corresponding to a left edge state
and the other to a right edge state; see Fig. 4(a)] if α = 0, but
four solutions if α �= 0 [see Fig. 4(b)]. The latter implies in
certain energy intervals the existence of two right (left) edge
eigenstates in the infinite chain [states with decay in the right
(left) direction] that may be combined in order to generate
a single right (left) edge state with zero amplitudes at all the
sites of a unit cell of the chain, so that OBC may be introduced
at these sites [12]. Note that, while in the case of the SSH
model with OBC, a single condition selects the left edge state
from the set of left edgelike states of the infinite chain and
that condition is that of zero amplitude at a virtual site at the
left end (that will also impose zero amplitude in the respective
sublattice), when we have two left edge states in the infinite
chain with the same energy we need two conditions (these will
be the zeros of amplitude at the two virtual sites A and B to the
left of the chain so that the resulting eigenstate of the infinite
chain does not “feel” the OBC).
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FIG. 4. (a), (b) Real c roots (corresponding to edgelike states of
the infinite chain) of the characteristic polynomial of the c matrix in
Eq. (15) and the respective energy for t1 = 0.5, t2 = 1, (a) α = 0,
or (b) α = 0.2. In the case of α = 0, there two possible values of
c for each energy in the band gap (corresponding to a right and a
left edgelike state). When NNN hopping is present (α = 0.2), four
c values are present in the band gap region, with one of the right
edge solutions outside the range of this plot. (c) Amplitude ψA of the
eigenstate in Eq. (18) as a function of real c. (d) The intersection of
the curves ε±(c) and ε±[−γ (c)] gives us the c1 and c2 values present
in the edge state [with amplitudes of the form ψA/B(c j

1 − c j
2)].

The eigenvalues ε as functions of c are

ε±(c) = αc2 + α ± β

c
, β =

√
c(ct1 + t2)(t1 + ct2) (16)
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and the respective eigenstates are

c j

[
ψA

ψB

]
= c j

[
1

± β

ct1 + t2

]
= c j

[
1

±√
cγ (c)

]
, (17)

or equivalently

c j

[
ψA

ψB

]
= c j

[
±ct1 + t2

β
1

]
= c j

⎡
⎣± 1√

cγ (c)
1

⎤
⎦, (18)

where

γ (c) = t1 + ct2
ct1 + t2

(19)

and where we have assumed that ct1 + t2 is positive in the last
equality of Eqs. (18) and (17). Note that the amplitudes do not
depend on α.

For α = 0, the edge state energy is determined imposing
ψA = 0 in Eq. (18) or ψB = 0 in Eq. (17). This implies c =
−t2/t1 or c = −t1/t2, and, depending on the value of the ratio
t1/t2, these will be left or right edge states. In both situations,
the respective energy given by Eq. (16) will be zero. These
energies and the amplitude are indicated in Figs. 4(a) and 4(c),
respectively, by the red dots.

For α �= 0, if the edge state has two consecutive zeros
of amplitude (this implies a unit cell with zero amplitudes)
in the chain, OBC may be introduced at the B site (the left
edge) and one obtains an eigenstate of the semi-infinite chain
which is orthogonal to the bulk eigenstates. Let us determine
the energy of such an edge state. As explained above, the
existence of this edge state requires for finite α the presence
of four real c solutions of the characteristic equation, two of
them corresponding to left edgelike states; see Fig. 4(b) (one
of the right edge solutions is outside the range of this plot).
The left edge state is obtained combining two left edgelike
states with the same energy that can be written as

|L1〉 j = c j
1

[
1

ψB(c1)

]
, (20)

|L2〉 j = c j
2

[
1

ψB(c2)

]
. (21)

Since we have NNN hoppings, in order for a linear combina-
tion of these two states to be an eigenstate of the chain with
OBC (or better, of a semi-infinite chain), the amplitudes at
both virtual sites (the unit cell with j = 0) must be zero,

a

[
1

ψB(c1)

]
+ b

[
1

ψB(c2)

]
=

[
0
0

]
⇒

{
a = −b,
ψB(c1) = ψB(c2),

(22)
that is, |edge〉 = |L1〉 − |L2〉 and the energy of the edge state
is determined by the condition that at that energy one has two
left (or two right) edgelike eigenstates of the infinite chain that
have the same unit cell amplitudes (apart from the decaying
factor). The relation between c1 and c2 is simple,

ψB(c1) = ψB(c2) ⇒ c1γ (c1) = c2γ (c2)

⇒
{

c1 = −γ (c2),
c2 = −γ (c1). (23)
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FIG. 5. (a) Edge state amplitudes for t1 = 0.8, t2 = 1, and α =
0.2 assuming the indexing of Fig. 2(a). The red and green curves are
fits of the form ψA/B(c j

1 − c j
2) for respectively the A and B sublattices.

