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Exact eigenstates of extended SU(N) Hubbard models: Generalization of η-pairing states
with N-particle off-diagonal long-range order
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We consider N-particle generalizations of η-pairing states in a chain of N-component fermions and show that
these states are exact (high-energy) eigenstates of an extended SU(N) Hubbard model. We compute the singlet
correlation function of the states and find that its behavior is qualitatively different for even and odd N . When
N is even, these states exhibit off-diagonal long-range order in N-particle reduced density matrix. On the other
hand, when N is odd, the correlations decay exponentially with distance in the bulk, but end-to-end correlations
do not vanish in the thermodynamic limit. Finally, we prove that these states are the unique ground states of
suitably tailored Hamiltonians.
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I. INTRODUCTION

The off-diagonal long-range order (ODLRO) in the re-
duced density matrix characterizes a quantum phase in
many-particle systems [1]. For bosons, ODLRO in the one-
particle reduced density matrix is a signature of Bose-Einstein
condensation [2–7], while for fermions, ODLRO in the two-
particle reduced density matrix signals superconductivity
[1,8–11].

In his seminal paper [12], C. N. Yang found exact eigen-
states of the SU(2) Hubbard model called η-pairing states,
which possess ODLRO in the two-particle reduced density
matrix. Although these states are not ground states, there is re-
newed interest in them in the context of superconductivity and
superfluidity [13–20], and quantum many-body scars [21,22].

So far, η-pairing states have been discussed mainly in
the SU(2) Hubbard model [23]. Recently, N-component
fermionic systems with SU(N) symmetry have been real-
ized in optical lattices [24–37]. Such systems are described
by the SU(N) Hubbard model, which is a generalization
of the Hubbard model for the internal degrees of freedom.
In a continuous system, Cooper triples, a generalization of
Cooper pairs, have been proposed for SU(3) fermions [38,39].
However, its lattice counterpart is missing. Also, to our knowl-
edge, the generalization of η-pairing states to N-component
fermionic systems has yet to be investigated.

η-pairing states can be represented by a superposition of
states in which each site is either empty or occupied by two
fermions with opposite spins. Thus, a natural generalization
of such a state to the case of N-component fermions is a
superposition of states in which each site is either empty
or occupied by N fermions with different flavors. When the
number of fermions is a multiple of N , one can construct a
series of such states, which we dub η-clustering states. These
states are not exact eigenstates of the SU(N) Hubbard model.
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Nevertheless, we can construct a class of modified models in
one dimension where these states are zero-energy eigenstates,
as shown in this paper. These eigenstates are in the middle
of the spectrum, but their entanglement entropy obeys a sub-
volume law. Thus, they can be thought of as scar-like states.
We also compute the singlet correlation function, which is
an N-particle generalization of the pair correlation function.
When N is even, the states have N-particle ODLRO because
the singlet correlation function does not decay to zero at large
distances. On the other hand, when N is odd, the states do
not exhibit N-particle ODLRO because the singlet correlation
function decays exponentially with distance in the bulk. Inter-
estingly, however, end-to-end correlations do not vanish in the
thermodynamic limit. Finally, we prove that these states are
the unique ground states of suitably tailored Hamiltonians.

II. THE MODEL AND η-CLUSTERING STATES

A. Hamiltonian

We consider a chain of N-component fermions with L
lattice sites. For each site x = 1, . . . , L, we denote by ĉ†

x,σ
and ĉx,σ the creation and annihilation operators, respec-
tively, of a fermion with flavor σ = 1, . . . , N . We write
the normalized vacuum state annihilated by all ĉx,σ as |0〉.
The whole Fock space V is spanned by states of the form
{∏L

x=1

∏N
σ=1(ĉ†

x,σ )nx,σ }|0〉 (nx,σ = 0, 1). The number operators

are defined as n̂x,σ = ĉ†
x,σ ĉx,σ and n̂x = ∑N

σ=1 n̂x,σ . We write

η̂†
x = ĉ†

x,1ĉ†
x,2 . . . ĉ†

x,N and ĉ
†
x,σ = [ĉx,σ , η̂†

x ]±, where [, ]± de-
notes the commutator (anticommutator) when N is even (odd)
[40].

Let us consider the Hamiltonian of the extended SU(N)
Hubbard model with open boundary conditions,

ĤOBC = Ĥ1 + ĤN−1 + ĤU , (1)

Ĥ1 = −t
L−1∑
x=1

N∑
σ=1

(ĉ†
x,σ ĉx+1,σ + H.c.), (2)
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FIG. 1. Schematics of individual terms in the Hamiltonian HOBC

[Eq. (1)]. The case of N = 3 is shown. (a) The one-body hopping
term Ĥ1, (b) the (N − 1)-body hopping term ĤN−1, and (c) the on-site
repulsive or attractive interaction term ĤU . Blue, red, green (black,
gray, white) balls represent fermions with flavors σ = 1, 2, 3.

ĤN−1 = −t
L−1∑
x=1

N∑
σ=1

(ĉ
†
x,σ ĉx+1,σ + H.c.), (3)

ĤU = U
L∑

x=1

n̂x(n̂x − N ). (4)

A schematic of each term in the Hamiltonian is shown in
Fig. 1. The first term Ĥ1 describes the one-body hopping term.
The second term ĤN−1 represents the (N − 1)-body-hopping
term. The hopping amplitude t ∈ R is common to Ĥ1 and
ĤN−1. The third term ĤU represents on-site repulsive (U > 0)
or attractive (U < 0) interactions. To simplify the following
discussion, we include a uniform potential in the third term,
which produces a constant shift in the energies of the eigen-
states in each particle-number sector.

