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Comment on “Proper and improper chiral magnetic interactions”
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In a recent paper by dos Santos Dias et al. [Phys. Rev. B 103, L140408 (2021)], a critique of earlier works
analyzing low-energy spin Hamiltonians is put forth. To be precise, it is the large noncollinear contributions to the
Dzyaloshinskii-Moriya interaction (DMI) that is the main concern of dos Santos Dias et al. In this Comment, we
clarify the microscopic mechanisms for the large DMI that can be found in noncollinear magnets. Furthermore,
we outline the complementary nature of the different parametrizations of a spin Hamiltonian, with strengths
and weaknesses of both approaches. Specifically, we stress the physical insight in the interpretation of the DMI,
when decomposed in microscopic electron and spin densities and currents.
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A short background on spin Hamiltonians. There are sev-
eral approaches to mapping results from electronic structure
calculations to effective low-energy spin Hamiltonians. In
doing this, it is possible to calculate from first-principles
theory the exchange parameters, or alternatively the local
Weiss field, that enter an effective atomistic spin Hamilto-
nian, enabling practical calculations of magnetic excitations,
which may extend over hundreds of thousands of atomic
spins. Approaches that have been used involve expres-
sions of exchange parameters calculated from a fundamental
electronic Hamiltonian [1–3], and the mapping of a spin
Hamiltonian onto total energy calculations based on density
functional theory (DFT) for spin spirals [4,5]. In addition,
spin-cluster expansions have been explored [6–10], as has
the method of considering energy variations of the magnetic
ground state within first-principle approaches such as spin-
polarized versions of DFT. The latter one is often referred to
as the Liechtenstein-Katsnelson-Antropov-Gubanov (LKAG)
approach, and was originally considered for collinear (fer-
romagnetic) ground states [11,12]. Extensions of the LKAG
formalism to nonequilibrium [13–16], noncollinear [17–23],
and finite temperature [24–26] states have also been consid-
ered. One should note that a mapping of noncollinear spin
configurations to a Heisenberg model [21] or to a generalized
Heisenberg model with a bilinear exchange tensor [13,19] is
in general complicated, apparently requiring the inclusion of
more complex exchange contributions [3,10,22,23,27]. It is
also important to note that the spin-configuration dependence
of the parameters is not exclusively a noncollinear issue. In
fact, the calculated exchange parameters in general depend
on the underlying magnetic configuration [28–30]. A simple

example of this is a diatomic molecule with a ferromagnetic
ground state, where a calculation of the exchange parameters
of the ground state configuration and the antiferromagnetic
configuration is expected to yield exchange parameters of
opposite sign, but with equal strength. In practice the sign
change of two such opposing configurations is found, but the
strength of the interaction is seldom the same.

The LKAG approach of calculating Heisenberg exchange
interactions from electronic structure theory was generalized
to the relativistic case in which the spin-orbit interaction is
considered for the electronic Hamiltonian [31–35]. This led
to the possibility to evaluate anisotropic symmetric and an-
tisymmetric exchange terms of an effective atomistic spin
Hamiltonian. Here, the antisymmetric part represents the
Dzyaloshinskii-Moriya (DM) interaction, Di j · (Si × S j ), in
which Si represents an atomic spin on site i. In two recent
works [22,23], it was argued that for noncollinear magnetic
configurations, electronic structure results can be mapped to
an effective spin Hamiltonian with a significant DM inter-
action, the size of which can be much larger than the DM
interaction from relativistic collinear configurations, even in
the absence of a spin-orbit interaction. In Refs. [22,23] an
exchange interaction that has the form Di j · (Si × S j ) and is
nonrelativistic in origin, and instead is caused by an underly-
ing noncollinear magnetic configuration, was referred to as a
non-collinear (or nonrelativstic) DM (or DM-like) interaction.
A critique of the analysis of Refs. [22,23,36] was recently
put forth by the authors of Ref. [27], in which it was pro-
posed that a more appropriate form of a spin Hamiltonian
for noncollinear situations should contain a generalization
of a four-spin interaction term, in the form of a biquadratic
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interaction. It is the purpose of this Comment to Ref. [27],
to clarify the microscopic mechanism of the noncollinear,
nonrelativistic DM interaction suggested in Refs. [22,23], and
to analyze the advantages and disadvantages of mapping elec-
tronic structure information to such a Hamiltonian, compared
to, e.g., the model proposed in Ref. [27].

