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Mechanisms of in-plane magnetic anisotropy in superconducting NbSe2
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We present a unifying picture of the magnetic in-plane anisotropies of two-dimensional superconductors based
on transition metal dichalcogenides. The symmetry considerations are first applied to constrain the form of
the conductivity tensor. We hence conclude that the twofold periodicity of transport distinct from the planar
Hall-related contributions requires a tensor perturbation. At the same time, the sixfold periodic variation of
the critical field results from the Rashba spin-orbit coupling on a hexagonal lattice. We have considered the
effect of a weak tensor perturbation on the critical field, gap function, and magnetoconductivity. The latter is
studied using the time-dependent Ginzburg-Landau phenomenology. The common origin of the π periodicity
in transport and thermodynamics properties is identified. The scheme constructed here is applied to describe
the existing theoretical scenarios from a unified point of view. This allows us to single out the differences and
similarities between the suggested approaches.
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I. INTRODUCTION

The superconductivity in few-layer superconducting tran-
sition metal dichalcogenides (TMDs) has been the focus of
research for the last few years [1–10]. The experimental
work has been initially motivated by the progress in fabri-
cation techniques resulting in the ability to exfoliate one to
several stacked atomic layers on a substrate. Surprisingly,
these systems turned out to be superconducting with critical
temperatures of the same order of magnitude as in the bulk
counterparts.

Samples with an odd number of layers including monolay-
ers such as exfoliated NbSe2 and gated MoS2 lack an inversion
center; see Fig. 1. This has two major consequences. First,
the strong atomic spin-orbit (SO) coupling due to a transition
metal splits electronic bands with the spin splitting larger than
the superconducting gap by a few orders of magnitude [11].

The strong SO interaction manifests itself in the strongly
enhanced in-plane critical field Bc, far above the usual Pauli
limit [1,3,4,6–8]. Thanks to the horizontal, in-plane mirror
symmetry σh, the SO interaction polarizes electrons out of
plane and is referred to as Ising SO coupling. The supercon-
ductivity is protected in the Ising superconductor because in
the presence of strong Ising SO coupling the in-plane spin
susceptibility remains close to the Pauli susceptibility of a
normal state [12].

The second consequence of the lack of an inversion center
is the coexistence of the triplet superconductivity with the
conventional s-wave singlet pairing [13–15]. In the case of
Ising SO coupling the electrons forming the triplet states
have antiparallel spins. Such a triplet order parameter (OP),
however, decouples from the leading singlet OP when the SO
splitting is much smaller than the Fermi energy EF [16]. The
parallel triplet correlations induced by the in-plane field [17]

are argued to be detectable as “mirage” gaps in the tunneling
density of states [18].

Importantly, spin triplet correlations and SO coupling make
it possible to manipulate the symmetry of the wave function
of the Cooper pairs by external symmetry-breaking pertur-
bations. For instance, in TMD monolayers with prismatic
coordination (Fig. 1) the parallel spin triplets are induced by
the in-plane field [17,19]. Such a triplet order parameter is
shown to affect the current-phase relation of a Josephson junc-
tion with the exchange interaction due to the ferromagnetic
contacts [20]. The Josephson current in this case depends on
the angle between the magnetizations in the two ferromagnets.
Experimentally, the triplet OP might be related to the unusual
field dependence of the gap at very high magnetic fields [21].

As another example, the transformation of the OP by the
externally applied magnetic field has been recently observed
in the heavy-fermion compound CeRh2As2 [22]. In this case
the singlet pair density wave OP is favored by the magnetic
field [23]. While the magnetic field is pair breaking for the
regular singlet OP, unconventional OPs can better adjust to it.

The unconventional OPs are rare, and it is interesting to
explore the possibility of inducing such an OP by exter-
nally applied perturbations. The reduced symmetry of the
OP presumably causes anisotropy in the properties of a
superconductor. For this reason, such an anisotropy may po-
tentially indicate the unconventional symmetry of the OP.
Very recently, the anisotropy has been reported in transport
measurements in few-layer and monolayer NbSe2 in the pres-
ence of an in-plane magnetic field B as a function of the field
orientation [9,10]. Indeed, the suggested interpretations build
on a two-component spin-triplet OP either induced by external
perturbation(s) or spontaneously formed, respectively.

