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Electron–phonon heat transfer in giant vortex states

A. V. Samokhvalov,1,2 I. A. Shereshevskii,1 N. K. Vdovicheva,1 M. Taupin ,3 I. M. Khaymovich ,1,4 and A. S. Mel’nikov1,2

1Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
2Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhni Novgorod, Russia

3Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
4Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden

(Received 30 November 2021; accepted 21 January 2022; published 31 January 2022)

We examine energy relaxation of nonequilibrium quasiparticles (QPs) in different vortex configurations in
“dirty” s-wave superconductors (SCs). The heat flow from the electronic subsystem to phonons in a mesoscopic
SC disk with a radius of the order of several coherence lengths is calculated both in the Meissner and in the
giant vortex states using the Usadel approach. The recombination process is shown to be strongly affected
by interplay of the subgap states, located in the vortex core and in the region at the sample edge where the
spectral gap Eg is reduced by the Meissner currents. In order to uncover the physical origin of the results,
we develop a semiquantitative analytical approximation based on the combination of homogeneous solutions
of Usadel equations in Meissner and vortex states of a mesoscopic SC disk and analytically calculate the
corresponding spatially resolved electron–phonon heat rates. Our approach provides important information about
nonequilibrium QPs cooling by the magnetic field-induced traps in various mesoscopic SC devices.
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I. INTRODUCTION

The progress in cryogenic superconducting (SC) devices
and technologies, such as electronic refrigerators and ther-
mometers [1], radiation detectors [2,3], and qubit systems for
quantum information processing [4,5], requires an improved
understanding of the quasiparticle (QP) thermalization mech-
anisms. Such mesoscopic devices with nanoscale dimensions
operating at subkelvin temperatures are easily driven out of
equilibrium via processes involving electromagnetic-field ab-
sorption, hot QP injection, or the operational drive. As a
result, there is a significant concentration of nonequilibrium
QPs present in a driven superconductor even for temperatures
far away from the drive location well below the temper-
ature of SC transition [6]. Excess QPs destroy coherence
of qubit systems [7–9], decrease the quality factor of SC
resonators [10,11], reduce the efficiency of cooling in elec-
tronic refrigerators [12,13], and result in the excess current
in single electron [14–16] and heat quantum [17] turnstiles.
The energy-relaxation rate of the nonequilibrium QPs is also
known to affect the characteristics of detectors of electro-
magnetic radiation [6,18]. Thus the overheating of QPs or
unwanted population in general appears to be a major fac-
tor limiting the performance of low-temperature SC devices.
This is why the study of the mechanisms of nonequilibrium
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QPs relaxation in SCs of mesoscopic dimensions seems to
be rather important (see, e.g., Ref. [19] for review). Typ-
ically, the presence of excess QPs is characterized by an
effective electron temperature T , which exceeds the temper-
ature of the phonon bath Tph. This approximation is relevant
for various SC devices at low temperatures (including the
above-mentioned ones), when the inelastic electron–electron
scattering time τee is small compared to the operation times,
while the electron–phonon (e-ph) relaxation time is large with
respect to the operation times.

In order to suppress QP poisoning and to prevent over-
heating, density of nonequilibrium QPs in a device should
be reduced. Simple lowering the phonon-bath temperature
Tph often is not sufficient, and to remove QPs in SC devices
additional QP traps should be used: Either normal-metal films
connected to the SC [20–22], or Andreev bound states in
weak links [23], or regions with reduced or destroyed SC
gap [24–27]. In this case, QPs are trapped by the region
with no energy gap (or suppressed gap) away from the active
region. One of the possible types of QPs traps can be formed
by regions with the suppressed SC gap that appear in the
Meissner and vortex states and can be successfully controlled
by the external magnetic field [6,28–35]. This method has
a number of advantages due to using of the same material
as the rest of the device, since perfect matching of different
parts of the device without barriers or interface potentials is
provided. Besides, the magnetic field allows to tune the trap
controllably. The controllable use of such traps in various ap-
plications mentioned above assumes, certainly, understanding
of their cooling capacities.

The hot electrons dissipate the heat typically via the inter-
action with the phonons [36–38]. In three-dimensional normal
metals of volume V (when the mean-free path � is small
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compared to all other length scales), the heat flow Q̇N related
to the e-ph relaxation is determined by the well–known rela-
tion

Q̇N = �V
(
T 5 − T 5

ph

)
, (1)

where � is the material constant for e-ph coupling [1]. QP
recombination in a bulk SC with an s−wave gap via coupling
to the phonons has been widely studied [38–42]. The hard
energy-gap Eg in the QP spectrum of the SC is known to
suppress the recombination of the hot QPs making the relax-
ation rate νe−ph to be exponentially slow [∼ exp(−Eg/kBT )]
because QPs need to possess an energy exceeding the gap
Eg in order to recombine. The e-ph relaxation remains ex-
tremely slow even in the presence of Abrikosov vortices and
subgap excitations localized in the vortex core in clean SCs
at ultralow temperatures [43]. The resulting relaxation rate
enters the rate equations for the concentration of QPs and
phonons which allow to get the full description of the nonequi-
librium processes in SC devices [44]. The e-ph relaxation in
mesoscopic SC samples and SC point contacts looks rather
different compared to dynamics of bulk QPs [45–48]. The
simplified model of QP dynamics and electron cooling both
in the Meissner and in the vortex states of a mesoscopic SC
was proposed recently in Ref. [33] to explain experimental
measurements of the characteristics of nonequilibrium QP
distributions in a mesoscopic SC island in a single-electron
transistor setup with normal metal leads; however, that model
worked well only for the Meissner and single-quantum
vortex states.