B. η-operator

Next, we consider the η-operator. In the case of N = 2, the
η-operator is defined as ˆ̃η† = ∑L

x=1 eiπxη̂†
x . Naively, one might

think that the same definition works for N > 2. Indeed, when
N is even, we have a series of eigenstates created by applying
ˆ̃η† to the vacuum state. However, this does not work when N
is odd, because ˆ̃η† squares to zero. To avoid this problem, we
define the η-operator as

η̂† =
L∑

x=1

eiπxÛ1,...,x−1η̂
†
x , (5)

where Û1,...,x−1 is a unitary operator defined as Û1,...,x−1 =
eiπ

∑x−1
j=1 n̂ j for x > 1 and Û1,...,x−1 = 1 for x = 1.

C. Exact eigenstates of the Hamiltonian

By repeatedly applying η̂† to the vacuum state, we have a
series of states, namely, η-clustering states

∣∣�L
M

〉
:= 1

M!
(η̂†)M |0〉

=
∑

1�x1<...<xM�L

{
M∏

j=1

eiπx j η̂†
x j

}
|0〉. (6)

FIG. 2. A Schematic of an η-clustering state |�L
M〉 for N = 3,

L = 4, and M = 2. The particle number of |�L
M〉 is NM.

Figure 2 shows a schematic of η-clustering states. They do
not vanish for M = 0, . . . , L, and boil down to η-pairing states

1
M! ( ˆ̃η†)M |0〉 when N = 2. These state are not eigenstates of the
original SU(N) Hubbard model with the Hamiltonian Ĥ1 +
ĤU , but are exact eigenstates of ĤOBC = Ĥ1 + ĤN−1 + ĤU .

Theorem 1. For all M = 0, . . . , L, we have ĤOBC|�L
M〉 = 0.

Proof of Theorem 1. First we define the following state:

|�L(α)〉 =
{

L∏
x=1

(1 + αeiπxη̂†
x )

}
|0〉 =

L∑
M=0

αM
∣∣�L

M

〉
, (7)

where α is a formal parameter. Since ĤOBC conserves the
particle number, if ĤOBC|�L(α)〉 = 0, then ĤOBC|�L

M〉 = 0 for
all M. For notational simplicity, we write the hopping term
between sites x and x + 1 as

T̂x,x+1 =
N∑

σ=1

T̂ σ
x,x+1, (8)

T̂ σ
x,x+1 = [(ĉ†

x,σ ĉx+1,σ + ĉ
†
x,σ ĉx+1,σ ) + H.c.]. (9)

We also denote by W the subspace where the eigenvalue of n̂x

is 0 or N for all x. Then, one finds[
T̂ σ

x,x+1, η̂
†
z

]
W = (δx,z + δx+1,z )

[
ĉ†

x,σ ĉ
†
x+1,σ + ĉ†

x+1,σ ĉ
†
x,σ

]
W,

(10)

which yields[
T̂ σ

x,x+1, (1 + αeiπxη̂†
x )(1 − αeiπxη̂

†
x+1)

]
W = 0. (11)

Using this commutation relation and T̂ σ
x,x+1|0〉 = 0, one

can easily check that (Ĥ1 + ĤN−1)|�L(α)〉 = 0. From this
and ĤUW = 0, we have ĤOBC|�L(α)〉 = 0, and therefore
ĤOBC|�L

M〉 = 0 for all M. �
Remark 1. In Theorem 1, we assumed open boundary

conditions. Here, we consider the cases of (anti)periodic
boundary conditions. The Hamiltonian reads

Ĥ(A)PBC = ĤOBC − t T̂ (A)PBC
L,1 , (12)

where T̂ (A)PBC
L,1 := T̂L,L+1 and ĉL+1,σ = ĉ1,σ (−ĉ1,σ ) for peri-

odic (antiperiodic) boundary conditions.
In these cases, η-clustering states are not necessarily eigen-

states. The boundary conditions where η-clustering states are
eigenstates are summarized in Table I (see Appendix A for
derivation). We also confirmed by exact diagonalization for
small systems that the zero-energy eigenstates for each bound-
ary condition are limited to them in the whole Fock space V ,
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TABLE I. The boundary conditions for which |�L
M〉 is an eigen-

state with zero energy. We denote by O and (A)P the open boundary
conditions and (anti)periodic boundary conditions. The case of M =
1, . . . , L − 1 is shown. When M = 0, L, |�L

M〉 is an eigenstate for
any boundary conditions.

N: even N: odd

L: even L: odd L: even L: odd

M: even O, P, AP O O, AP O, P
M: odd O, P, AP O O, P O, AP

except when the strength of the interaction is fine-tuned to the
values U = 0,±t .

Remark 2. In Theorem 1, for simplicity, we assumed that
the Hamiltonian is SU(N) symmetric and translationally in-
variant in the bulk. However, these two conditions are not
necessary. To illustrate this, we consider the following Hamil-
tonian:

ˆ̃HOBC = −
L−1∑
x=1

N∑
σ=1

tσ
x,x+1T̂ σ

x,x+1

+
L∑

x=1

N∑
σ,τ=1

U σ,τ
x

(
n̂x,σ − 1

2

)(
n̂x,τ − 1

2

)
, (13)

where tσ
x,x+1 ∈ R and U σ,τ

x ∈ R depend on x, σ, τ . Generally,
this Hamiltonian is not SU(N) symmetric nor translationally
invariant [41]. Then, one can show that η-clustering states
|�L

M〉 are eigenstates of ˆ̃HOBC for all M = 0, . . . , L. The proof
goes along the same lines as the proof of Theorem 1.