One set of measurements studies the magnetic anisotropy
in a few-layer NbSe2 device sandwiched between the two
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FIG. 1. Crystal structure of a NbSe2 monolayer with bigger
(purple) and smaller (yellow) circles denoting Nb and Se ions, re-
spectively. (a) Top view of the crystal. a1, a2 are primitive vectors of
the triangular Bravais lattice. x, y, z are Cartesian axes. The external
field B lies in the xy plane and forms the angle θB with the x axis.
(b) Side view of the crystal.

magnetic electrodes [9]. This experiment reports the depen-
dence of magnetoresistance on the angle θB formed by the
in-plane field B and a fixed direction; see Fig. 1. In the same
setup, the critical field and the superconducting gap inferred
from the tunneling data are measured. For all three observ-
ables the data are π periodic in θB. This is in contrast to
the sixfold symmetry expected from the underlying hexago-
nal crystallographic structure. The π -periodic magnetoresis-
tance is mostly observed in the transition region noticeably
broadened by fluctuations and centered at Bc. The π peri-
odicity of the gap function persists in the superconducting
phase.

In another set of experiments [10], the critical field
anisotropy is measured in NbSe2 monolayers on a substrate.
In this case, the critical field for the onset of the supercon-
ductivity exhibits a sixfold, π/3 periodicity. As the field is
lowered the fully developed superconducting state sets in at
the field that exhibits a π periodicity. In this case the data
have been interpreted in terms of two superconducting tran-
sitions. The lower critical field has been argued to mark the
nematic phase transition breaking the C3 rotational symmetry
spontaneously.

Recently, a scenario of π periodicity based on a conven-
tional pairing has been suggested [24]. This approach was
originally motivated by the transport measurements in the
tunnel junctions with the tunnel barrier made of an easy-axis
ferromagnet separating the two Ising superconductors [25].
The magnetic hysteresis is tied to the superconductivity with
the onset slightly below the critical temperature Tc. This has
been explained in terms of a different pair-breaking effi-
ciency of the magnetic impurities pointing in plane and out
of plane, respectively [26]. The anisotropy of the magnetic
scatterers stabilized by the extended defects translates into the
π -periodic critical field.

In this paper we construct a symmetry-based phenomenol-
ogy that is general enough to capture the field dependence of
transport and thermodynamic properties. The goal of such a
description is to contrast different scenarios of field anisotropy
as well as to clarify their commonalities.

We assume that the leading superconducting instability
is toward a singlet s-wave symmetric OP ψ . This does not
exclude other subdominant pairing channels. Moreover, at
some point in the present analysis we specifically address
them. The second assumption is that the twofold symmetry
is caused by the tensor perturbation ε̂. In fact, we show that
the tensor perturbation is necessary for the π -periodic trace of
the conductivity tensor.

The ε̂ tensor is assumed to be symmetric and, without loss
of generality, traceless. It appears as strain in the scenario of
Ref. [9] and as the scattering anisotropy off magnetic impuri-
ties in Ref. [24]. This OP can also form spontaneously at the
nematic transition as in Ref. [10]. Depending on the particular
scenario, ε̂ can have a different physical realization. For short-
ness, we will refer to it as strain. To avoid confusion, we will
state the meaning of ε̂ explicitly whenever appropriate.

The main ingredient of our approach is the coupling be-
tween the strain and the in-plane field. To the leading order
in B, a finite strain changes the free energy by an amount
�F ∝ Tr[(BB)ε̂], where (BB) denotes the dyadic tensor, with
components (BB)αβ = BαBβ . Such a term modifies the tem-
perature dependence of the critical field, Bc(T ), and makes it
twofold anisotropic. We show that the same contribution to
the free energy explains the anisotropic transport and ther-
modynamic properties. At the same time it places certain
restrictions on the microscopic mechanisms underlying this
anisotropy.

The paper is organized as follows. The findings that are
independent of any particular scenario and based solely on
symmetry considerations are summarized in Sec. II. They
include the discussion of π periodicity of transport and ther-
modynamic properties. In Sec. III we formulate some of
the existing microscopic mechanisms of the field anisotropy
within the general phenomenology introduced in Sec. II. In
the concluding section, Sec. IV, we discuss our results in
light of the existing theories of field- and/or strain-induced
anisotropy.