The main goal of our work is to overcome this limitation by
developing a quantitative description of the electron–phonon
heat transfer processes in a diffusive mesoscopic SC disk
of the size comparable to several SC coherence lengths ξ0

placed in an external magnetic field oriented perpendicular
to the plane of the disk. In such nanoscale samples, theory
predicts the existence of rather exotic vortex configurations –
so-called “giant” (or multiquantum) vortices in the center of
a circular-formed sample (disk) [49,50]. These exotic vortex
states are formed due to the confinement effect of the screen-
ing supercurrents and have been observed by a variety of
experimental methods [49–54], including scanning tunneling
microscopy/spectroscopy studies [55–60]. As has been shown
in several works, the realization of giant vortices is not limited
to the samples of a circular form [57]. Indeed, in certain
ranges of magnetic field giant vortices have been observed in
square-shaped samples [61] and predicted in the sample of dif-
ferent shapes. Depending on the particular sample geometry
and the details of the hysteretic magnetization procedure, the
giant vortex states can decay in vortex molecules of different
configurations resulting, of course, in some peculiarities in the
field dependencies of free energy and magnetization [55,61].
In our work we focus on a circular sample shape and central
position of a vortex in order to simplify consideration.

The electronic structure of mesoscopic SCs is known to be
sensitive to the applied magnetic field, related vorticity, and
vortex configurations [62–68]. The overall spectral character-
istics and local density of states (LDOS) of the mesoscopic
disk were shown to be strongly affected by an interplay of
the subgap states, located in the vortex core and in the region

FIG. 1. Schematic picture of the spatial order parameter distribu-
tion �L (H ) (shown by semitransparent green color) in the SC disk of
the radius R with the giant L-quantum vortex, Eq. (2), in the applied
perpendicular magnetic field H .

at the sample edge where the spectral gap Eg is reduced by
Meissner currents [69]. Keeping in mind the high sensitivity
of e-ph relaxation to the LDOSs [33], one can expect a strong
dependence of the total QPs heat flow and the relaxation rate
νe−ph in the mesoscopic disk on the applied magnetic field and
related vorticity. Note that both the giant vortex cores and the
region near the sample edge with the flowing Meissner screen-
ing currents can be clearly viewed as QP traps created by the
applied magnetic field. It is the joint effect of contributions
from the core and edge traps, which determines the total QPs
heat flow in a mesoscopic sample.

The paper is organized as follows. In Sec. II we briefly
discuss the basic equations. In Sec. III we calculate the SC
critical temperature Tc and study the switching between states
with different vorticity L while sweeping the magnetic field.
In Sec. IV we calculate numerically the e-ph heat flow in
a mesoscopic SC disk with a giant vortex. In Sec. V we
propose a simplified analytical model to describe the e-ph heat
flow and check its applicability. We summarize our results in
Sec. VI.

II. MODEL AND BASIC EQUATIONS

To set the stage, here we describe the considered sys-
tem and main relevant equations and approximations. The
section contains the standard notations and literature results;
therefore a reader, acquainted with this formalism and inter-
ested in the original result, can directly jump to Sec. III.

The system in the focus is a thin mesoscopic SC disk of a
radius R comparable to several SC coherence lengths ξ at a
finite temperature T . We concentrate on more experimentally
relevant s-wave SCs in the dirty limit where the mean-free
path � is the smallest length scale in the system. In terms of
the elastic electron scattering rate τ−1 and the bare SC transi-
tion temperature Tcs, the above dirty limit condition reads as
follows: kBTcsτ/h̄ � 1. In order to generate vortices that trap
QPs in their cores, an external magnetic field H = Hz0, per-
pendicular to the SC disk plane, is applied (Fig. 1). We focus
on the experimentally relevant situation of a small disk thick-
ness d and disregard the magnetic field, induced by Meissner
supercurrents in the disk. This approximation holds as soon
as d is small compared to the London penetration depth λ

in such a way that the effective magnetic field penetration
depth 	 = λ2/d is large compared to the disk radius 	 � R.
This allows us to take into account only the external field, i.e.,

024522-2



ELECTRON–PHONON HEAT TRANSFER IN GIANT VORTEX … PHYSICAL REVIEW B 105, 024522 (2022)

rotA = B ≡ H. In addition, due to smallness of the inelastic
electron–electron scattering time τee with respect to the e-ph
one in experimentally relevant setups, we assume that the QP
energy distribution in a SC disk is the quasiequilibrium Fermi
distribution fT (E ) = [eE/kBT + 1]−1, characterized by a cer-
tain (electronic) temperature T � Tcs which may differ from
the bath temperature Tph. This approximation is appropriate
for various low-temperature SC devices (see Introduction);
therefore we take the liberty to consider our open electronic
subsystem using the steady-state heat flow equations with a
well-defined electronic temperature. In this regime, the nor-
mal (G) and anomalous (F) quasiclassical Green’s functions
obey the Usadel equations [70], which are valid for all tem-
peratures and for distances exceeding the mean-free path �.
We concentrate on the cylindrically symmetric case, introduce
the coordinates (r, ϕ, z) as it is shown in Fig. 1, and look
for the homogeneous solution along the z-axis solutions char-
acterized by a certain integer angular momentum L (called a
vorticity),

�(r) = �L(r) eiLϕ, (2)

which describes the axisymmetric multiquantum vortex states
with the vortex core located at the center of the disk, r = 0.
The vorticity L coincides with the angular momentum of the
anomalous Green’s function F . In the standard trigonomet-
rical parametrization the quasiclassical Green’s functions for
L-th orbital mode can be encoded in the pairing angle θL(r) as

G = cos θL, F = sin θL eiLϕ, F† = sin θL e−iLϕ.