A microscopic analysis of noncollinear DM interactions.
The most transparent demonstration of how noncollinear mag-
netic configurations have an electronic Hamiltonian that is
similar in form to the inclusion of spin-orbit coupling (SOC),
can be seen by starting from a general form of the Kohn-Sham
equation for the electron states,

Hel =[−∇2 + v(r)]σ 0 + [b(r) + ξ l] · σ, (1)

where v is the total nonmagnetic part of the effective potential,
b is the magnetic part of the effective potential, ξ is the
spin-orbit interaction strength, and l is the angular momen-
tum operator, while σ and σ 0 are the vector (x, y, and z
components) of Pauli matrices and the 2 × 2 identity, respec-
tively. This form of the Kohn-Sham equation was proposed in
Ref. [37] in discussing intra-atomic noncollinear magnetiza-
tion densities, which for both collinear and noncollinear spin
configurations may be a significant contribution to the effec-
tive potential the electrons move in. In practice this equation
treats the noncollinear components of the exchange and corre-
lation potential b and orbit interaction ξ l in a similar way by
rewriting terms such as ξ (lxσ x + lyσ y) as ξ (l+σ− + l−σ+)/2
and bxσ

x + byσ
y as (b+σ− + b−σ+)/2. Both terms thus enter

the electronic Hamiltonian (typically considered in matrix
form, when any basis-set expansion of electron states is con-
sidered) in a very similar way, in particular having a similar
symmetry of the off-diagonal components of spin space. It
is this similarity in the electronic Hamiltonian that governs
that both relativity and noncollinearity result in quantum me-
chanical spin and charge currents that produce the significant
values of the Green’s functions G00, G01, Gμ0, Gμ1, defined
and analyzed in Eqs. (4)–(9) in Refs. [22,23]. The subscript μ

relates to a Cartesian component: x, y, or z. These Green’s
functions, in particular the spin- and charge-current terms,
enter the expression for the DM interaction term [22,23].
The division of the DM interaction as coming from different
charge and spin currents, naturally allows for a deepened un-
derstanding of the origin of DM-like interactions of a material.
It is not clear if, or how, this type of analysis is possible in the
model suggested in Ref. [27]. Based on this analysis, the b
term of Eq. (1) is expected to result in physical phenomena
typically associated with a spin-orbit interaction, the DM-like
interaction discussed in Refs. [22,23], but also, e.g., the damp-
ing parameter of the Landau-Lifshitz-Gilbert equation [38],
a significant spin-Hall effect, as well as Kerr and Faraday
rotation.

In terms of the relative importance of the two contribu-
tions discussed above for the DM interaction, we note that
the strength of the spin-orbit interaction of an element sel-
dom varies significantly from compound to compound, and
remains essentially an atomic, local property. For a 3d tran-
sition metal it adopts values in the range 30–100 meV. In
contrast, the noncollinear contributions b to Eq. (1) can be an
order of magnitude larger, which is consistent with DM-like
interaction strengths that can be significantly larger than the

spin-orbit-induced DM term. Another significant difference
is that the noncollinear DM term does not favor a specific
chirality, as shown in the result sections of Refs. [22,23].

Comparing parametrizations. In comparing the two types
of parametrizations proposed in Refs. [22,23] and in Ref. [27],
we note that the former suggests a form of Di j · (Si × S j ),
while the latter advocates for a term Bi j (Si · S j )2. We proceed
below with a comparison of these approaches, discussing
advantages and disadvantages with both. The approach of
Ref. [27] also constitutes in a fitting of the parameters of a
bilinear/biquadratic spin model to total energies of the system
(although the approach of using this spin Hamiltonian can be
done from an LKAG-type approach). In Refs. [22,23] the pa-
rameters of the spin model were obtained from the electronic
Hamiltonian (or one-electron Green’s function) using, e.g.,
the LKAG formula and its extensions.

It is important to realize that the different parametrizations
and methods used in Refs. [22,23] and in Ref. [27] comple-
ment each other and contain their own benefits and drawbacks.
Reference [27] provides a description of the global magnetic
structure in terms of bilinear and biquadratic spin-spin interac-
tions which enables convenient analyses of, for instance, the
system’s magnetic ground state. However, a drawback with
this approach is the absence of a unique mapping onto the
multispin model. The restricted biquadratic form suggested
in Ref. [27] gives a good fitting only when the variation
of the magnetic structure is limited to the simple and sym-
metric variation of three independent moments confined to a
coplanar structure, used in both Refs. [23,27]. For instance,
if we extend this to a larger set of independent moments,
say six sites, and allow for true noncollinearity, the general-
ized version of a four-spin interaction Bi jkl (Si · S j )(Sk · Sl ) as
well as six-spin interactions come into play. The approach
used in Refs. [22,23] allows for direct calculations of the
magnetic interactions and, more importantly, points out the
role of charge and spin densities as well as currents for the
emergence of different types of interactions, such as the DM
interaction. In addition, in Ref. [23] all possible bilinear in-
teractions were calculated individually and therefore contain
much more information than the restricted fits presented in
Fig. 1 of Ref. [27] which only contain the summed up and
hence averaged values for pairs of the same type in the varia-
tion of interactions.