II. SYMMETRY CONSIDERATIONS

The main goal of this paper is to construct a phenomenol-
ogy that allows us to test different scenarios of the magnetic
anisotropy. Specifically, the discussion of the conductivity
tensor below allows us to identify the key scalar part of the
free energy that gives rise to the twofold anisotropy. The
numerical value of the specific coefficients responsible for
the anisotropy may be fixed based on one measurement of,
say, the critical field. The phenomenology then allows us to
make a specific prediction regarding the anisotropy in other
thermodynamic and transport properties.

We start with a discussion of the conductivity tensor di-
rectly accessible via the transport measurements. To clarify
the restrictions imposed by symmetry, it is useful to extend
the D3h point symmetry group of a TMD monolayer to a D∞h

symmetry group of a finite circular cylinder. In systems with
broken mirror symmetry the extended continuous symmetry
we analyze is that of the right cone, C∞v . Having discussed the
systems with artificially extended continuous symmetries, we
separately address the results depending on the discreteness of
the symmetry group.
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A. General form of the conductivity tensor

Consider a two-dimensional system in the presence of the
in-plane field. As stated in the Introduction we subject the
system to tensor perturbation ε̂αβ , α, β = x, y. We stress again
that although we refer to ε̂ as a strain for brevity, the only im-
portant assumption here is that it is a symmetric and traceless
tensor.

The most general form of the in-plane conductivity tensor
consistent with the Onsager relations, to linear order in strain
and to all orders in B, is expressed as a sum of three contribu-
tions,

σ̂ = 1{σd + σBε Tr[(BB)ε̂]} + σεε̂

+ σp[(BB) − 1 Tr(BB)/2], (1)

where 1αβ = δαβ is a unit tensor. Equation (1) follows from
the general theorems on invariants of the rotation group [27].
Alternatively, it can be obtained by the method of invariants
for the construction of material tensors [28]. All coefficients,
σd , σBε, σε, and σp, are some function of B2.

The first term of Eq. (1) represents the diagonal part of
the conductivity tensor modified by a combined action of the
magnetic field and strain. The second term is a modification
of the conductivity tensor due to strain alone.

The off-diagonal part of the the last term, ∝ σp, in Eq. (1)
describes the dissipative planar Hall effect [29,30]. We refer
to this whole term as a planar Hall contribution for shortness.
This term itself adds a π periodicity in θB to all components
of the conductivity tensor. Therefore care is needed to separate
this π periodicity from that of Tr σ̂ . The latter appears to the
first order in ε̂, while the former exists also at ε̂ = 0. Here, we
predominantly focus on the π periodicity of Tr σ̂ . We describe
how the planar Hall effect may arise from the field-induced
anisotropy in Appendix A.

The second consequence of Eq. (1) is that in scenarios
where the s-wave symmetry of the dominant pairing channel
is not broken spontaneously, the π periodicity sets in due to
the combined action of the strain and the field. In Eq. (1) it
is described by the term proportional to σBε which has a form
fixed by symmetry alone regardless of the microscopic details.

In the case of a freestanding or on-substrate monolayer
with the D3h or C3v symmetries, respectively, the diagonal
part of the conductivity has an angular dependence only at
the sixth order in the field. In both instances of the hexagonal
symmetry, this is captured by the conductivity tensor written
up to sixth order in the field and in the absence of other
perturbations as follows:

σ̂ = 1[σ3 + σ0Re(B6
+)] + σ2

[
Re(B2

+) Im(B2
+)

Im(B2
+) −Re(B2

+)

]

+ σ1

[
Re(B4

−) Im(B4
−)

Im(B4
−) −Re(B4

−)

]
, (2)

where σn(B2) are polynomials of degree n in B2, B± = Bx ±
iBy, and we have set the yz plane as the vertical mirror sym-
metry plane (Fig. 1).

The terms proportional to σ3 and σ2 are the same in form
as terms proportional to σd and σp in Eq. (1), respectively. The
discreteness of the symmetry group allows the two additional
terms in (2). The term proportional to σ1 is similar in structure

to the planar Hall contribution present in both Eqs. (1) and (2)
and has a π/2 periodicity. We conclude from comparison of
Eqs. (1) and (2) that (i) the sixfold periodicity of σ̂ requires the
discrete hexagonal symmetry and (ii) the twofold periodicity
in Tr σ̂ requires tensorlike perturbation. These conclusions
hold generally provided the s-wave symmetry of the order
parameter is not broken spontaneously.