The pairing angle θL obeys the following equation (see, e.g.,
Ref. [71])

− h̄D

2
∇2

r θL + [ ωn + L(r, H ) cos θL ] sin θL

= �L(r) cos θL, (3)

where the inhomogeneous depairing parameter

L(r, H ) = h̄v2
L/2D (4)

is expressed through the superfluid velocity vs = (0, vL, 0)

vL = D
(L

r
− π H

�0
r
)

(5)

and depends on the external magnetic field H . Here ωn =
πT (2n + 1) is the Matsubara frequency at temperature T ,
D = vFl/3 is the diffusion coefficient, and �0 = π h̄c/e is the
flux quantum. The relevant length scale in the Usadel equa-
tions is given by the SC coherence length ξ0 = √

h̄D/2�0,
where �0 is the SC gap at zero temperature. Further, we
treat only positive ωn values due to the symmetry of Usadel
equations and F being an even function of ωn, F (r,−ωn) =
F (r, ωn). The singlet pairing potential �L(r) in Usadel
equations (3) is determined self-consistently by the equation

�L(r)

g
− 2πT

∑
n�0

sin θL = 0, (6)

where the pairing parameter g fixes the bare critical tempera-
ture Tcs as

1

g
=

�D/(2πTcs )∑
n=0

1

n + 1/2
� ln

[
�D

2πTcs

]
+ 2 ln 2 + γ . (7)

Here �D is the Debye frequency and γ � 0.5772 is the Euler–
Mascheroni constant. Equations (3) and (6) in the disk bulk
should be accompanied by the boundary conditions at the
disk edge r = R for the order parameter �L and the pairing
angle θL:

d�L

dr

∣∣∣∣
R

= 0,
dθL

dr

∣∣∣∣
R

= 0. (8)

Both the Usadel (3) and the self-consistency (6) equations can
be obtained by variation of the free energy functional

FL = 2πN0d

(
πT

∑
ωn<�D

∫ R

0
r dr

{
h̄D

(
∂θL

∂r

)2

+ 2L sin2 θL − 4ωn cos θL − 4�L sin θL

}
+ 1

g

∫ R

0
r dr �2

L

)
, (9)

with N0 representing the DOSs at the Fermi level for a spin projection.
The power absorbed in the disk is associated with the heat transferred to phonons emitted by thermal QPs. In a general

inhomogeneous case, the electron–phonon heat flow Q̇L(r) across the central part of the disk of radius r � R into the phonon
bath for the orbital mode L is given by the expressions [40,41]

Q̇L(r) = 2πd
∫ r

0
dr′ r′ PL(r′), PL(r) =

∫ ∞

0

�[nT (ε) − nTph (ε)]

24ζ (5)k5
B

ε3dε

∫ ∞

−∞
ML(r, E , ε)[ fT (E ) − fT (E + ε)]dE . (10)

Here ζ (s) is the Riemann zeta function, kB is the Boltzmann constant, and nT (ε) = [exp(ε/kBT ) − 1]−1 is the Bose function
with a temperature T . The kernel of the integrals (10)

ML(r, E , ε) = NL(r, E ) NL (r, E + ε) − BL(r, E ) BL(r, E + ε), (11)

with the LDOS NL(r, E ) and SC correlations BL(r, E )

NL(r, E ) = Re[ cos θL(r) ]|ωn=−iE , BL(r, E ) = Im[ sin θL(r) ]|ωn=−iE , (12)

depending on the radial coordinate r due to the spatial dependence of the normal (∼ cos θL) and anomalous (∼ sin θL) Green’s
functions in the disk.
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FIG. 2. Schematic dependence of the critical temperature TL

(L = 1 ÷ 5) (dashed blue lines) and Tc (red symbols) on the external
magnetic field H . The vorticity L is denoted by the numbers near the
curves. The values of the magnetic field H = HL corresponding to
the switching of the orbital modes between L and L + 1 are shown
by the dotted vertical lines.

To calculate ML(r, E , ε) we have to solve the Usadel
equation (3) with the inhomogeneous depairing parame-
ter L(r, H ) (4), (5) for ωn = −iE in the presence of the
L−quantum vortex in the disk center. The solution of the Us-
adel equation gives us the LDOS NL(r, E ) and the spectral gap
value Eg governing the contribution to the thermal relaxation
mechanisms (see, e.g., Refs. [33,34]). From the experimental
point of view, LDOS NL(r, E ) can be measured directly via
the local differential conductance (e.g., in the scanning tun-
neling spectroscopy setting):

GL(r, V ) = dI/dV

(dI/dV )N

=
∫ ∞

−∞
dE

NL(r, E )

N0

∂ fT (E − eV )

∂V
. (13)

Here V is the applied bias voltage; (dI/dV )N is the conduc-
tance of the normal metal junction.

