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Geometric pumping and dephasing at topological phase transition
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A measure-preserving formalism (MPF) is constructed and applied to spin/band models, which yield observa-
tions about pumping. It occurs at the topological phase transition, i.e., a Z2 flip, suggesting that Z2 can imply bulk
effects. The model’s asymptotic behavior is analytically solved via MPF. The pumping probability is geometric,
fractional, and has a ceiling of 1

2 . Intriguingly, theorems are proved about occurrence conditions, which are linked
to the system’s dimension and the distinction between rational and irrational numbers. Experimental detection is
discussed.
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I. INTRODUCTION

As witnessed in the past decades, geometry has intertwined
with physics [1,2] primarily via a framework outlined by
Berry [3] and Simon [4], which has two crucial ingredients:
one is adiabaticity, vital for the analogy to parallel transport;
the other is Berry curvature which makes anholonomy occur.
The two points are believed necessary, serving the foundation
of recognizing the slow/fast variables, deducing topological
invariants, etc., as seen in quantization of adiabatic pumping
[5,6] or transports [7], the theory of electric polarization [8],
and topological gaped [9,10] or nodal states [11].

Our first result is to incorporate geometry without adia-
baticity and Berry curvatures; the two ingredients are proved
dispensable. Our scheme relies on making quantum evolution
mimic a classical trajectory via a measure-preserving formal-
ism (MPF) [12,13], which originates from efforts in unifying
formalisms for quantum and classical mechanics [14–17]. In
Berry’s scheme (and its development [18,19]), local curvature
is the key; here, the “trajectory” in phase space is at the
heart, entailing different geometric intuitions (e.g., ergodicity
[20]) and math apparatus. Moreover, MPF helps deduce exact
solving of a spin model to establish a rigorous concept from
which one can set out to examine general situations.

The second result is about an observable, an interband
pumping, namely geometric pumping. Its rate purely depends
on an angle parameter, which, in certain instances, is linked
to the Z2 index [21,22]. Since the pumping is for bulk, it
challenges the wisdom that Z2 only implies surface/interface,
known as the bulk-edge correspondence [23]. It relies on the
flipping of Z2 (not a specific state of Z2) and thus is a gen-
uine consequence of topological phase transitions (TPTs). Its
detection perfectly matches the pump-probe laser technique
[24,25]: “pump” is to excite phonons that can distort the bands
and may induce electronic TPTs, and “probe” is to detect
charge pumping. Suitable systems include narrow-gap topo-
logical insulators or semimetals, which are liable to undergo
TPTs. A candidate recently studied is ZrTe5, whose topologi-
cal states can be altered by A1g [24] and B1u modes [25].

The work spans several subjects: topological band theory,
MPF, ergodic theory, measure theory, and number theory. It
is fascinating that such seemingly irrelevant topics appear
together without a planner. We give their relations in the main
text and leave backgrounds, derivation, and proof to appen-
dices and references.

II. MEASURE-PRESERVING FORMALISM

We set out from a spin model to introduce a generic MPF.
Consider a spin- 1

2 in 1D cyclic magnetic field B(t ) = B0[a +
cos(ωt )] · ẑ, two levels with a gap �(t ) = 2μBBz(t ) which
will momentarily close if |a| � 1 [Fig. 1(a)]. Unlike previous
models constantly with gaps [3,5,6,26], we allow gap closing
(thus nonadiabatic) for investigating TPTs. The Z2 index can
be defined as 1

π
cos−1[sgn(Bz · σz )], valued 0 or 1 depending

the relative orientations of B and spin. Flipping Z2 requires B
passing zero, i.e., gap closing.

The 1D setting is to introduce the concept of pumping,
which refers to the spin being excited to the higher eigenstate
|n1〉 (|n0〉 is ground state) under the influence of B(t ). When
generalized to band models, this corresponds to interband
pumping, different from pumping across real space onto edges
[5,6,27]. For 1D, the exact solution is available, say starting
with spin up:

|ϕ(t )〉 = e−i
∫ t E↑(τ )dτ |↑〉, (1)

where |↑〉 stands for the state of spin up and E↑(τ ) =
〈↑|H (τ )|↑〉 = −μBBz(t ). So |ϕ(t )〉 sticks to |↑〉. But |↑〉
might switch between |n0〉 and |n1〉, when the gap is closed
[Fig. 1(a)]. If level inversion happens (Z2 is flipped), pumping
occurs; if Z2 does not change, e.g., a � 1, no pumping takes
place.