III. PROPERTIES OF η-CLUSTERING STATES

A. Entanglement entropy and the connection to quantum
many-body scar states

Here we compute the entanglement entropy of η-clustering
states |�L

M〉 using the technique developed in Refs. [42–44].
We partition the L sites x = 1, . . . , L into a subsystem A
(x = 1, . . . , LA) and a subsystem B (x = LA + 1, . . . , L) and
compute the reduced density matrix by tracing out the degrees
of freedom in B. Then we compute the von Neumann entropy
of the reduced density matrix, which we denote by SA. This
can be done for both odd and even N in the same way as for
the η-pairing states [42]. As a result, we obtain

SA = 1
2 (1 + ln[2πν(1 − ν)LA]). (14)

Here, we take the thermodynamic limit L, M → ∞ such that
ν = M/L is kept constant. Equation (14) clearly shows that
SA scales logarithmically with the system size, implying that
η-clustering states |�L

M〉 have sub-volume-law entanglement,
even though they are in the middle of the spectrum of ĤOBC.

When N = 2, η-pairing states are not examples of quantum
many-body scars because the model has η-SU(2) symmetry
and η-pairing states are the only eigenstates in their respective
quantum number sectors [22,42]. However, since the model
does not have such symmetry for N � 3, η-clustering states
may be regarded as quantum many-body scars.

B. Off-diagonal long-range order

For a normalized state |φ〉, we define the singlet correlation
function by 〈φ|η̂†

x η̂y|φ〉. This is an extension of the pair corre-
lation function. If this does not vanish when |x − y| → ∞, we
say that |φ〉 exhibits N-particle ODLRO. We write the singlet
correlation function of η-clustering states as

〈η̂†
x η̂y〉L

M :=
〈
�L

M

∣∣η̂†
x η̂y

∣∣�L
M

〉
〈
�L

M

∣∣�L
M

〉 . (15)

Then, 〈η̂†
x η̂y〉L

M is calculated as follows.
Theorem 2. For x �= y and 0 < M < L, we have

〈η̂†
x η̂y〉L

M = (−1)r M(L − M )

L(L − 1)
(16)

when N is even and

〈η̂†
x η̂y〉L

M =
∑ jmax

j= jmin
(−1) j

(L−r−1
j

)( r−1
M− j−1

)
(−1)M+r−1

(L
M

) (17)

when N is odd, where r = |x − y|, jmin = max{0, M − r}, and
jmax = min{L − r − 1, M − 1}.

Figure 3 shows 〈η̂†
x η̂y〉L

M as a function of r = |x − y| when
L = 40. The result for even N is consistent with the case
of N = 2 [12]. In this case, from Theorem 2, η-clustering
states have N-particle ODLRO in the limit where the fill-
ing ν = M/L is kept constant and L → ∞. On the other
hand, when N is odd, the behavior of the singlet correlation
function is very different. The singlet correlation function
decays exponentially with distance as |〈η̂†

x η̂y〉L
M | ∼ e−r/ξ (L,M )

(see Appendix B), where ξ (L, M ) is the correlation length
depending on L and M. However, when r 	 L, the singlet
correlation function do not vanish. This shows end-to-end
long-range correlations. This behavior can be qualitatively
understood by mapping our system to a spin chain (see Ap-
pendix C). In the limit L → ∞, Eq. (17) reads 〈η̂†

1η̂L〉L
M →

FIG. 3. The singlet correlation function 〈η̂†
x η̂y〉L

M as a function of
r = |x − y|. We substituted L = 40 and M = 10, 20 for Eqs. (16)
and (17). (a) When N is even, the absolute value of the singlet
correlation function does not depend on r. (b) When N is odd, the
singlet correlation function decays exponentially toward the other
end of the chain, but shows a revival at r 	 L.
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(−1)L+Mν(1 − ν). In the same limit, the correlation length
is estimated as ξ (L, M ) → −1/ log |(2ν − 1)|. We note in
passing that a similar behavior has been observed in a spinless
fermion system [45,46].

Proof of Theorem 2. We use |�L(α)〉 defined by (7) for the
calculation. By direct calculation (see Appendix D), we have

〈�L(α)|�L(α)〉 = (1 + α2)L (18)

and

(−1)x+y
〈
�L(α)

∣∣η̂†
x η̂y

∣∣�L(α)
〉

=
{
α2(1 + α2)L−2

N : even,

α2(1 + α2)L−r−1(1 − α2)r−1
N : odd.

(19)

Since η̂†
x η̂y conserves the particle number, 〈�L

M |�L
M〉

(〈�L
M |η̂†

x η̂y|�L
M〉) is the coefficient of α2M in 〈�L(α)|�L(α)〉

(〈�L(α)|η̂†
x η̂y|�L(α)〉). This yields the desired Eqs. (16) and

(17). �
Finally, we see the connection between the singlet correla-

tion function and the n-particle reduced density matrix [1]. We
consider a state described by a density matrix ρ̂. The n-particle
reduced density matrix ρ̂n is a matrix of size (L × N )n with the
matrix elements

(ρ̂n)[(x1,σ1 ),...,(xn,σn )],[(y1,τ1 ),...,(yn,τn )]

:= Tr
[
ĉ†

xn,σn
. . . ĉ†

x1,σ1
ĉy1,τ1 . . . ĉyn,τn ρ̂

]
(20)

where [(x1, σ1), . . . , (xn, σn)] and [(y1, τ1), . . . , (yn, τn)]
(xi, yi = 1, . . . , L, σi, τi = 1, . . . , N ) denote sequences
of sites and flavors. We write the maximum eigenvalue
of ρ̂n as λn. Then, another characterization of n-particle
ODLRO is that λn = O(L). The singlet correlation functions
are off-diagonal elements of ρ̂n where x1 = . . . = xN

and y1 = . . . = yN . If we consider |�L
M〉, the remaining

off-diagonal elements vanish. Thus we have

λN =
{

O(L) N : even,

O(1) N : odd,

(21)
(22)

and

λn = 0 when n < N. (23)

In Ref. [1], Yang conjectured that there exists a numerical
constant βn such that

λn �
{
βnLn/2 N : even,

βnL(n−1)/2 N : odd.