III. GIANT VORTEX STATES IN MESOSCOPIC DISK

The phase boundary Tc(H ) of the mesoscopic SC disk
is known to exhibit an oscillatory behavior similar to the
well-known Little-Parks oscillations [72,73], caused by tran-
sitions between states with different angular momenta L. Here
Tc(0) = Tcs. Figure 2 shows a typical dependence of the criti-
cal temperature,

Tc(H ) = max
L

{ TL(H ) },
on the external magnetic field H , affected by these transitions.
The values of the normalized flux φL = πHLR2/�0 = HL/H0

through the disk of a radius R, where the switching of the or-
bital modes L � L + 1 takes place, do not depend on the disk
radius R and can be found using Eqs. (3) and (6) linearized in
the anomalous Green’s function (cos θL � 1, sin θL � θL) [69]
or within the Ginzburg-Landau formalism [74] based on the
free energy (9). Note that this energy-based approach (9) does

FIG. 3. The magnetic flux φ = H/H0 dependence of the normal-
ized ZBC GL (0, R) (13) at the edge of the SC disk (solid lines) and
the free energy FL (9) (symbol •) for the temperatures T = 0.1Tcs.
The disk radius is R = 4ξ0; the SC coupling constant is g = 0.18.
The dependence FL (φ) for fixed vorticity L = 0 ÷ 4 is shown by the
dashed lines. Like in Fig. 2, the corresponding values of vorticity L
are denoted by the numbers near the curves, while the values of the
flux HL/H0 = φL corresponding to the switching of the orbital modes
between L and L + 1, with different critical temperatures Tc, are
shown by the dotted vertical lines. Here the free energy is normalized
by F� = π h̄DN0d�0.

not take into account possible hysteresis in the orbital-mode
switching caused by the barriers between different free-energy
minima. In order to analyze the transitions between different
vortex states far from the phase transition line T � Tc(H )
we need to use the nonlinear Usadel theory [(3)–(8)]. The
Usadel equations have been solved numerically for different
vorticities L which allowed us to calculate and compare the
values of the free energy FL (9). Figure 3 shows the magnetic
field dependence of the free energy (9) and the zero-bias
conductance (ZBC) GL(R, 0) (13) at the Fermi level for a
small disk radius R = 4ξ0 and the temperature T = 0.1Tcs.
The curves illustrate the switching between the states with
different vorticities L = 0 ÷ 4, which is similar to the Little-
Parks-like switching of the critical temperature Tc(H ) shown
in Fig. 2.

Sequential entries of vortices produce a set of branches FL

with different vorticity L on the F (H ) and dI/dV (H ) curves.
The transitions between different vortex states are accompa-
nied by an abrupt change in the ZBC at the disk edge, which
is attributed to the entry/exit of a vortex while sweeping the
magnetic field. Note that the field values HsL at which the
jumps in vorticity (L − 1 → L) occur at low temperature are
always larger than the values HL found from the calculations
of the critical temperature behavior Tc(H ). For a fixed disk
radius R the direction of jumps (upward/downward) in the
dependence of ZBC GL(R, 0) vs magnetic field depends on
temperature T and reflects a crossover between the edge-
dominated and core-dominated regimes in the magnetic field
dependence of the tunneling conductance (see Ref. [69] for
details). Figure 4 illustrates the evolution of the spatially re-
solved LDOS NL(r, E ) vs energy E for values of the magnetic
field H = Hs1, Hs2 corresponding to the vorticity switching.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Comparison of the exact (12) (panels a–d) and approximate (14) (panels e–h) LDOS NL (r, E ) vs energy E for several distances r
from the vortex core, vorticities L, and magnetic fields H . The SC disk radius R = 4ξ0 and the temperature T = 0.1Tcs are fixed for all panels.
The magnetic field values H are (a, b, e, f) H = Hs1 = 2.24 H0; (c, d, g, h) H = Hs2 = 3.84 H0. The distances r (in the units of ξ0) are shown
by the numbers of the corresponding colors near the curves. The soft minigap at the edge Eg in (b–d) is assumed to correspond to the maximal
slope of the energy dependence of the LDOS dNL (R, E )/dE .

In the Meissner state (L = 0), the hard minigap �m in the
spectrum survives and NL=0(r, E < �m ) = 0 until the first
vortex entry; Fig. 4(a). In vortex states (L � 1), Figs. 4(b) and
4(d), the DOS NL(0, E ) is equal to the normal-metal electronic
DOS at the Fermi level N0, indicating a full suppression of
the spectral gap in the disk center due to the vortex entry.
At the same time, at the edge of the disk, the SC survives,
but the gap becomes soft, 0 < NL(R, E ) < N0. The soft mini-
gap at the edge Eg is assumed to correspond to the maximal
slope of the energy dependence of the LDOS dNL(R, E )/dE .
Figures 4(a) and 4(b) illustrate the switching between the
states with hard and soft gaps at H = Hs1 � 2.24 H0 when
the Meissner state (L = 0) transforms to the single–vortex
state (L = 1). At fixed vorticity L = 1 as the magnetic field
increases, the LDOS NL(r, E ) smoothly evolves with the si-
multaneous decrease of the soft minigap at the disk edge Eg;
Figs. 4(b) and 4(c). This smooth evolution of the LDOS is in-
terrupted at H = Hs2 � 3.84 H0 by a next vortex entry which
restores the SC near the disk edge and results in an increase
of the soft minigap Eg; Figs. 4(c) and 4(d). Certainly these
drastic changes in the LDOS NL(r, E ) and the spectral gap
value Eg directly impact the thermal relaxation mechanisms
and manifest themselves in peculiarities of the magnetic field
dependence of the electron–phonon heat flow Q̇, which we
consider further.