Despite its simplicity, 1D clearly shows geometric char-
acteristics: (1) pumping only depends on the flipping of Z2,
insensitive to eigenvalues unless the gap is closed; (2) Eq. (1)
holds for arbitrary ω and lacks energy scales (e.g., �/ω).
Equation (1) indicates, after two cycles, the spin will be
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FIG. 1. (a) 1D. Z2 : 0 → 0, no pumping; 0 → 1, pumping.
(b) 2D. B(t ) follows a sector loop with angle �. Dimensions refer
to the spatial ones. For example, if B(t ) is restricted along the z axis,
it is 1D; if allowed for rotation in a plane, e.g., the x-z plane, it is 2D.

depumped back to the original eigenstate up to a phase. Such
returnable behavior is liable to be generic for 1D, as it is also
observed in the 1D Z2 spin pump [6]. In that case, a spin chain
under cyclic changing potentials is considered, and after one
cycle, the spin is pumped from one edge to the other, but in
the next cycle, the pumped spin will return (i.e., net pumping
in two cycles is zero). Thus, external dephasing (e.g., coupled
with leads) is believed necessary to crush coherence and make
pumping happen [6,28]. However, when the dimension is � 2,
as we find below, “internal” dephasing occurs.

Consider B(t ) in the x-z plane [Fig. 1(b)]. The arc section
with large |B| ensures ideal adiabatic evolution. Two straight
sections with exact solutions are to handle the gap closing.
Average pumping rate over n cycles is

pn = 1

n

n∑
j=1

|〈n1|U j |ϕ(t = 0)〉|2. (2)

The evolution operator U (�,	,
) is found (Appendix A),
where �,	 are polar and azimuthal angles of B(t ); 
 con-
tains dynamic phases from B0 and ω.

U =
(

cos(�/2)e−i
 −sin(�/2)e−i(	−
)

sin(�/2)ei(	−
) cos(�/2)ei


)
. (3)

Here, U will not determine a state amid a loop but will
give the resultant state after n loops by Un. U being SU(2)
rather than U(2) is due to time reversal T H (t )T −1 = −H (t )
(Appendix A). U is independent of gauge, as required by an
evolution operator. Pumping takes place at the pathway corner
(gap-closing point), but phases accumulated elsewhere have
influence. Previous results about pumping [5,6,27,28] rely on
the adiabatic limit ω � �. Our result is interesting on account
of being valid for ω � �min = 0, and error in polynomials Un

only coming from arc sections, which can be exponentially
suppressed by raising B0.

We seek pn→∞, limiting behaviors after a number of cy-
cles. Later we will show pn→∞ converges almost everywhere
in �-
 space (also �-
-	 for 3D). It is straightforward
to show pn(�) = pn(−�) and pn(
) = pn(
 + π ), so we
adopt 
 ∈ [−π/2, π/2] and � ∈ [0, π ]. For 1D, 
 is the
variable and � = π or 0, and pn is integer for arbitrary 
. For
2D (0 < � < π ), “fraction” pumping emerges, e.g., 1

2 “shot”
of spin is pumped when x is projected to z axis. Projections
occur in every cycle, subject to computation of pn with Eq. (2),
which becomes difficult as n becomes large. Fortunately, an
ingenious method of MPF finds p∞ converge to analytic
expressions.

TABLE I. Comparison of different MPFs—Liouville theorem
[13], Wigner flow [14], and this work—in terms of applied scopes
(classical or quantum), measure functions, and valid conditions.

MPF Scope Measure Condition

Liouville C d p ∧ dq q̇ = ∂pH, ṗ = −∂qH (robust)
Wigner Q d p ∧ dq ∂n

q H = 0 for n > 2 (fragile)
This work Q Haar H† = H (robust)

MPF is built for both classical and quantum, but differently.
For classical, preservation of measure d p ∧ dq is directly
deduced from Hamilton’s equations [13], and thus MPF is
established on rigor. For quantum, however, measure preser-
vation demands all higher-order (>2) derivatives of potentials
must be vanishing [14,15]. Thus, the validity of MPF relies
on stringent conditions. This motivates us to construct MPF
on an equal footing: Just as Liouville’s theorem follows from
Hamilton’s equations, can measure preservation result directly
from Schrödinger’s equation? One feature of Schrödinger’s
equation (perhaps unique) that ensures measure preservation
is unitarity of the evolution. A unitary operator is an endo-
morphism of Hilbert space, and continuous endomorphism of
a compact group will preserve its Haar measure [20]. Accord-
ingly, two modifications are made. First, we leave the {p, q}
space and turn to the group’s parameter space. Second, the
Haar measure (Appendix B) defined for the symmetry group
on Hilbert space H is to replace the measure d p ∧ dq.