(24)
(25)

If we accept the conjecture, η-clustering states do not saturate
the upper bound when N � 3, while in the case of N = 2, it is
shown that η-pairing states maximize λ2 [20].

IV. PARENT HAMILTONIAN FOR η-CLUSTERING STATES

In the SU(2) Hubbard model, η-pairing states are not
ground states. On the other hand, adding terms to the Hamil-
tonian allows us to create models whose ground states are
η-pairing states [47–52]. In light of these contexts, we seek a
parent Hamiltonian for which η-clustering states |�L

M〉 (M =
0, . . . , L) are the unique ground states. For this purpose,
consider the following Hamiltonian consisting of the N-body

hopping, the nearest-neighbor interaction, and the on-site po-
tential terms [53]:

ĤV = V
L−1∑
x=1

V̂x,x+1, (26)

where

V̂x,x+1 =1

2
(η̂†

x η̂x+1 + H.c.) − 1

N2
n̂xn̂x+1 + 1

2N
(n̂x + n̂x+1).

(27)

Then we prove the following theorem.
Theorem 3. Consider the Hamiltonian Ĥ ′

OBC = ĤOBC +
ĤV . If U � 0 and V > 8N2|t |, then the zero-energy ground
states of Ĥ ′

OBC in the whole Fock space V are exactly (L + 1)-
fold degenerate and written as |�L

M〉(M = 0, . . . , L).
To prove Theorem 3, we consider the local Hamiltonian

Ĥx,x+1 = t T̂x,x+1 + VV̂x,x+1, where T̂x,x+1 is defined as Eq. (8).
We denote by Vx,x+1 the 22N -dimensional subspace of V
spanned by states of the form {∏N

σ=1(ĉ†
x,σ )nx,σ (ĉ†

x+1,σ )nx+1,σ }|0〉
with nx,σ , nx+1,σ = 0, 1.

Lemma 4. If V > 8N2|t |, the zero-energy ground states of
Ĥx,x+1 in the subspace Vx,x+1 are threefold degenerate and
written as |0〉, η̂†

x η̂
†
x+1|0〉, and (η̂†

x − η̂
†
x+1)|0〉.

Proof of Lemma 4. To obtain the ground state of V̂x,x+1,
we map the η-operators to spin-1/2 operators {Ŝ+

x , Ŝ−
x , Ŝz

x}
defined on the one-dimensional lattice with L sites. Let P̂ be a
projector to the subspace W . Then we define

Ŝ+
x := eiπxP̂Û1,...,x−1η̂

†
x P̂,

Ŝ−
x := eiπxP̂Û1,...,x−1η̂xP̂,

Ŝz
x := P̂

(
η̂†

x η̂x − 1
2

)
P̂.

(28)

The operators {Ŝ+
x , Ŝ−

x , Ŝz
x} satisfy the usual commutation re-

lations [Ŝ+
j , Ŝ−

k ] = 2δ j,k Ŝz
j and [Ŝz

j, Ŝ±
k ] = δ j,kŜ±

j .

Let us express V̂x,x+1 with the spin operators. We write Q̂ =
1 − P̂. Since [V̂x,x+1, P̂] = 0, it is expressed as

V̂x,x+1 = P̂V̂x,x+1P̂ + Q̂V̂x,x+1Q̂

= P̂

(
−Ŝx · Ŝx+1 + 1

4

)
P̂

+ Q̂

[
1

4
−

(
n̂x

N
− 1

2

)(
n̂x+1

N
− 1

2

)]
Q̂. (29)

Let us consider the subspace Vx,x+1. One finds that the first
term acts nontrivially on Vx,x+1 ∩ W and the second term acts
nontrivially on Vx,x+1 ∩ W⊥, where W⊥ is the orthogonal
complement of W . In the subspace Vx,x+1 ∩ W , the energy
of the ground states is 0 (the spin triplet), while that of the
excited state is 1 (the spin singlet). The corresponding ground
states can be written as |0〉, η̂†

x η̂
†
x+1|0〉, and (η̂†

x − η̂
†
x+1)|0〉. On

the other hand, in the subspace Vx,x+1 ∩ W ⊥, the energy of the
ground state is 1/2N . Therefore, the ground states of V̂x,x+1 in
Vx,x+1 are |0〉, η̂†

x η̂
†
x+1|0〉, and (η̂†

x − η̂
†
x+1)|0〉 and their energy

is 0. The energy of the first excited state is 1/2N .
In order to investigate the conditions for the ground states

of V̂x,x+1 to be the unique ground states of Ĥx,x+1, we use
Weyl’s theorem [54]. Writing the kth eigenvalue of a matrix A
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from the lowest by μk (A) and the operator norm of A by ‖A‖,
we have

μk (VV̂x,x+1) − ‖t T̂x,x+1‖ � μk (Ĥx,x+1). (30)

Since the energy of the first excited state of V̂x,x+1 is 1/2N , we
have μ4(V̂x,x+1) = 1/2N . One can also evaluate ‖T̂x,x+1‖ as

‖T̂x,x+1‖ =
∥∥∥∥∥

N∑
σ=1

[(ĉ†
x,σ ĉx+1,σ + ĉ

†
x,σ ĉx+1,σ ) + H.c.]