IV. ELECTRON–PHONON HEAT FLOW IN GIANT
VORTEX CONFIGURATIONS

As a next step we calculate the thermal relaxation rate in
the SC disk assuming the electronic temperature T to be much
larger than the bath (phonon) temperature Tph, thus neglecting
for simplicity all the exponential terms like e−Eg/kBTph . The
filled circles in Fig. 5 show the magnetic field dependence of
the total e-ph heat flow Q̇ vs the applied magnetic field H for
a small disk. Here and further we focus on the disk radius
R = 4ξ0 and the temperature T = 0.1Tcs (if not mentioned

otherwise). The total Q̇(R) curve consists of several separate
branches Q̇L (10) corresponding to the states with different
vorticity L = 0 ÷ 4. The transitions between different vortex
states are visualized by abrupt changes (or jumps) �Q̇ in the
heat flow at H = HsL, where switching of the orbital modes
L − 1 � L takes place. The smooth growth of the e-ph heat
flow Q̇L occurs while sweeping the magnetic field up within
the branch L, HsL < H < Hs(L+1) due to a decrease in the
value of the spectral gap (soft or hard) and an increase in
the subgap LDOS at the disk edge [69]. The especially strong

FIG. 5. The dependence of the e-ph heat flow Q̇L (R) (10) on the
magnetic flux φ = H/H0 across the SC disk of the radius R = 4ξ0

for temperatures T = 0.1Tcs (filled circles). The solid lines show
the results of fitting ˙̄QL (26), (27) in homogeneous approximation
described in Sec. V. The inset shows the dependence of the soft
gap Ēg (solid lines) and the value ̄2/3Ē 1/3

g (dashed lines) determined
by the relations (17) on the magnetic flux φ. The dotted line shows
the value of the temperature T . The numbers near the curves de-
note the corresponding values of vorticity L = 0 ÷ 4. (Q̇N = �VT 5,
V = πR2d).
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(a) (b)

(c) (d)

FIG. 6. The spatially resolved heat flow Q̇L (r) and the density of the e-ph heat flow PL (r) (10) (solid lines) for several values of magnetic
field H : (a, b) H = Hs1 = 2.24 H0; (c, d) H = Hs2 = 3.84 H0. The dashed lines show the results of fitting Q̇L (r) (26), (27) for ZDL (r) = e−r2/D2

L

(L � 1) described in Sec. V: D1 = 1.6ξ0, D2 = 2.7ξ0. (R = 4ξ0, T = 0.1Tcs, Q̇N = �VT 5, PN = �T 5, V = πR2d).

growth of Q̇L appears in the Meissner state (Q̇0(Hs1)/Q̇0(0) ∼
102) owing to essential suppression of the hard minigap �m in
the spectrum by the screening currents; Fig. 4(a).

To compare the contributions to the total e-ph heat flow
Q̇(R) (10) from the vortex core and the region near the sam-
ple edge with the flowing Meissner current, we present in
Fig. 6 radial distributions of the heat flow Q̇L(r) and the
flow density PL(r) (10) for two values of the applied mag-
netic field H = Hs1, Hs2 corresponding to the switching be-
tween states L = 0 → 1 and L = 1 → 2, respectively. In the
Meissner state the spatially resolved heat flow density PL(r)
and the heat flow Q̇L(r) are more pronounced near the disk
edge where the screening SC currents have higher density and
the SC order parameter is suppressed; Fig. 6(a). A vortex in
the mesoscopic SC disk leads to QP redistribution so that the
heat flow density in the vortex core is always higher than
near the disk edge [PL =0(0) > PL =0(R)]. Despite this, the
contribution of the region outside the vortex core to the total
e-ph heat flow appears to be comparable to the contribution of
the vortex core itself because of the relatively small volume of
the core region. Note that the significant growth of Q̇L(r) (10)
in Figs. 6(b)–6(d) outside the vortex core region illustrates the
existence of a noticeable interplay between the contributions
from the subgap states, located in the vortex cores and in the
region with the reduced spectral gap Eg near the sample edge.
The

interplay increases when the field is swept from HsL to
Hs(L+1) for a fixed vorticity L and with the increase in the
number of vortices L trapped in the center of the sample.

The electronic properties of the vortex states will be surely
modified if we further increase the radius of the disk R com-
pared to the coherence length ξ0. In this case the core of a
multiquantum vortex does not extend to the edge of the disk,

and QPs in the vortex core remain well localized near the
disk center. Clearly in this case the profiles of the heat flow
density PL(r) and the heat flow Q̇L(r) (10) have to reveal a
local minimum and a plateau, respectively.

V. SEMIQUANTITATIVE HOMOGENEOUS
APPROXIMATION FOR THE E-PH HEAT FLOW

For the analysis of the experimental data it is often useful
and convenient to build some semiquantitative approxima-
tions for the measurable quantities which would allow to avoid
the extensive use of the numerical simulations. To develop
such a description we try to fit the above numerical sim-
ulations of the magnetic field dependence of the e-ph heat
flow Q̇L(H ) (see Fig. 5) by a simplified model taking into
account that the overall spectral characteristics and LDOSs
of the mesoscopic sample result from the interplay of the
subgap states, located in the vortex core and in the edge
regions with the spectral gap reduced by Meissner currents
[69]. We assume that both the order parameter �L(r) and the
θL(r) function vanish inside the vortex core and separate the
energy and the coordinate dependence in LDOS NL(r, E ) and
SC correlations BL(r, E ) (12) by the following approximate
expressions (see Fig. 7),

NL(r, E ) � [1 − ZDL (r)]N̄L(E ) + ZDL (r)N̄V (E ), (14)

BL(r, E ) � [1 − ZDL (r)]B̄L(E ) + ZDL (r)B̄V (E ). (15)