In Hamilton mechanics, the evolution operator Tt updates
particles’ momenta and positions [13,20]; formally, it is a
set {Tt |t ∈ R} that transform the space {p, q}, preserving
the symplectic measure d p ∧ dq (Liouville theorem), and
satisfying semigroup law Tt+s = Tt◦Ts. Taking discrete time
steps s, the semigroup law yields Tt = T n

s for t = ns. In
comparison, quantum U represents the evolution during B(t )
completing a loop, serving as a “time step.” U is a matrix
of the SU(2) group, satisfying U l+n = U l ◦ Un. It will ro-
tate H and preserve SU(2)’s Haar measure m(�,	,
) =
2 sin(2�) d
 d�d	 (also those of its subgroups). We ob-
serve the correspondence

T n
s (p, q) ∼ Un(�,	,
); d p ∧ dq ∼ m(�,	,
). (4)

The step number n is “time.” The phase-space coordi-
nates (p, q) correspond to 3-dimensional state coordinates
(�,	,
), referring to the spin orientation and phases. The
symplectic measure d p ∧ dq corresponds to the Haar measure
m (Appendix B). The correspondence for the time averages for
an observable f is given by

f̄ = 1

t

n∑
i=0

f (T i
s (p, q)) ∼ f̄ = 1

n

n∑
i=0

fn pn, (5)

where f is a certain observable to be averaged. By the substi-
tution of Eqs. (4) and (5), we define a MPF.

The valid conditions for MPFs are summarized in Table I.
There is an elegant correspondence between the Liouville the-
orem and the present scheme. Liouville requires “Hermitian”
in a classical sense; i.e., the system’s dynamics obey Hamilton
equations q̇ = ∂pH, ṗ = −∂qH [13]. However, if dissipative
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terms exist (e.g., ṗ = −∂qH − p), MPF is invalid. For this
work, it requires “Hermitian” in a quantum sense; i.e., the
Hamiltonian is a Hermitian operator H†(t ) = H (t ), which is a
fundamental feature of quantum mechanics that ensures evo-
lution U being unitary, deducing robust MPF. In both MPFs,
H can be time dependent, and thus energy is allowed to flow
in or out. On the other hand, Wigner’s scheme requires perfect
harmonic potentials [14], which are often not satisfied even at
an approximation level.

III. GEOMETRIC PUMPING AND DEPHASING

To proceed, we need a crucial concept: ergodicity (intuitive
interpretation seen in Appendix B). A system being ergodic
means it can reach every region in the space (either {p, q}
space or others) after sufficient time. Formally, it is a property
of the evolution operator.

Definition 1. Let (X,B, m) be a probability space. A
measure-preserving transformation T of (X,B, m) is called
ergodic if the only members of B of B with T −1B = B satisfy
m(B) = 0 or m(B) = 1.

Here, B denotes a σ -algebra of set X . The m is a measure
function that is equipped to depict “probability” and has been
normalized to 1 (Appendix B). If T is ergodic, we have the
following theorems (pp. 30, 34 of [20]). Theorem 1.2 is known
as Birkhoff ergodic theorem.

Theorem 1.1. Let G be a compact group and T (x) = ax a
rotation of G. Then T is ergodic iff {an}∞−∞ is dense in G. In
particular, if T is ergodic, then G is Abelian.

Theorem 1.2. Let T: (X,B, m) → (X,B, m) be measure
preserving and f ∈ L1(m). Then (1/n)�n−1

i f (T i(x)) con-
verges almost everywhere to a function f ∗ ∈ L1(m). Also f ∗ ◦
T = f ∗ almost everywhere and if m(X ) < ∞, then

∫
f ∗dm =∫

f dm.
Theorem 1.1 implies that the non-Abelian SU(2) cannot

be ergodic but can admit an ergodic Abelian subgroup, when
{T n}∞ is dense, i.e., T n �= I for n ∈ N. Theorem 1.2 implies
that if T is ergodic, an auxiliary function f ∗ can be introduced
to evaluate the (Lebesgue) integration of the original f . The
f ∗ gives the probabilities of occupying a region in phase
space. f ∗ ◦ T = f ∗ renders a property similar to translation
invariant, except for the set {T n}∞ is dense rather than con-
tinuous. Accordingly, f ∗ = ρ almost everywhere rather than
everywhere. Theorem 1.2 premises m < ∞. Thus, finite m is
indispensable.

The ergodic subgroup is explicitly found (Appendix C) and
has a geometric interpretation [Fig. 2(a)]: a spin vector rotates
in a “trajectory” around a fixed axis, and pumping is simply
the projection to −z. Integration with f ∗ = ρ over the trajec-
tory [Fig. 2(a)] gives the below analytic result, which perfectly
matches numerical evaluations with Eq. (2) [Fig. 2(b)],

p∞ = 1

2

sin2
(

�
2

)
1 − cos2

(
�
2

)
cos2(
)

. (6)

What is the efficient way to pump spin? Large � pumps more
each “shot,” but depumping is also more; small � pumps little
each time, but accumulation of n → ∞ is unclear. Equation
(6) gives exact answers to this question. In the above, � is a
pure angle, but 
 contains dynamic phases. Why is Eq. (6)

FIG. 2. (a) Geometric pumping caused by “spin rotation.” Note
the rotation is not smooth, but jumping by angle �η = δ each loop,
and δ is given by Eq. (C3). With ergodicity (unstable points), δ/π is
irrational, and no points are coinciding. With n → ∞, it will form a
quasicontinuous trajectory composed by dense points. (b) Numerical
results (colored) against analytic solution (black).