Direct calculations of the magnetic interactions, and a
parametrization of the DM form, allows us to analyze the
nature of the interactions involved in a material. Consider-
ing that the spin-spin interactions can be calculated in terms
of the Green’s function loop spσGi jσG ji, where sp denotes
the trace over spin-1/2 space, it is clear that the electronic
structure, which is captured in the single-electron Green’s
function G = (G00 + G01)σ 0 + (Gμ0 + Gμ1)σμ, enables ad-
ditional insight into the origin of the interactions. As discussed
in Refs. [22,23] the asymmetric anisotropic interaction Di j ,
occurring in the product Di j · (Si × S j ), can be expressed
as the integral over the terms G00

i j Gμ1 and G01Gμ0, where
the former depend on the charge density and spin currents,
whereas the latter on the charge currents and spin density.
Further analysis of these terms suggests that the asymmetric
anisotropy Di j can emerge from any electronic structure in
which both the inversion and time-reversal symmetries are

026401-2



COMMENTS PHYSICAL REVIEW B 105, 026401 (2022)

simultaneously broken. An example of this is illustrated in
Ref. [15], where there is no spin-orbit interaction present,
however, the interaction D is significant. Understanding the
DM-like interaction in terms of currents opens up for des-
ignating the terms relativistic and nonrelativistic DM-like
interactions, with contributions of different physical origin.
While a spin-orbit interaction necessarily leads to both spin
and charge current in the system which, hence, leads to that
both contributions G00

i j Gμ1 and G01Gμ0 are finite, these two
contributions are also finite in the presence of spin and charge
currents which do not necessarily originate from a spin-orbit
interaction. These contributions are also connected to the con-
figuration dependence of the exchange-coupling parameter Ji j

that have already been shown to significantly improve the
comparison between theory and experiment in works such
as Refs. [19,39]. It suggests that these interactions, labeled
improper in Ref. [27], can be important when it comes to prop-
erties of excited states, such as, e.g., the magnon softening
induced by temperature effects.

Another advantage of an LKAG-like approach to evalu-
ating exchange interactions is that it enables us to analyze
the microscopic origin of the exchange interaction by orbital
decomposition of the Green’s function. As an example, we
mention the drastically different roles played by the 3d Eg

and 3d T2g orbitals, respectively, for the magnetic behavior
of bcc Fe [21,40,41]. We note, however, that a drawback with
the method used in Refs. [22,23] is the dependence on the
reference frame, which leads to a difficulty in capturing the
whole energy landscape, correctly pointed out by dos Santos
et al. [27]. The method used in Refs. [22,23] is best suited for
describing the energy landscape in a limited part of configura-
tion space. This opens up for a discussion of local and global
spin models, which we proceed with next.

Global and local energies. Recently, a distinction between
local and global spin models was proposed [42]. Local models
are valid for small magnetic fluctuations with respect to a
magnetic reference state, in contrast to global spin models
that are supposed to be valid for all magnetic states. Global
spin models have by construction interaction parameters [27]
that are independent of any reference state and they have to
fulfill global symmetries because they aim to describe all mag-
netic states. While such magnetic interactions are required
for global spin models, this does not apply to local models
that are designed to map out a local Weiss field or torques
obtained from gradients of an energy landscape in a smaller
region of configuration space. This implies that these models
do not have to fulfill global symmetry requirements, since
they describe only small fluctuations with respect to a mag-
netic reference state, where the fluctuations can break global
symmetries. A magnetic state dependence of the interaction
coefficients arises naturally for local models due to their de-
pendence on the reference state [42]. If the state dependence
is taken into account for a local spin model, all global symme-
tries are recovered. Since the work in Refs. [22,23,36] belongs
in the category of local spin models, the demand for global
interaction parameters by Ref. [27] does not apply.

On the name convention. We end this Comment with a
remark on classification. In Ref. [27] the term “improper”
was used for the magnetic interaction discussed here. Since
this term does not signify anything relating to the micro-
scopic origin of the DM-like exchange interaction that results
from the noncollinear electron states, as discussed here and
in Refs. [22,23], we suggest that a noncollinear, or nonchi-
ral, DM interaction is more appropriate terminology, since
it alludes to physical properties and origins of this exchange
interaction.
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