Here the functions N̄V (E ) = Re[cos θV ] = 1 and B̄V (E ) =
Im[sin θV ] = 0 (θV = 0) describe normal metal properties of
the vortex core region. A radial profile ZDL (r) which de-
scribes a contribution of the subgap states in the vortex core
(ZDL (0) = 1, ZDL (R) � 1) is assumed to be a monotonically
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FIG. 7. Sketch of the homogeneous approximation. (Top) The
soft SC gap (shown by semitransparent green color) in the SC disk
of the radius R with the giant L-quantum vortex is accompanied by
the energy dependence of the LDOSs (orange lines), Eq. (14), being
a superposition of the vortex N̄V (E ) = 1 and homogeneous N̄L (E )
LDOS with the radial profile ZDL (r) (shown by two parallel blue
curves). (Bottom) The cylindrical-symmetric representation of the
radial function ZDL (r) in the SC disk.

decaying function with a certain L-dependent length scale
DL; see Fig. 7 (bottom). A residual small contribution of
the subgap states related to the vortex core at the disk edge
[∼ZDL (R)] corresponds to a nonzero DOS at the Fermi level
and is responsible for the destruction of the hard gap in the
DOS. In the Meissner state we get Z0(r) = 0 and thus D0 = 0.

The functions N̄L(E ) and B̄L(E ) describe the averaged
characteristics of the SC state in the vortex free phase and
outside the vortex core region. To get these functions we aver-
age Eq. (3) over the radial coordinate neglecting the gradient
terms, i.e., assume the θL(r) function to depend slowly on r.
The spatially averaged value θ̄L satisfies the Usadel equation
for the normal (cos θ̄L) and anomalous (−i sin θ̄L) Green’s
functions [75]

( iE − ̄L cos θ̄L ) sin θ̄L = �̄L cos θ̄L, (16)

which describes different depairing effects in dirty SCs with
the effective depairing energy ̄L [71,76–78]. The solution θ̄L

of the algebraic equation (16) at ωn = −iE gives us the energy
dependence of the DOS N̄L(E ) = Re[cos θ̄L] and the function
B̄L(E ) = Im[sin θ̄L]. The hard gap Ēg in the DOSs N̄L(E ) and
the order parameter �̄L are determined by the relations

Ēg = �̄L
(
1 − γ

2/3
L

)3/2
, �̄L = �0 e−πγL/4, (17)

which in turn depend on the magnetic field H via parameter

γL = ̄L/�̄L. (18)

The effective depairing energy ̄L takes into account the
phase gradient created by the L-quantum vortex and the effect
of the magnetic field H and can be calculated by averaging the

inhomogeneous depairing parameter L(r, H ) (4), (5):

̄L(H, DL ) = π h̄

DSZ

∫ R

0
r [1 − ZDL (r)]2v2

L(r) dr,

SZ = 2π

∫ R

0
r [1 − ZDL (r)]dr. (19)

The relation (19) accounts for the presence of the core of the
L−quantum vortex via the factor 1 − ZDL (r) in the superfluid
velocity [1 − ZDL (r)]vL(r) and the effective area of the disk
SZ . As a result, the effective depairing energy ̄L (19) and
parameter γL (18) depend on the magnetic field H and the
length scale DL. The kernel (11) takes the form

ML(r, E , ε) � ZDL (r)2 + [1 − ZDL (r)]2M̄L(E , ε)+
+ ZDL (r)[1 − ZDL (r)]K̄L(E , ε), (20)

where the functions

M̄L(E , ε) = N̄L(E )N̄L(E + ε) − B̄L(E )B̄L(E + ε), (21)

K̄L(E , ε) = N̄L(E ) + N̄L(E + ε) (22)

do not depend on radius r.
In the Meissner state (L = 0, Z0 = 0) the depairing energy

̄0 can be easily calculated by the averaging of the inhomo-
geneous depairing parameter 0(r, H ) (4), (5) over the radial
direction

̄0(H ) = 2

R2

∫ R

0
dr r 0(r, H ) = h̄D

4R2

( H

H0

)2

. (23)

The kernel M0(r, E , ε) of the second integral in (10) does
not depend on radial coordinate r (M0(r, E , ε) � M̄0(E , ε))
and can be found by replacing the functions N0(r, E ) and
B0(r, E ) with N̄0(E ) and B̄0(E ), respectively, in the expres-
sion (11). The comparison of the above averaged description
with the full numerical solution for the DOSs can be seen in
Fig. 4(e) where the homogeneous DOSs N̄0(E ) = Re[cos θ̄0]
determined by the solution of Eq. (16) is shown.

In the vortex state (L = 0) the unknown scale DL depends
on the disk geometry via the spatial distributions of the order
parameter �L(r) and the LDOSs NL(r, E ) in the disk, and in
general DL is a function of temperature T , magnetic field H
and vorticity L. In order to account for the reduction in the
average order parameter �̄L and the minigap Ēg which occurs
with increasing H for a fixed vorticity L, the cutoff radius DL

is assumed to obey the following relation

DL(H ) = aLξL(H ), (24)

where the coherence length

ξL(H ) =
√

h̄D/2Ēg (25)

plays the role of the characteristic length scale of the Green’s
functions outside the vortex core, and aL is a fixed fitting
parameter for the L−th orbital mode.

Finally, the expressions in Eqs. (17)–(19), (24), and (25)
define the implicit relation between the scale DL and
magnetic field H , which after the substitution into the ex-
pression (19) for the homogeneous depairing energy ̄L

gives us the average normal (∼ cos θ̄L) and anomalous
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(∼ sin θ̄L) Green’s functions from the solution of the algebraic
equation (16).

The general expressions (10) for the electron–phonon heat
flow can be significantly simplified in low temperature limit
Tph � T � Ēg/kB, where we neglect the terms e−Ēg/kBTph with
respect to e−Ēg/kBT , using approximation of the kernel of the
integrals M(r, E , ε) (20)–(22). We calculate the coordinate–
resolved electron–phonon heat flux PL(r) for any profile
ZDL (r) combining the procedure, described in Refs. [38,40],

and the solution of Usadel equation (16) (see the Appendix
for details).