geometric? Note that p∞ curves get flat as � → 0 or π ,
finally constant with 
 [Fig. 2(b)]. Later we will see π and
0 are the physically achievable values for �. Thus, pumping
is insensitive to dynamic details [e.g., B(t ) or ω], unless gap
closing is touched, at which � hops from 0 to π or reversely,
leaving a purely geometric effect. It is more evident when
pG = 1

π

∫ π/2
−π/2 p∞ d
 is defined. Since B0 is huge, even a

small fluctuation will cause a drastic change in phases, making

 random statistically. Thus, pG is the quantity practically
linked to observables. If 
 is evenly distributed, analyticity
survives

pG = 1
2 sin(�/2). (7)

In this case, instead of parallel transport [3,27], it is ergodicity
that generates a quasicontinuous trajectory [Fig. 2(a)] and
lets geometry come in. Equation (7) rises from “0/0”; i.e.,
both ω and �min → 0, where ω/�min is ill defined. This
reminds us of quantum criticality [29], a situation of both
h̄ω → 0 and kBTc → 0, where characteristic energy fails and
scale invariance emerges [29,30]. Here, geometry emerges.
The 1

2 factor in Eq. (7) is noteworthy. First, it suggests ge-
ometric pumping is fractional, different from pumps driven
by photons that allow a “whole” particle to be excited once
energy quanta are matched. Second, pG has a ceiling of 1

2 ,
reminiscent of the principle of maximum entropy, because 1

2
makes S → Smax = ln 2 for two levels. Besides, the pumping
will be quantized if � is quantized (as shortly seen in the
band model). A major discovery here is that the returnable
behavior is fragile against dimension perturbation, which is
much unnoticed for restriction to perfect 1D [5,6,28] or cyclic
evolution [19]. A cyclic spin rotation considered by Aharonov
and Anandan [19] corresponds to a special case � = π here.

Definition 2. The point (�,
,	) is stable of order N for a
natural number N , if UN (�,
,	) is diagonal. If the point is
not stable for arbitrary N , it is unstable.

Note that pumping only takes place at unstable points,
because the Hamiltonian specified by stable (�,
,	) allows
spin to return to the original state within finite cycles. This
is reflected by that p∞ diverges at a stable point, because, if
the sequence includes every n ∈ N, p∞ is given by Eq. (6); if
n = mN (m ∈ N ) and N is the order of stable point, we obtain
a subsequence {pn} to make p∞ = 0, a distinct result from
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Eq. (6). In fact, p∞ can yield many different values by choos-
ing {pn|n mod(N ) = l}, and l = 0, 1, 2 . . .. Thus, Eq. (6) only
converges for unstable points (ergodic). The existence of the
limit follows from Theorem II.11 of [31]. For stable points of
order N , spin hops among N states and is nonergodic.

We prove two theorems (Appendix D) about the physical
conditions for pumping to occur.

Theorem 2.1. Let A (resp. Ā) denote the set of stable (resp.
unstable) points (�,
).

(a) Points with � ∈ {0, π} or 
 = ±π/2 are stable.
(b) Fix � in the open interval (0, π ). Then:
(i) {
 | (�,
) ∈ A} is dense in [−π/2, π/2].
(ii) {
 | (�,
) ∈ Ā} is dense in [−π/2, π/2].
(c) Fix 
 in the open interval (−π/2, π/2). Then:
(i) {� | (�,
) ∈ A} is dense in [0, π ].
(ii) {� | (�,
) ∈ Ā} is dense in [0, π ].
Theorem 2.2. Let (
), (�,
), and (�,	,
) denote the

points in 1D, 2D, and 3D phase space.
(a) In 1D (� = 0, π ), Ā = ∅, i.e., m(Ā) = 0, m(A) = 1.
(b) In 2D or 3D, almost every (�,
) or (�,	,
) ∈ Ā,

i.e., for Lebesgue measure m(Ā) = 1, m(A) = 0.
The theorems can be translated into three physical

conditions/features for geometric pumping:
(i) Gap closing and TPT.
(ii) Robustness to energetic/dynamic details, e.g., band

gap sizes, driving frequencies ω.
(iii) System dimension D > 1.
Reasoning is as follows. For (i), the vertex of angle � is

at the degeneracy point B = 0 [Fig. 1(b)]; thus gap closing is
required. Then, from Eq. (7), � = π [32] gives the maximum
pG = 1/2, while � = 0 leads to pG = 0. In band models
(where � take discrete values π or 0), � = π corresponds
to band inversion, altering topological states. Thus, TPT is a
necessary condition.