B. Thermodynamic properties

We describe the thermodynamic properties via the Landau
free energy functional F [ψ]. Here, ψ (x) is the spin singlet,
s-wave symmetry OP assumed to dominate other pairing
channels. Keeping in mind the subsequent applications, we
allow, for the spatial fluctuations of the OP described by the
Fourier components, ψq = S−1

∫
d2xe−iqxψ (x) with nonzero

q. Here, S stands for the area of a two-dimensional sys-
tem. For the present purposes we expand F [ψ] up to fourth
order in ψ , F [ψ] = S

∑
q Eq|ψq|2 + c4

∫
d2x|ψ (x)|4. Here,

the fourth-order coefficient c4 is taken as a constant which
only weakly depends on strain and the applied fields. Hence
we focus on the dispersion relation of the superconducting
fluctuations Eq.

In the rotation invariant systems with a continuous symme-
try group D∞h we have

ν−1
0 Eq =ε + βB2 + q2ξ 2 +(B·q)2ξ 2

B +ν−1
0 E ε

q , (3)

where ν0 is the density of states per spin species, ε = (T −
Tc)/Tc, Tc is a zero-field and zero-strain critical temperature, ξ
is a zero-field coherence length, and β defines the zero-strain
critical field Bc0 = √−ε/β. In writing Eq. (3) we normalize
the OP ψ such that it coincides with the gap in the BCS
limit. The fourth term of Eq. (3) describes the field-induced
anisotropy of the spectrum of fluctuations discussed in Ap-
pendix A, and the last term is the correction to the spectrum
of fluctuations due to strain,

ν−1
0 E ε

q = αBεTr[(BB)ε̂] + βεTr[(qq)ε̂]

+ βBεTr[(BB)ε̂]
[
B2q2ξ 2

Bε + (B·q)2ξ ′2
Bε

]
. (4)

Here, the first term yields the π -periodic modulation of the
critical field, and the second term describes the strain-induced
anisotropy of superconducting fluctuations. The last term de-
scribes the π -periodic modulation of the dispersion. As the
strain perturbation is assumed to be weak, the terms of second
order in momentum in the dispersion play a less significant
role, and we omit them from the subsequent analysis.

Equations (3) and (4) hold in the D∞h symmetric system
with inversion symmetry. In the system with C∞v symmetry
lacking an inversion center the dispersion relation also has
Lifshitz invariants linear in the momentum q [11]. These terms
are crucial for a few effects predicted for the noncentrosym-
metric superconductors such as onset of helical state [31] and
magnetoelectric effect [32,33]. Here, we assume that the Tc

enhancement due to the magnetoelectric effect is weak enough
such that the field remains pair breaking. Apart from the shift
in the momentum the fluctuation spectrum is qualitatively the
same for both continuous symmetries. For this reason, Lifshitz
invariants present in C∞v symmetric systems do not show up
in the present calculation, and we omit them for clarity.
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The superconducting OP temperature and field depen-
dence, ψ (B, T ), as well as the critical field temperature
dependence, Bc(T ), easily follow from Eqs. (3) and (4) evalu-
ated at q = 0. The OP reads

ψ (T, B) =
√

−c−1
4 (ε + βB2 + αBε Tr[(BB)ε̂]), (5)

where the previously introduced c4 coefficient is related to

the zero-field OP via ψ (T < Tc, B = 0) =
√

−c−1
4 ε. The OP

given by Eq. (5) is shown in Fig. 2(b) for T < Tc and three
different choices of the ε̂ tensor. Figure 2(b) demonstrates that
the amplitude and phase of the OP angular dependence are

controlled by
√

ε2
xx + ε2

xy, and εxx/εxy, respectively.

The critical field is obtained from the condition of vanish-
ing of the OP, ψ (T < Tc, Bc) = 0. This gives the relationship

ε + βB2
c + αBεTr[(BcBc)ε̂] = 0, (6)

which can be easily solved,

Bc(θB)

Bc0
=

[
1 − αBε

B2
c0

ε
(εxx cos 2θB + εxy sin 2θB)

]−1/2

.