(b) c1 and c2 values and (c) ψB/ψA extracted from the fits. The dots
in (b) and (c) are numerical data extracted from fits to the edge
state amplitudes as shown in (a) and the lines are plotted from the
theoretical results [Eq. (25) with X (x) given by Eq. (28) in the case
of the c values shown in (b) and Eq. (17) in the case of the amplitudes
ratio shown in (c)]. For t1/t2 > 1, one has a right edge state for chain
endings as in Fig. 2(a) and, in order to keep the c values continuous,
the indexing is flipped, that is, we index the sites from the right to the
left. The edge state in (a) corresponds to the orange dots in (b) and
(c).

The last two relations are equivalent. This edge state can be
written as

|edge〉 j = {c j − [−γ (c)] j}
[

1
ψB(c)

]
. (24)

One can also conclude from Fig. 4(d) that c1 and c2 have
opposite signs.

In Fig. 5(a), we show an example of amplitude profile of
an edge state (for t1 = 0.8, t2 = 1, and α = 0.2) assuming the
indexing of Fig. 2(a). The red and green curves are fits of the
form ψA/B(c j

1 − c j
2) for respectively the A and B sublattices.

We considered just the largest amplitude points for the fits
since finite size effects should introduce deviations in the tail
of the edge state (due to the presence of the other boundary).
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In Fig. 5(b), we show the c1 and c2 values and in Fig. 5(c)
ψB/ψA as t1/t2 grows for fixed α = 0.2. The dots in Figs. 5(b)
and 5(c) are numerical data extracted from fits to the edge
state amplitudes as shown in Fig. 5(a) (the red and green
fits generate the same values of c1 and c2) and the lines are
plotted from the theoretical results—Eq. (25) with X (x) given
by Eq. (28) in the case of the c values and Eq. (17) in the
case of the amplitudes ratio, as we explain below. An almost
perfect fit is found with a small deviation at the topological
transition point. For t1/t2 > 1, one has a right edge state for
chain endings as in Fig. 2(a) and, in order to keep the c
values continuous, the indexing is flipped, that is, we index
the sites from the right to the left. The edge state in Fig. 5(a)
corresponds to the orange dots in Figs. 5(b) and 5(c).

Note that Fig. 5(c) shows that ψB(c) (setting ψA = 1) is a
function of only α/t2 for t1 < t2, ψB(c) = ±X (α/t2). The ap-
parent lack of symmetry for t1 > t2 just reflects the fact that, in
this region, ψB(c) (setting ψA = 1) is a function of α/t1 (due
to the symmetry t1 ↔ t2 ⊕ L ↔ R), ψB(c) = ±√

c/γ (c) =
±X (α/t1), and therefore ψB(c) changes as t1 grows for fixed
α. So we have

ψB(c) = ±
{ √

cγ (c), for t1 < t2,√
c/γ (c), for t1 > t2,

= ±
{

X (α/t2), for t1 < t2,

X (α/t1), for t1 > t2.
(25)

This equation determines the value of c if the function X (x) is
known.

The function X (x) [and the value of c in Eq. (24)] is
determined by the condition that the left edge states |L1〉 j and
|L2〉 j have the same energy, ε±(c1) = ε±(c2) (and the same
reasoning applies to right edge states), and this leads to

ε±(c) = ε±[−γ (c)]. (26)

That is, the intersection of the curves ε±(c) and ε±[−γ (c)]
gives us the exact form of the edge state [see Fig. 4(d)]. For
t1/t2 = 1/2, one has ε±(c) = α/t2.

Since X (α/t2) is independent of t1 for t1 < t2, we may
determine this function in the simple case t1 = 0. For t1 = 0,
one has γ (c) = c, ψB = ±c, β = |ct2| and ε±(c) = ε±(−c)
leads to

c = X (α/t2), (27)

with

X (x) = ±1 ± √
1 − 4x2

2x
, (28)

where the four combinations must be considered (generating
two left and two right edge states). So, to conclude, with the
above expression for X (x), Eq. (25) determines the value of c1

[c2 being −γ (c1)] and Eq. (16) gives the respective edge state
energy.