For (ii), the energetic/dynamic information is encoded in

 and �; i.e., given a H (t ), it will project an image in (�,
)
space. Pumping occurrence depends on whether the model’s
regime (it is a finite region, for real systems must have a
spread) can touch the distributed areas of Ā. Theorem 2.1(b)
and (c) reveals an interesting pattern: Any finite (compact)
regime must contain both A and Ā, as they are both dense
subsets. This resembles the distribution of rational Q and
irrational numbers Q̄ on the real axis: any finite interval R
must contain Q and Q̄. Such distribution entails robustness
for pumping, because no matter how one adjusts the model’s
parameters (e.g., by changing gap sizes, or the way approach
gap close), no matter what size or shape of the regime
the model occupies in the (�,
) space, encountering Ā is
unavoidable—all because Ā is so densely embedded. Remark-
ably, such robustness is endowed by an unprecedented source
of math. We already know the protection for a physical effect
can be established on symmetry-group or topology theories
[9–11]. Here the protection is rendered by facts in number
theory. In fact, this robustness is independent of symmetry,
which is a rare virtue since rigor often breaks down for lack-
ing required symmetries. For example, the Mermin-Wagner
theorem (the absence of long-range order in low-dimensional
systems at finite temperatures) relies on isotropic presumption
and only leads to a tentative argument in crystals, where the
needed continuous symmetry is absent.

FIG. 3. (a) Stable points up to order N = 17 for � = π/2. If
N → ∞, stable points form a dense subset over 
. (b) Global view
of stable points in (�,
) phase space. The plotted lines are a portion
of the stable curves, which are actually superdense. (a) can be gen-
erated by a cutting line at � = π/2. The points on boundaries (i.e.,

 = ±π/2 and � = 0, π ) are stable.

Moreover, the distribution of A and Ā can be solved and
analytically expressed. In Appendix C, we find A (Ā) is
a family of curves cos(δ/2) = cos(�/2)cos(
) with every
δ/π ∈ Q (Q̄) and plot regions of A in Fig. 3(b). The diagram
indicates the valid range of Eq. (6), which only converges in Ā
when the system is ergodic. Thus, curves in Fig. 2(b) should
be discontinuous everywhere in 
 (except for � = 0, π ).
They are a class of bizarre functions that are integrable (areas
below the curve are well defined), but derivatives diverge
everywhere.

For (iii), it is to break the illusion that A and Ā are of
“equal” status, since (ii) has stated that they are both infinitely
dense. In fact, A and Ā correspond to different probability
weight, namely measure. When they are simultaneously en-
countered, only one subset is dominant in probability. If D =
1, the measure of Ā is vanishing; i.e., probability of pumping is
0 [Theorem 2.2(a)]. If D � 2, oppositely, the stable m(A) = 0
and pumping surely occurs [Theorem 2.2(b)].

The “dephasing” associated with geometric pumping is
a different type. First, the nonreturning is not from “real”
dissipation, but from the journey becoming infinitely long.
Second, nonreturnable trajectories are statistically more than
returnable ones, which has a geometric origin that nonclose
trajectories allowed by geometry will explode in number as di-
mension increases (D > 1). Since the cardinality of A proves
equal to Q (Appendix C), one can also say dephasing is due
to Q being sparser than Q̄. Thus, without fixing physical
quantities precisely on Q or Q̄, two properties of Q and Q̄ still
impose an influence: in arbitrary finite interval (1) m(Q) = 0;
(2) both Q and Q̄ are dense subsets of R.

It is easy to extend to a band model, in which geo-
metric pumping still occurs. Consider two-band (spinless)
H = ∑

i di(k; R(t ))σi, where σi represents pseudospins (real
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FIG. 4. Geometric pumping caused by band evolution in
(a) topological insulator, (b) semimetal. The pumping regions are
highlighted.

spin can be restored by an expanded term σi⊗s j [33]); di is
controlled by parameter R(t) (e.g., time-dependent phonon
amplitudes). Definition of topological invariants varies with
symmetries and dimensions [10,21,22], and here we just
use an easy model to reveal the link between � and TPT.
We adopt dx(k) = v + w cos(k · l ), dy(k) = w sin(k · l ). This
model can represent a chain (lattice l) with two atomic sites
A, B in each cell: H = v

∑
i c†

i,Aci,B + w
∑

i c†
i+1,Aci,B + H.c.

Here, the topological invariant is a Z2 type, which is the
winding number (1 or 0) of the circle spanned by k around
the origin of (dx, dy) space [34]. In resemblance to spin in
Fig. 1(a), we can set v(t ) = a + cos(ωt ),w(t ) = 1. Evidently,
di plays the role of Bi and the winding number will change
at � = π , and the trivial gap close happens at � = 0. In
general, a different choice of v(t ),w(t ) (details of phonon’s
effects on bands) will change “orientation” of B fields, but
not alter the angle �. Consequently, � in band models is
quantized, taking values in two infinitesimal regions around
0 and π [35]. Basically, we have neglected inelastic phonon
scattering and taken each k as an independent spin model.
Since gap close/opening is for a specific k, pumping may
apply to node change in semimetals. The time-reversal trans-
formation T HT −1 = −H used in derivation of Eq. (3) should
be replaced by particle-hole symmetry �H�−1 = −H . The
finite m still satisfies in the new context.