∥∥∥∥∥
� 2N (‖ĉ†

x,σ ‖‖ĉx+1,σ‖ + ‖ĉ
†
x,σ‖‖ĉx+1,σ‖) � 4N. (31)

Substituting them to Eq. (30), we have

V

2N
− 4N |t | � μ4(Ĥx,x+1). (32)

From (32), one finds μ4(Ĥx,x+1) > 0 when V > 8N2|t |.
Since the threefold ground states of V̂x,x+1 are zero-energy
eigenstates of Ĥx,x+1, they are the unique ground states
of Ĥx,x+1. �

Theorem 3 follows from Lemma 4.
Proof of Theorem 3. First, Ĥ ′

OBC can be written as

Ĥ ′
OBC =

L−1∑
x=1

Ĥx,x+1 + ĤU . (33)

It follows from Lemma 4 that, if V > 8N2|t |, Ĥx,x+1 is
positive semidefinite in the subspace Vx,x+1. Since Ĥx,x+1

acts nontrivially only on the sites x and x + 1, Ĥx,x+1 is
still positive semidefinite in the whole Fock space V . Since
U

∑L
x=1 n̂x(n̂x − N ) is also positive semidefinite when U � 0,

Ĥ ′
OBC is positive semidefinite. Thus, any eigenstate of Ĥ ′

OBC
with zero eigenvalue is a ground state. From Lemma 4, we see
that Ĥx,x+1|�L

M〉 = 0 for all x. This, together with ĤU |�L
M〉 =

0, implies that Ĥ ′
OBC|�L

M〉 = 0. Therefore, |�L
M〉 are ground

states of Ĥ ′
OBC.

Next, we show that |�L
M〉 are the only ground states.

We denote by P̂GS
x,x+1 a projector to the (highly degenerate)

ground states of Ĥx,x+1 in the whole Fock space V . Then,
[P̂, P̂GS

x,x+1] = 0. From Lemma 4, we see that Ĥx,x+1 can be
expressed as

Ĥx,x+1 = P̂�E
(
1 − P̂GS

x,x+1

)
P̂

+ Q̂�E
(
1 − P̂GS

x,x+1

)
Q̂ + D̂x,x+1

= P̂
[
�E

(−Ŝx · Ŝx+1 + 1
4

)]
P̂

+ Q̂
[
�E

(
1 − P̂GS

x,x+1

)]
Q̂ + D̂x,x+1, (34)

where we denote by �E (> 0) the energy gap between the
ground state and the first excited state of Ĥx,x+1, and by D̂x,x+1

a positive semidefinite operator. Substituting this into Eq. (33)
and setting D̂ = ∑L−1

x=1 D̂x,x+1 + ĤU , we have

Ĥ ′
OBC = P̂

[
�E

L−1∑
x=1

(
−Ŝx · Ŝx+1 + 1

4

)]
P̂

+ Q

[
�E

L−1∑
x=1

(
1 − P̂GS

x,x+1

)]
Q + D̂

= Ĥ ′′
OBC + D̂, (35)

where we introduced the notation Ĥ ′′
OBC := Ĥ ′

OBC − D̂. First,
we consider the Hamiltonian Ĥ ′′

OBC. We see that the first
(second) term acts nontrivially on W (W⊥). The first term is
the ferromagnetic Heisenberg model, so the ground states are
(L + 1)-fold degenerate in the subspace W and the energy of
the ground states is 0 [55]. For the second term, P̂GS

x,x+1|φ〉 = 0
for some x if |φ〉 ∈ W⊥, so the eigenvalues of Ĥ ′′

OBC in the
subspace W⊥ are greater than or equal to �E . Therefore, in
the whole space V , the ground states of Ĥ ′′

OBC are (L + 1)-fold
degenerate and the energy is 0. Next, we consider the effect
of D̂. Since D̂ is positive semidefinite, the degeneracy of
zero-energy eigenstates of Ĥ ′

OBC = Ĥ ′′
OBC + D̂ is equal to or

smaller than L + 1. This, together with the fact that |�L
M〉 are

zero-energy ground states of Ĥ ′
OBC, implies that they are the

unique ground states of Ĥ ′
OBC in the whole Fock space V . �

V. CONCLUSIONS AND OUTLOOK

We have presented N-particle generalizations of η-pairing
states in a chain of N-component fermions and constructed
a model in which these states are exact eigenstates of the
Hamiltonian for arbitrary N . When N is even, these states
exhibit N-particle ODLRO. Thus they serve as examples of
multiparticle clustering of lattice fermions [56,57], which is
relevant to charge 4e superconductors [57–59]. When N is
odd, long-range correlation is absent inside the bulk, but there
exists an N-particle long-range edge correlation. We have
also constructed a model, whose unique ground states are the
generalizations of η-pairing states. For N even, the results can
be generalized to any bipartite lattice in any dimension. In the
future, it would be interesting to consider possible realizations
of these states with ultracold atoms in optical lattices.
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APPENDIX A: ZERO-ENERGY EIGENSTATES WITH
(ANTI)PERIODIC BOUNDARY CONDITIONS

Since |�L
M〉 is a zero-energy eigenstate of ĤOBC, it is a zero-

energy eigenstate of Ĥ(A)PBC = ĤOBC − t T̂ (A)PBC
L,1 if and only

if it is a zero-energy eigenstate of T̂ (A)PBC
L,1 . When M = 0 or L,

it is obvious that |�L
M〉 is a zero-energy eigenstate of T̂ (A)PBC

L,1 .
In the following, we consider the case of M = 1, . . . , L − 1.