As a result in the leading approximation in Ēg/(kBT ) for
Tph = 0 and T � ̄2/3Ē1/3

g /kB the electron–phonon heat flow
Q̇L(r) within the central part of the disk of the a radius r � R
into the phonon bath for the orbital mode L is given by the
expressions

Q̇L(r) = Q̇N

πR2

∫ r

0
dr′ r′ P̄L(r′), (26)

P̄L(r) ≈ 2π

{
Z2
DL

(r) + [1 − ZDL (r)]2 128

189ζ (5)

kBT

2/3Ē1/3
g

[
1 + 21π

256

(
Ēg

kBT

)3

e−Ēg/kBT

]
e−Ēg/kBT +

+ZDL (r)[1 − ZDL (r)]

√
π/6

48ζ (5)

(
Ēg�̄

̄2

)1/3( Ēg

kBT

)7/2

e−Ēg/kBT

}
, (27)

where the first term in curvy brackets in (27) corresponds to
the normal core contribution, the second term — to the SC
part with the hard gap, while the last term provides the cross-
contribution with the kernel (22). QN = V�T 5 is the e-ph heat
flow in the normal state of the disk of volume V = πR2d .

The results of the fitting for the trial function ZDL (r) =
e−r2/D2

L are shown in Fig. 5. The best fits of Q̇L(R) (26),
(27) to the numerical simulations are obtained with aL �
1.5; 2.5; 4.1; 8.0 for L = 1 ÷ 4, respectively. The inset in
Fig. 5 shows the dependence of the value ̄2/3Ē1/3

g (solid
lines) and the hard gap Ēg (dashed lines) determined by the
relations (17) on the magnetic flux φ for the best fits. The con-
dition ̄2/3Ē1/3

g > kBT determines the values of the applied
magnetic field H � H0 for which the approximate expressions
(26), (27) are correct. One can see from Fig. 5 that within
the validity range ̄2/3Ē1/3

g > kBT the approximation agrees
reasonably well with the exact result. In the range H < H0

of the Meissner regime, where the above validity condition is
violated, our semiquantitative model obviously fails as it does
not take into account highly inhomogeneous distribution of
Meissner currents [see, e.g., P0 in Fig. 6(a)].

Figures 4(e)–4(h) provide the comparison of the exact spa-
tially resolved LDOS NL(r, E ) vs energy E (12) shown in
Figs. 4(a)–4(d) to the approximate ones (14) corresponding
to the best fits for values of the magnetic field H = Hs1, Hs2.

The corresponding spatially resolved heat flow density
P̄L(r) (27) and the heat flow Q̇L(r) (26) are shown in Fig. 6
by the dashed lines. One should notice the semiquantitative
agreement between exact numerically calculated and approx-
imate curves, except for the cases Figs. 6(a) and 6(c), when
the Meissner screening currents essentially suppress the SC
order parameter �(r) near the disk edge, because the sim-
ple approximate model (14), (15) fails to account for this
suppression.

Figure 8 shows the dependencies of the coherence length
ξL(H ) and the corresponding length scale DL(H ) on the mag-
netic field H for different vorticities L. For a fixed vorticity
L the coherence length ξL(H ) (25) grows while sweeping the
magnetic field up, HsL � H � Hs(L+1), due to increase of the

screening currents in a small disk and shrinking of the gap Ēg.
As a result, the radius DL increases slightly within the branch
L. The downward jumps in the coherence length ξL(H ) (25)
at H = HsL are caused by the increase in the hard spectral gap
value Ēg as the vortex enters the sample, see Fig. 4.

VI. CONCLUSIONS

In conclusion, on the basis of the Usadel theory we have
calculated the e-ph heat transfer Q̇ in a diffusive mesoscopic
SC disk of the size comparable to several SC coherence
lengths ξ0, placed in the external magnetic field H oriented
perpendicular to the plane of the disk. The strong confine-
ment effects of the screening supercurrents are responsible for
the formation of the giant (L−quantum) vortices in the disk
center. The giant vortex core and the regions near the

FIG. 8. The dependence of the scale DL (solid lines) and the
coherence length ξL (dashed lines) on the magnetic field H in
the SC disk of the radius R = 4ξ0 for the temperature T = 0.1Tcs.
The numbers near the curves denote the corresponding values of
vorticity L.
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sample edge with the reduced spectral gap form potential
wells (traps) for QPs responsible for the heat transfer. We
have demonstrated that the transitions between the SC states
with different vorticities L provoke abrupt changes (jumps) in
Q̇(H ) attributed to the entry/exit of vortices while sweeping
the magnetic field. The smooth growth of the e-ph heat flow
Q̇L(H ) takes place for a fixed vorticity L while sweeping
the magnetic field up, due to the increase of the screening
currents and shrinking of the hard or soft spectral gap in
the density of states. We have shown that the e-ph heat flow
in the Meissner and vortex states of mesoscopic samples
can be effectively controlled by the external magnetic field.
We develop the semiquantitative approximate model the de-
scription of the QP trapping which works reasonably well
beyond the Meissner state. Our numerical analysis of the
e-ph relaxation confirms the validity and efficiency of the
above semiquantitative model. Our semiquantitative approach
provides an access to more detailed characteristics like a
spatially-resolved electron–phonon relaxation rate (see Fig. 6)
and a value of the soft SC gap Eg (see Fig. 5) which cannot be
directly accessed in the experiments. The information about
these more detailed characteristics allows experimentalists to
design the tunable and efficient QP traps in order to optimize
the performance of their quantum SC devices. Our consider-
ation is restricted to the case of giant vortices and does not
include the analysis of possible consequences of the giant
vortex decay and formation of the vortex molecules. One

can obviously expect that for rather small splitting of a giant
vortex, i.e. for the distances between the individual vortex
centers smaller than the giant vortex core size, our results
for the electron–phonon heat transfer are still applicable. The
heat transfer in the general case of the strongly split vortex
molecules deserves certainly a separate consideration which
goes beyond the perspective of the current manuscript. We
expect that our results can stimulate further experimental work
on the controllable QPs trapping in the vortex state of meso-
scopic SCs and SC hybrid devices.
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APPENDIX: HOMOGENEOUS APPROXIMATION IN A
MESOSCOPIC DISK