IV. SUMMARY

We suggest observing geometric pumping in the vicinity
of various TPTs [36] (e.g., narrow-gap topological insulator
[24,25] or semimetals [11]). Under the influence of phonons,
the gap is closed and opened, causing periodic TPTs, or a
semimetal’s node position is changed (Fig. 4). Recently, a
suggestion of charge pumping has been detected in ZrTe5

[24], where carriers hop into upper bulk bands with below-
gap pumping. The proposed geometric pumping provides a
compelling implication to establish a general framework for
light-topology quantum control experiments [37–43].

This work reports a pumping caused by TPT, challenging
the wisdom that Z2 only causes surface observables. The
pumping probability is exactly solved [Eqs. (6), (7)], showing
a upper limit 1

2 , matching the numerical results [Fig. 2(b)].
Its geometric feature [Eq. (7)] is salient. The conditions
of pumping are proved (Theorems 2.1, 2.2). The measure-
preserving formalism defined by Eqs. (4) and (5) represents a
route to incorporate geometry other than Berry’s scheme. The
rational/irrational numbers have entered physics when dimen-

sion D > 1, and an intriguing question is whether entropy can
be defined linked to Q or Q̄.
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APPENDIX A: DERIVATION OF EVOLUTION MATRIX U

Although U is not adiabatic, evolution Uc (the arc section)
is. In the adiabatic limit, spin is rigorously aligned with B
field, and thus Uc can be expressed in rotation angles of B
field. Uc = R · �, where R(α, β, δ) are rotations of δ with an
axis of polar and azimuthal angles α, β.(

cos
(

δ
2

) − isin
(

δ
2

)
cos(α) −isin

(
δ
2

)
sinα · e−iβ

−isin
(

δ
2

)
sinα · eiβ cos

(
δ
2

) + isin
(

δ
2

)
cos(α)

)
.

(A1)

R will align spin with B. Based on the setting of Fig. 1(b), R
has α = π/2, β = 	 + π/2, δ = �. � is a diagonal matrix
due to the undetermined phase.

� =
(

e−i�(α,β,δ) 0
0 ei�′(α,β,δ)

)
, (A2)

where � and �′ are functions of rotation angles. In general,
R · � is a U(2) matrix. In this instance, a constraint narrows it
down to SU(2). Time reversal T = −iσyK and K is complex
conjugation. Then T UcT −1 is

T [T e−i
∫ t

0H (τ )dτ ]T −1 = I + i
∫ t

0
T H (τ )T −1dτ

+ i2
∫ t

0

∫ τ

0
T H (τ )T −1T H (τ ′)T −1

× dτdτ ′ + · · ·

= T exp

[
i
∫ t

0
T H (τ )T −1dτ

]
. (A3)

Here, T denotes time ordering; H (t ) = −∑
Bi(t )σi, and we

have T H (t )T −1 = −H (t ). Using this property and also Uc =
R · �, we deduce

T UcT −1 = Uc, � = �′. (A4)

� = �′ will narrow down U to a SU(2). Then, the loop evolu-
tion operator U is the product of straight sections U1,U2, and
the arc section Uc:

U = U2UcU1 = RR−1U2RR−1(R�)U1. (A5)

Note R−1 . . .R will transform to bases |n0,1〉 of
(cos( �

2 ), sin( �
2 )ei	)T and ( − sin( �

2 )e−i	, cos( �
2 ))T (the

inevitable stringent points are put on the S pole for both
branches). With the new bases, U ′

2 = R−1U2R is diagonalized
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(U1 is already diagonal):

U ′
2 =

(
e−i
2 0

0 ei
2

)
, U1 =

(
e−i
1 0

0 ei
1

)
. (A6)

Define variables 
c = �, 
 = 
1 + 
2 + 
c. Plug them into
Eq. (A5); we obtain

U = RU ′
2�U1 = R

(π

2
,	 + π

2
,�

)(
e−i
 0

0 ei


)
, (A7)

which is just Eq. (3).

APPENDIX B: ERGODICITY, PROBABILITY SPACE,
HAAR MEASURE

Here we give a physical view about Definition 1. We can
interpret B with m(B) > 0 as the initial setting of an ensemble.
For each step of evolution T , we add the newly covered
region to B, obtaining

⋃
i=0 T −iB. After sufficiently many

steps, an invariant T −1B = B indicates the maximum region
of the phase space that may be reached. Therefore, m(B) = 1
implies the system can eventually cover every part of the
phase space, i.e., either right on or arbitrarily close to any
point. An equivalent definition of ergodicity is, for instance
(Theorem 1.5 of [20]), as follows:

If T : X → X is a measure-preserving transformation of
the probability space (X,B, m), being ergodic is that for every
A, B ∈ B with m(A) > 0, m(B) > 0, there exists n > 0 with
m(T −nA ∩ B) > 0.