For notational simplicity, we write |�L(α)〉 as

|�L(α)〉 =
{

L∏
x=1

Â†
x (α)

}
|0〉, (A1)

where

Â†
x (α) := 1 + αeiπxη̂†

x . (A2)
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When N is even, each Â†
x (α) commutes with each other. Thus

we have

T̂ PBC
L,1 |�L(α)〉 = T̂ PBC

L,1

{
L∏

x=1

Â†
x (α)

}
|0〉

= T̂ PBC
L,1 Â†

L(α)Â†
1(α)

{
L−1∏
x=2

Â†
x (α)

}
|0〉

= [
T̂ PBC

L,1 , Â†
L(α)Â†

1(α)
]{L−1∏

x=2

Â†
x (α)

}
|0〉. (A3)

Note that T̂ PBC
L,1 = T̂L,1. Using the commutation relation (10),[

T̂ PBC
L,1 , Â†

L(α)Â†
1(α)

]
W

=
{

0 L : even,

−2α
∑N

σ=1[ĉ†
L,σ ĉ

†
1,σ + ĉ†

1,σ ĉ
†
L,σ ]W L : odd.

(A4)

Finally, when N is even, T̂ APBC
L,1 = −T̂ PBC

L,1 . Therefore, if L

is even, |�L
M〉 is a zero-energy eigenstate of T̂ (A)PBC

L,1 for all
M = 1, . . . , L − 1. On the other hand, if L is odd, |�L

M〉 is
not an eigenstate of T̂ (A)PBC

L,1 for any M = 1, . . . , L − 1. Here

we used that T̂ (A)PBC
L,1 conserves the particle number. When N

is odd, we consider the following states (see Ref. [60] for a
similar argument).

|�L
+(α)〉 := |�L(α)〉 + |�L(−α)〉

= 2
∑

M: even

αM
∣∣�L

M

〉
, (A5)

∣∣�L
−(α)

〉
:= |�L(α)〉 − |�L(−α)〉
= 2

∑
M: odd

αM
∣∣�L

M

〉
. (A6)

Since

|�L(±α)〉 =
{

L∏
x=1

Â†
x (±α)

}
|0〉 =

{
L−1∏
x=1

Â†
x (±α)

}
Â†

L(±α)|0〉

=
{

L−1∏
x=1

Â†
x (±α)

}
|0〉 ± αeiπLη̂

†
L

{
L−1∏
x=1

Â†
x (∓α)

}
|0〉,

(A7)

one finds

|�L
±(α)〉 = |�L(α)〉 ± |�L(−α)〉

= Â†
L(∓α)

L−1∏
x=1

Â†
x (α)|0〉 ± Â†

L(±α)
L−1∏
x=1

Â†
x (−α)|0〉

= Â†
L(∓α)Â†

1(α)
L−1∏
x=2

Â†
x (α)|0〉

± Â†
L(±α)Â†

1(−α)
L−1∏
x=2

Â†
x (−α)|0〉. (A8)

Since T̂ (A)PBC
L,1 act nontrivially only on the sites x = L and 1,

they commute with
∏L−1

x=2 Â†
x (±α). Finally, using the commu-

tation relation (10), we have

[
T̂ PBC

L,1 , Â†
L(±eiπLα)Â†

1(±α)
]
W = 0, (A9)

[
T̂ APBC

L,1 , Â†
L(±eiπLα)Â†

1(∓α)
]
W = 0. (A10)

Thus |�L
+(−)(α)〉 is a zero-energy eigenstate of T̂ PBC

L,1 when L
is odd (even) and of T̂ APBC

L,1 when L is even (odd). Otherwise

it is not an eigenstate of T̂ (A)PBC
L,1 because

[
T̂ PBC

L,1 , Â†
L(±eiπLα)Â†

1(∓α)
]
W

= ±2α

N∑
σ=1

[ĉ†
L,σ ĉ

†
1,σ + ĉ†

1,σ ĉ
†
L,σ ]W, (A11)

[
T̂ APBC

L,1 , Â†
L(±eiπLα)Â†

1(±α)
]
W

= ±2α

N∑
σ=1

[ĉ†
L,σ ĉ

†
1,σ − ĉ†

1,σ ĉ
†
L,σ ]W . (A12)

Therefore, we have Table I.

APPENDIX B: EVALUATION OF THE SINGLET CORRELATION FUNCTION AT EDGES WHEN N IS ODD

We evaluate the singlet correlation (17) when r is small. When r � M, L − M, one finds jmin = max{0, M − r} = M − r and
jmax = min{L − r − 1, M − 1} = M − 1. Thus we have

∣∣〈η̂†
x η̂y〉L

M

∣∣ ×
(

L

M

)
=

∣∣∣∣∣
M−1∑

j=M−r

(
L − r − 1

j

)
(−1) j

(
r − 1

M − j − 1

)∣∣∣∣∣
=

∣∣∣∣∣
r−1∑
j=0

(
L − r − 1

M − r + j

)
(−1) j

(
r − 1

j

)∣∣∣∣∣. (B1)

Now we consider a sequence of functions that satisfies the following recurrence relation:

a1(r, l ) =
(

L − r − 1

M − r + l

)
, ak+1(r, l ) = ak (r, l + 1) − ak (r, l ) (k, r = 1, 2, . . . , l = 0, 1, . . .). (B2)
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Then, the last line of (B1) is written as |ar (r, 0)|. We consider the thermodynamic limit L, M → ∞ such that k, r, l , and the
filling ν = M/L are kept constant. In this limit, we see below that ak (r, l ) is expressed as follows:

ak (r, l ) = [ν(1 − ν)(1 − 2ν)k−1 + O(1/L)]

(
L − r + k

M + l − r + k

)
. (B3)

We prove Eq. (B3) by induction.
(i) When k = 1,

a1(r, l ) =
(

L − r − 1

M − r + l

)
=

(L−r−1
M−r+l

)
( L−r+1

M+l−r+1

)(
L − r + 1

M + l − r + 1

)
= (M − r + l )(L − M − l )

(L − r + 1)(L − r)

(
L − r + 1

M + l − r + 1

)
. (B4)