To complete our analysis of the effect of long range hop-
ping on the topological edge states, we show in Fig. 6 log
plots of the absolute values of the edge state amplitudes as
a function of site index using the usual indexing, for several
values of t1 and α (t2 = 1). The log plot in Fig. 6(a), with
α  t1, reflects the existence of the two sublattices associated
with the indexing of Fig. 2(a) (due to the proximity to the SSH
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FIG. 6. Log plot of the absolute values of the edge state am-
plitudes as a function of site index using the usual indexing, for
several values of t1 and α (t2 = 1). The change from the t1-t2 SSH
chiral symmetry [reflected by the separation into two sublattices in
(a)] to the other [corresponding to two different sublattices in (f)] is
gradual, occurring first at the edge of the edge state [see red arrows in
(c) and (d)]. As t1 approaches zero, c2 → −c1 and a doubling of the
edge state “unit cell” is observed, reflecting the need for a different
indexing. If we replot these data using the new indexing of Fig. 2(c),
the behavior for small and large t1/α is exchanged. In (a)–(f), the
edge state amplitudes that show the doubling of the edge state unit
cell (and reflect the existence of the sublattices 1′ and 2′) are colored
in red. The edge state amplitudes given by the black dots reflect the
usual bipartition of the SSH chain.

chiral symmetry point), while the log plot in Fig. 6(f) displays
a doubling of the edge state unit cell, reflecting the need
for a different indexing with a new unit cell that generates
the sublattices shown in Fig. 6(f). The change from the C1

SSH chiral symmetry [reflected by the separation into two
sublattices in (a)] to the C2 chiral symmetry [corresponding
to two different sublattices in (f)] is gradual, occurring first at
the edge of the edge state [see red arrows in (c) and (d)]. If
we replot these data using the new indexing of Fig. 2(c), the
behavior for small and large t1/α is exchanged.

VI. CONCLUSION

The characterization of topological insulators depends
strongly on its set of symmetries. In the case of translational
invariant Hamiltonians, these symmetries can be written as a
set of well known equations that involve the bulk Hamiltonian
and the respective symmetry operator. The bulk Hamiltonian
reflects a choice of unit cell and it is usually assumed that
any choice of unit cell will allow one to fully characterize
a topological insulator. In this paper, we argue that this is
not always correct and that several choices of unit cell or,
equivalently, of site indexing should be considered in the case
of linear chains with long range hoppings in order to describe
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their bulk topological behavior. Otherwise, depending on the
relative values of the hopping parameters, hidden symmetries
may be present [5–9]. We have exemplified the above argu-
ments considering the particular case of the extended SSH
chain. In this model, the introduction of long-range hopping
terms breaks in general the bipartite property causing the
Hamiltonian to lose its respective chiral symmetry, and a band
inversion occurs in the band structure as the relative values of
the hopping terms change. We have shown this band inversion
signals a crossover between hopping parameter regions of “in-
fluence” of different chiral symmetries and that, depending on
the choice of unit cell, these may be hidden chiral symmetries.

We have also shown that, as a consequence of the long-
range terms, the edge states of the extended SSH chain
become a linear combination of two edgelike states with dif-
ferent localization lengths but equal amplitudes in the unit
cell (apart from the decaying term). We have determined the
exact form of these edge states and of the respective energy
for any value of the next-nearest hopping term. When one
of the nearest-neighbor hopping parameters becomes small
compared with the next-nearest-neighbor hopping parameter,
the localization lengths become similar and this implies the
gradual appearance of a chiral symmetry different from that of
the SSH (edge states being protected by this new chiral sym-
metry when a nearest-neighbor hopping parameter is zero)
that reflects a new sublattice distribution of the lattice sites
and the need for a new indexing of the lattice sites. This need
is also signaled by the inversion of one of the model bands.

Similar behavior to that of the extended SSH chain should
be present in other bipartite 1D [27,30–32] and 2D [33–36]
topological insulators if long-range hopping terms are intro-
duced. A simple 2D example where the approach of this
paper can be applied is that of a plane of parallel extended
SSH chains with uniform or staggered hopping terms between

them. An interesting extension of these results should also
be possible in the context of square-root topological insula-
tors [30,31,37] or the recently proposed 2n-root topological
insulators [38–40]. We also expect the introduction of long-
range hopping terms in higher-order topological insulators
[41–43] to raise similar concerns about the possibility of
hidden symmetries as well as the existence of multiple local-
ization lengths in the corner states. An open question is the
effect of disorder in what concerns the linear combination of
edgelike states with different localization lengths.

The experimental observation of the features described
in this paper should be realizable in artificial lattices such
as ultracold atoms in optical lattices [44], photonic crystals
[45], topolectrical circuits [46–49], acoustic lattices [50,51],
vacancy lattices [52], or atoms or molecules on surfaces
[53]. Since the hopping terms are decreasing functions of
the distance between sites (except in topolectrical circuits)
the extended SSH realization should adopt the geometry of
Fig. 2(a), but for example with a scalene t1-t2-α triangle where
the largest side corresponds to the smallest hopping parameter
t1,2.
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