Since A, B are arbitrary, starting from any region A, one
can reach arbitrary region B with sufficient steps n. Thus the
choice of the initial state makes no difference to an ergodic
system when distant past and future are included. “Reach”
means arbitrarily close to. Thus it requires m(A) > 0 and
m(B) > 0 for some error tolerance (allowing unreachable
points, but not areas). If A = B, it is called “recurrence,” a
weaker property enjoyed by all measure-preserving transfor-
mations, known as Poincaré recurrence theorem (Theorem 1.4
of [20]). Approximate or conditional measure preservation,
like Wigner flow, will prevent applying theorems developed
in ergodic theory. Thus, it is crucial to establish rigorous MPF
on a suitable measure space.

The pair (X,B) is called a measurable space. B is a
σ -algebra of subsets of X satisfying (i) X ∈ B, (ii) if B ∈ B,
X/B ∈ B, (iii) if Bn ∈ B then

⋃∞
n=1Bn ∈ B. Measure function

on (X,B) is defined as a mapping m : B → R+ satisfying
m(∅) = 0 and m(

⋃
nBn) = ∑

nm(Bn), where Bn is a sequence
of members of B which are pairwise disjoint subsets of X .
A measure space is a triple (X,B, m), where (X,B) is a
measurable space and m is a finite measure function on it.
(X,B, m) is a probability space if m(X ) = 1, and m is called
a probability measure.

Haar measure is a probability measure on a compact group
G which ties with the group structure on G (Sec. 0.6 of [20]).
Simply speaking, it is a probability measure invariant under
all group transformations and can be proved unique (Theorem
0.3 of [20]). Intuitively, one can imagine a measure function
as a density field, and Haar measure is just a “uniform” den-
sity. It can be conveniently represented in a differential form.
For SU(2) group parametrized by Euler angles, m(φ, θ, ψ ) =
sin(2θ ) dφ dθ dψ . The extra factor “2” in the main text arises

from variable substitution. For 1D rotation with a fixed axis,
Haar measure is simply m(η) = dη for Fig. 2(a). Formally,
Haar measure is defined as m(E ′) = m(E ) for E ′ = xE and
E ′ = Ex, ∀x ∈ G, ∀E ∈ B. Rigorously, E belongs to the σ -
algebra B, but from a loose point view, E is just a subset of
group G, and E ′ = xE or Ex is just rotating E by an operation
x in G. Then m remains invariant under all these rotations.

In this case, x corresponds to unitary evolution operator
U ∈ SU(2). By the defining features of Haar measure, we
have m(E ) = m(UE ) = . . . = m(UnE ), where E can either
stand for a single initial state or a collection of initial states
(when dealing with an ensemble). m(E ) = m(UnE ) is to
replace its classical counterpart m(E ) = m(T n

s (p, q)E ). The
current MPF setting is not limited to SU(2), making for ad-
ditional options of other continuous groups, as it merely rests
on a math fact that continuous surjective endomorphism of
a compact group will preserve its Haar measure. We will not
give proof here but emphasize, in terms of physics application,
most groups of interest are compact, such as SU(n), SO(n),
U(n), etc. The evolution operator is bijective (physically, bi-
jectivity corresponds to the fact that the state’s future and past
must be uniquely determined by Schrödinger equation); thus
surjectivity is satisfied too.

APPENDIX C: ERGODIC SUBGROUP OF SU(2)

An ergodic group must be Abelian (Theorem 1.1). First, we
find an Abelian subgroup of SU(2), which is just the group
formed by rotations with a fixed axis R(α, β, δ) with α, β

specifying the axis orientation and δ being the rotation angle.
It satisfies R(α, β, δ)R(α, β, δ′) = R(α, β, δ + δ′). For ex-
ample, if we rotate with x axis by π/3 counterclockwise, we
have R( π

2 , 0, π
3 ).

In addition, to be ergodic, {Rn|n ∈ N} should be dense
(Theorem 1.1), which is true iff 2π/δ ∈ Q̄ or δ/π ∈ Q̄. Thus,
the ergodic subgroup G is

G = {R(α, β, δ)| δ/π ∈ Q̄}. (C1)

Comparing with SU(2) matrices parametrized by Euler
angles (φ, θ, ψ )

R(φ, θ, ψ ) =
(

cos
(

θ
2

)
e−i φ+ψ

2 −i sin
(

θ
2

)
ei ψ−φ

2

−i sin
(

θ
2

)
ei φ−ψ

2 cos
(

θ
2

)
ei φ+ψ

2

)
, (C2)

we obtain the mapping (α, β, δ) ↔ (φ, θ, ψ ):

cos(δ/2) = cos(θ/2)cos
(φ + ψ

2

)
,

cos2α = cos2(θ/2)sin2
(

φ+ψ

2

)
1 − cos2(θ/2)cos2

(
φ+ψ

2

) ,

β = (φ − ψ )

2
+ nπ, n = 0, 1.