Since M/L = ν, l/L = O(1/L), and r/L = O(1/L), we have

a1(r, l ) = [ν(1 − ν) + O(1/L)]

(
L − r + 1

M + l − r + 1

)
. (B5)

So we obtain Eq. (B3) when k = 1.
(ii) We assume (B3) when k = k′. Then, from (B2),

ak′+1(r, l ) = ak′ (r, l + 1) − ak′ (r, l )

= [ν(1 − ν)(1 − 2ν)k′−1 + O(1/L)]

[(
L − r + k′

M + l − r + k′ + 1

)
−

(
L − r + k′

M + l − r + k′

)]

= [ν(1 − ν)(1 − 2ν)k′−1 + O(1/L)]

[( L−r+k′
M+l−r+k′+1

) − ( L−r+k′
M+l−r+k′

)]
( L−r+k′+1

M+l−r+k′+1

) (
L − r + k′ + 1

M + l − r + k′ + 1

)

= [ν(1 − ν)(1 − 2ν)k′−1 + O(1/L)]

[
(L − M − l ) − (M + l − r + k′ + 1)

L − r + k′ + 1

](
L − r + k′ + 1

M + l − r + k′ + 1

)
. (B6)

When k′/L, l/L, r/L = O(1/L), we have

ak′+1(r, l ) = [ν(1 − ν)(1 − 2ν)k′−1 + O(1/L)][(1 − 2ν) + O(1/L)]

(
L − r + k′ + 1

M + l − r + k′ + 1

)

= [ν(1 − ν)(1 − 2ν)k′ + O(1/L)]

(
L − r + k′ + 1

M + l − r + k′ + 1

)
. (B7)

Thus we have Eq. (B3) when k = k′ + 1.
From (i) and (ii), we have (B3) for all k (� L). Therefore, when r � L, we obtain

∣∣〈η̂†
x η̂y〉L

M

∣∣ =
∣∣∣∣∣ar (r, 0)(L

M

)
∣∣∣∣∣ = ν(1 − ν)|1 − 2ν|r−1 + O(1/L). (B8)

APPENDIX C: CALCULATION OF THE SINGLET
CORRELATION FUNCTION USING A SPIN CHAIN

We map |�L
M〉 to a state on a spin chain using (28). First,

|�L(α)〉 is mapped to

|�L(α)spin〉 :=
L⊗

j=1

(|↓〉 j + α|↑〉 j ). (C1)

Thus |�L
M〉 is mapped to a ferromagnetic state |L/2, M/2〉

with Ŝ
2
tot|L/2, M/2〉 = L/2(L/2 + 1)|L/2, M/2〉 and

Ŝz
tot|L/2, M/2〉 = M/2|L/2, M/2〉. The operator Pη̂†

x η̂yP
is mapped to

(−1)x+yŜ+
x Ŝ−

y when N is even,

Ŝ+
x eiπ

∑y−1
j=x (Ŝz

j− 1
2 )Ŝ−

y when N is odd.
(C2)

When N is even, the expectation value of Ŝ+
x Ŝ−

y does not
depend on x and y. When N is odd, due to the nonlocal term

eiπ
∑y−1

j=x (Ŝz
j− 1

2 ), the singlet correlation function decays when
r = |x − y| increases. However, if Ŝz

tot is fixed to M/2, we have

eiπ
∑y−1

j=x (Ŝz
j− 1

2 )|L/2, M/2〉
= eiπ[( M

2 − L
2 )−∑L

j=y (Ŝz
j− 1

2 )− ∑x−1
j=1 (Ŝz

j− 1
2 )]|L/2, M/2〉. (C3)

Therefore, if r = |x − y| 	 L, this operator is written as a
product of spin operators defined on a few sites around the
edges, as shown in Fig. 4. In particular, when x = 1 and y = L,

Ŝ+
1 eiπ

∑L−1
j=1 (Ŝz

j− 1
2 )Ŝ−

L |L/2, M/2〉
= −eiπ( M−L

2 )Ŝ+
1 Ŝ−

L |L/2, M/2〉. (C4)

Therefore, the correlation between two edges 1, L does not de-
cay at any filling 0 < ν = M/L < 1. This is an interpretation
of the revival of the singlet correlation function when r 	 L.
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FIG. 4. The singlet correlation function in the language of spin
operators is defined by a nonlocal operator when N is odd. However,
when Ŝz

tot is fixed and r = |x − y| 	 0 or L, it can be calculated by
local operators defined around the two edges.

APPENDIX D: DERIVATION OF EQS. (18) and (19)

Here we derive Eqs. (18) and (19). From (C1),

〈�L(α)|�L(α)〉 = 〈�L(α)spin|�L(α)spin〉 = (1 + α2)L.

(D1)
Using (C1), (C2), Ŝ+

j (|↓〉 j + α|↑〉 j ) = |↑〉 j , Ŝ−
j (|↓〉 j +

α|↑〉 j )=α|↓〉 j , and eiπ (Ŝz
j− 1

2 )(|↓〉 j + α|↑〉 j )=−|↓〉 j + α|↑〉 j ,
we have

〈�L(α)|η̂†
x η̂y|�L(α)〉 = 〈�L(α)spin|(−1)x+yŜ+

x Ŝ−
y |�L(α)spin〉

= (−1)x+yα2(1 + α2)L−2 (D2)

for N even and

〈�L(α)|η̂†
x η̂y|�L(α)〉

= 〈�L(α)spin|Ŝ+
x eiπ

∑y−1
j=x (Ŝz

j− 1
2 )Ŝ−

y |�L(α)spin〉
= (−1)x+yα2(1 + α2)L−r−1(1 − α2)r−1 (D3)

for N odd.