In this section we derive the expression for the e-ph heat
flow Q̇eph [(10)–(12)] in a mesoscopic SC disk with a L-
quantum vortex in the center within the approximation (14)
and (15). Using the kernel (20), we decompose the heat flow
density (10) into three parts as follows,

PL(r) = �(1)F 2(r) + �(2)[1 − F (r)]2 + �(3)F (r) [1 − F (r)], (A1)

where the coefficients �(i) are given by the unified expression

�
(i)
L = �

24ζ (5)k5
B

∫ ∞

0
ε3[ nT (ε) − nTph (ε) ]dε

∫ ∞

−∞
M(i)

L (E , ε) [ fT (E ) − fT (E + ε) ]dE , (A2)

with the kernels M(1)
L (E , ε) = 1, M(2)

L (E , ε) = M̄L(E , ε), and M(3)
L (E , ε) = K̄L(E , ε), respectively. The coefficient

�(1) = �

24ζ (5)k5
B

∫ ∞

0
ε3[ nT (ε) − nTph (ε) ]dε

∫ ∞

−∞
[ fT (E ) − fT (E + ε) ]dE = � [T 5 − T 5

ph], (A3)

describes the heat flow density in the normal state and determines the contribution of the vortex core.
For simplicity, further calculations are done in low-temperature limit T0 � T � Ēg/kB in order to neglect the temperature

dependence of the gap and the order parameter and the terms e−Ēg/kBTph with respect to e−Ēg/kBT . In this case, the values �(i) (A2)
do not depend on the phonon temperature Tph and �(1) ≈ � T 5.

In the low-temperature limit the main contributions to the coefficients �(2) and �(3) arise from the vicinity 0 < |E | − Ēg �
kBT of the hard gap value ±Ēg, leading to the smallness of the positive parameter δE = |E | − Ēg � Ēg. The expansion of N̄L(E )
and B̄L(E ) over δE takes the form

N̄2
L (E ) � �(δE )

2δE �̄
2/3
L

3̄
4/3
L Ē1/3

g

,
B̄L(E )

N̄L(E ) sign(E )
�

(
Ēg

�̄L

)1/3

. (A4)

Here �(x) is the Heaviside theta function. Substituting (A4) into expressions (21) and (22) we obtain the final expression for the
kernels M̄L(E , ε) and K̄L(E , ε)

M̄L(E , ε) � 2
√

δE δE ′ �(δE ) �(δE ′)

3̄
2/3
L Ē1/3

g

, K̄L(E , ε) �
√√√√ 2�̄

2/3
L

3̄
4/3
L Ē1/3

g

[
√

δE �(δE ) +
√

δE ′ �(δE ′)], (A5)

which are correct for T � ̄2/3Ē1/3
g /kB, where δE ′ = |E + ε| − Ēg. Splitting the integration in �(2) (A2) into positive and

negative parts in the electronic energy E and taking into account that M̄(E , ε) = 0 if any of two conditions |E | < Ēg and
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|E + ε| < Ēg is valid, the coefficient �(2) can be simplified in the low-temperature limit as follows,

�(2) ≈ �

24ζ (5)k5
B

[
2

∫ ∞

0
ε3e−ε/kBT dε

∫ ∞

Ēg

M̄L(E , ε) e−E/kBT dE +
∫ ∞

2Ēg

ε3e−ε/kBT dε

∫ −Ēg

Ēg−ε

M̄L(E , ε) dE

]
. (A6)

As a result, taking into account only the leading terms in the small parameter kBT/Ēg, we obtain

�(2) = 128 �T 5

189 ζ (5)

kBT

̄
2/3
L Ē1/3

q

[
1 + 21π

256

(
Ēg

kBT

)3

e−Ēg/kBT

]
e−Ēg/kBT . (A7)

In order to simplify the expression for �(3) with E � Ēg, we neglect nTph (ε) and use the following equalities,

nT (ε) fT (E − ε) = fT (E )[nT (ε) + fT (E − ε)], nT (ε) fT (E + ε) = fT (E )[nT (ε) − fT (E + ε) eE/kBT ].

As a result, we obtain

�(3) ≈ �

12ζ (5)k5
B

∫ ∞

0
ε3nT (ε)dε

∫ ∞

Ēg

N̄L(E ) [ fT (E − ε) + fT (E + ε) eE/kBT ], (A8)

leading to

�(3) ≈
√

π/6 �T 5

48ζ (5)

(
Ēg�̄L

̄2
L

)1/3( Ēg

kBT̄

)7/2

e−Ēg/kBT̄ . (A9)

Finally, substituting Eqs. (A1), (A3), (A8), (A9) into the expressions (10), one obtains simplified expressions (26), (27) for
the electron–phonon heat flow Q̇L(r) into the phonon bath for the orbital mode L.
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