(C3)

Comparing R(φ, θ, ψ ) with U , we obtain the mapping of
(φ, θ, ψ ) ↔ (�,
,	):

φ = 2
 + 	 − π

2
, θ = �, ψ = −	 + π

2
. (C4)

Then, we can deduce two results. The first is Eq. (6). In
Fig. 2(a), spin is located by angles η and α. Denote the angle
between spin and z axis as ζ (η, α), which can be found by a
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geometry relation sin(ζ/2) = sin(α) sin(η/2). The projection
(pump) probability at a given orientation is sin2(ζ/2). p∞
is the following integral over the trajectory [Fig. 2(a)], and
probability density ρ should be constant by Theorem 1.2:

p∞ =
∫ 2π

0 sin2(ζ/2)ρ dη∫ 2π

0 ρ dη
= 1

2
sin2(α). (C5)

Plugging Eqs. (C3) and (C4) into Eq. (C5), we obtain Eq. (6).
The second result is the distribution of A in phase space

[Fig. 3(b)]. With Eqs. (C3) and (C4), we can express δ in terms
of 
, �. Since δ ∈ Q, the stable set A is

{(�,
)| cos(�/2) cos(
) = cos(δ/2), δ/π ∈ Q}. (C6)

From the above, we immediately realize that the A has the
same cardinality as Q (thus, Ā has the same cardinality as
Q̄). That means the lines in Fig. 3(b) should be as many as
a rational number, a set of superdense curves.

APPENDIX D: PROOF OF THEOREMS 2.1 AND 2.2

Proof. By the Cayley-Hamilton theorem, the matrix U is
a root of its characteristic polynomial X 2 − X tr U + det U in
matrix space. Thus we have

U2 = 2 cos(�/2) cos(
) · U − I. (D1)

Substituting U = i Ũ yields

Ũ2 = λ̃ Ũ + I, Ũn+2 = λ̃ Ũn+1 + Ũn (D2)

with

λ̃ = −i Tr(U ) = −2i cos(�/2) cos(
). (D3)

Taking an indeterminate X , the Fibonacci polynomials
Fn(X ) and En(X ) are defined recursively by

Pn+2(X ) = XPn+1(X ) + Pn(X ) (D4)

with respective recursion bases

F0 = 0, F1 = 1 and E0 = 1, E1 = 0.

Thus En = Fn−1 for n ∈ N. For example, F2(λ̃) = λ̃, F3(λ̃) =
λ̃2 + 1, F4(λ̃) = λ̃3 + 2λ̃, etc. Induction with Eq. (D4) con-
firms the expression

Ũn = Fn(λ̃) · Ũ + En(λ̃) · I. (D5)

Being stable ↔ (Un)1,2 = 0. The off-diagonal term is

(Un)1,2 = in+1Fn(λ̃) ei
sin(�/2). (D6)

Let Fn be the finite set of roots of all the Fibonacci
polynomials of degree up to n. Then the countable set F =
limn→∞ Fn is dense in 2i[−1, 1]. More formally stated: as
n tends to infinity, the set Fn converges to 2i[−1, 1] in the
Hausdorff metric on sets (Theorem 1.1 of Ref. [44]).

Theorem 2.1(a): If � = 0 or π , sin(�/2) = 0 and
(Ũn)1,2 = 0. Thus these points are stable, independent of 
.
If 
 = ±π/2, we have λ̃ = 0. We also have F2n(0) = 0; they
are all stable points of order 2 independently of �.

Theorem 2.1(b): Fix � ∈ (0, π ). In particular, note
cos �

2 > 0. Now consider ϕ ∈ (−π/2, π/2) and ε > 0. Since
the inverse cosine function is continuous at cos ϕ, there is
a number δ > 0 such that | cos ϕ − cos 
| < δ implies |ϕ −

| < ε. Since 2i cos �

2 cos ϕ ∈ 2i[−1, 1] and the set F of
roots of Fibonacci polynomials is dense in 2i[−1, 1], there is
a root 2i cos �

2 cos 
 ∈ 2i[−1, 1] with∣∣∣∣cos
�

2
cos ϕ − cos

�

2
cos 


∣∣∣∣ < δ cos
�

2
.

Thus (�,
) ∈ A for |ϕ − 
| < ε, as required for (i). Finally,
since {
 | (�,
) ∈ A} is a countable subset of [−π/2, π/2],
its complement {
 | (�,
) ∈ Ā} is a dense subset, yielding
(ii).

Theorem 2.1(c) is similar to Theorem 2.1(b).
Theorem 2.2(a) follows from Theorem 2.1(a).
Theorem 2.2(b): Since stable points correspond to roots

of Fibonacci polynomials, there are only countably many of
them, and they form a set of measure zero in the 2D or 3D
phase spaces. Note that stability is independent of 	, which
trivially increases the dimension by 1. �
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