APPENDIX E: SU(3) SYMMETRIC HAMILTONIAN
WHERE η-PAIRING AND η-CLUSTERING

EIGENSTATES COEXIST

When N = 3, three-body η-clustering states are eigenstates
of ĤOBC, but two-body η-pairing states are not. Here we con-
struct a model in which these two kinds of states are exact
energy eigenstates. We consider a chain of three-component
fermions with L lattice sites, and assume that L is even.
Let us consider the following Hamiltonian with the periodic
boundary conditions:

Ĥ (3) = −t
L∑

x=1

(
T̂x,x+1 + 9

2
V̂x,x+1

)
+ U

L∑
x=1

n̂x(n̂x − 3),

(E1)

where t ∈ R is the hopping amplitude and U ∈ R is the
strength of interaction. As we have seen in Remark 1, the
η-clustering states |�L

M〉 are exact eigenstates of the Hamil-
tonian −t

∑L
x=1 T̂x,x+1 + U

∑L
x=1 n̂x(n̂x − 3) when M is odd.

The states |�L
M〉 are also the ground states of the Hamiltonian∑L

x=1 V̂x,x+1. We have seen this in Sec. IV in the case of open
boundary conditions, and the extension to the periodic case
is straightforward. Therefore, the η-clustering states |�L

M〉
are exact eigenstates of the Hamiltonian Ĥ (3) when M is
odd. Next, we see that two-body η-pairing states are also
eigenstates of the Hamiltonian. First, we define two-body

η-operators as

(η̂σ,τ )† =
L∑

x=1

eiπxĉ†
x,σ ĉ†

x,τ . (E2)

Note that (η̂τ,σ )† = −(η̂σ,τ )† and hence (η̂σ,σ )† = 0. Then,
we define generalized η-pairing states [61] as

|ψ (M1,2, M2,3, M3,1)〉
= {(η̂1,2)†}M1,2{(η̂2,3)†}M2,3{(η̂3,1)†}M3,1 |0〉. (E3)

Here, M1,2, M2,3, and M3,1 are non-negative integers that sat-
isfy 0 � M1,2 + M2,3 + M3,1 � L. In Ref. [62], it is proven
that |ψ (M1,2, M2,3, M3,1)〉 are eigenstates of the SU(3) Hub-
bard model. To see that |ψ (M1,2, M2,3, M3,1)〉 are eigenstates
of H (3), we first consider the case where M2,3 = M3,1 = 0.
The Hamiltonian H (3), when restricted to the subspace where
there are no fermions with σ = 3, behaves as if it were

Ĥ (3)|σ=1,2 (E4)

= −t
L∑

x=1

2∑
σ=1

(ĉ†
x,σ ĉx+1,σ + H.c.) (E5)

+U
L∑

x=1

n̂x(n̂x − 2) (E6)

− 2t
L∑

x=1

{
1

2
ĉ

†
x,3ĉx+1,3 + H.c.)

− 1

4
n̂xn̂x+1 + 1

4
(n̂x + n̂x+1)

}
(E7)

+
( t

2
− U

) L∑
x=1

n̂x. (E8)

Here we used the fact that the three-body hopping term
in Vx,x+1 vanishes in this subspace. In the subspace,
|ψ (M1,2, 0, 0)〉 can be seen as ordinary η-pairing states.
Thus |ψ (M1,2, 0, 0)〉 is an eigenstate of (E5) and (E6),
which is the SU(2) Hubbard model [12]. The state is an
eigenstate of the term (E7), because this term is propor-
tional to (26) with N = 2 if we replace ĉ

†
x,3 (ĉx,3) with

η̂†
x (η̂x ). Finally, we see that |ψ (M1,2, 0, 0)〉 is an eigenstate

of (E8), because (E8) is constant if the number of particle is
fixed. Therefore, |ψ (M1,2, 0, 0)〉 is an eigenstate of H (3) for
all M1,2.

We now move on to the case where M2,3 or M3,1 is nonzero.
To this end, we introduce the operators F̂ σ,τ = ∑L

x=1 ĉ†
x,σ ĉx,τ .

Here, F̂ σ,σ is the total number operator of fermions with
flavor σ , while F̂ σ,τ (σ �= τ ) are flavor-raising and lowering
operators. Since F̂ σ,τ operators commute with H (3), if a state
|φ〉 is an eigenstate of H (3), F̂ σ,τ |φ〉 is also an eigenstate of
H (3). By using the commutation relations

[(η̂σ,τ )†, F̂μ,ν] = δσ,ν (η̂τ,μ)† − δτ,ν (η̂σ,μ)†, (E9)

[(η̂σ,τ )†, (η̂μ,ν )†] = 0, (E10)
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one finds

F̂ 3,1|ψ (M1,2, M2,3, M3,1)〉
= −M1,2|ψ (M1,2 − 1, M2,3 + 1, M3,1)〉 (E11)

and

F̂ 3,2|ψ (M1,2, M2,3, M3,1)〉
= −M1,2|ψ (M1,2 − 1, M2,3, M3,1 + 1)〉. (E12)

Thus we see that

|ψ (M1,2, M2,3, M3,1)〉
= c(M1,2, M2,3, M3,1)(F̂ 3,2)M3,1 (F̂ 3,1)M2,3

× |ψ (M1,2 + M2,3 + M3,1, 0, 0)〉, (E13)

where

c(M1,2, M2,3, M3,1) = (−1)M2,3+M3,1 M1,2!

(M1,2 + M2,3 + M3,1)!
. (E14)

Since |ψ (M1,2 + M2,3 + M3,1, 0, 0)〉 is an eigenstate of H (3)

as shown before, |ψ (M1,2, M2,3, M3,1)〉 is an eigenstate of H (3)

for all M1,2, M2,3, and M3,1.
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