(7)

The critical field shown in Fig. 2(b) exhibits angular de-
pendence that is qualitatively similar to that of the OP. In both
Eqs. (5) and (7) the term ∝ αBε gives rise to the π -periodic
oscillations with identical dependence of the oscillation phase
on the strain orientation.

C. Fluctuation-mediated transport

The π -periodic magnetoresistance has been reported at or
near the superconducting-to-normal transition driven by an
in-plane field. It is therefore rather plausible to relate this
observation to the onset of critical fluctuations.

Here, we present a phenomenological treatment of the
transport at criticality based on the time-dependent Ginzburg-
Landau formulation. Within this formulation we use the
standard expression for the Aslamazov-Larkin fluctuation cor-
rection to the conductivity [34],

σ AL
αβ = e2 πν0

4Tc
T

∫
d2q

(2π )2

vα
q v

β
q

E3
q

, (8)

where vα
q = ∂Eq/∂qα is the group velocity of the supercon-

ducting fluctuations, e is the electron charge, and here and
below we set kB, h̄ = 1. We have checked explicitly that the
fluctuation correction captured by Eq. (8) complies with the
symmetry requirements expressed by Eq. (1) provided the
spectrum of fluctuations takes the form given by Eqs. (3)
and (4).

To see how the critical field anisotropy is related to the θB

dependence of conductivity, it is instructive to consider the
spectrum of fluctuations,

ν−1
0 Eq ≈ ε + βB2 + q2ξ 2 + αBεTr[(BB)ε̂], (9)

which depends only on the magnitude of the momentum q and
yet is anisotropic with respect to the field, thanks to the last
term of Eq. (9). With the spectrum (9), the fluctuation correc-
tion (8) can be written as σ AL

αβ = δαβTe2/16[T − Tc(B, θB)],

FIG. 2. (a) Solid black line shows the critical field without
strain Bc0. Dashed red lines show the maximal and minimal criti-

cal field Bc [Eq. (7)] attained as θB varies for |αBε|
√

ε2
xx + ε2

xy/β =
0.2. The field is in units of Bc0(T = 0.75Tc ). (b) Left axis (blue):
the OP ψ (θB ) [Eq. (5)] for B/Bc0 = 0.8 [dotted blue line in
(a)] normalized to ψT 0 = ψ (B = 0). Right axis (red): Bc(θB )/Bc0

[Eq. (7)]. Here, αBε (εxx, εxy )/β = (0, 0), (0.2, 0), (0, 0.2) for the
solid, dashed, and dotted lines, respectively. All the curves are
T independent. (c) σ AL

xx (θB)/e2 per Eq. (10) for B = 1.35Bc0 and
T = 0.75Tc [black dot in (a)] for αBε (εxx, εxy )/β = (0, 0), (0.2, 0),
(0, 0.2) shown by solid, dashed, and dotted lines, respectively.

where the critical temperature renormalized by field and strain
Tc(B, θB) = Tc − βB2 − αBεTr[(BB)ε̂].

Experimentally, it is often more convenient to control the
field B at fixed T . For T < Tc and B > Bc we can rewrite the
above result using the definition of Bc0 introduced earlier,

σ AL
αβ = δαβ

e2

16

T

Tc

[(
1 − T

Tc

)(
B2

B2
c0

− 1

)
+ αBεTr[(BB)ε̂]

]−1

.

(10)
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The conductivity correction given by Eq. (10) is shown
in Fig. 2(c) for the set of parameters used in Fig. 2(b). The
result (10) suggests that the π -periodic θB dependence in
the critical field, gap, and magnetoresistance have the same
origin, expressed as a single term, ∝ αBε in the free energy. In
fact, Figs. 2(b) and 2(c) show that the maxima in Bc, ψ , and
fluctuation conductivity all occur at the same field orientation.

The approximate spectrum of fluctuations, Eq. (9), is
isotropic with respect to momentum direction. As a result, the
conductivity tensor (10) satisfies σ AL

xx = σ AL
yy and σ AL

xy = 0. At
finite field and/or strain the fluctuation spectrum is allowed to
be anisotropic in momentum. The microscopic origin of such
an anisotropy requires a separate consideration that is beyond
the scope of this paper. Instead, in Appendix A we show how
the fluctuation spectrum anisotropy results in a nondiagonal
conductivity tensor in the form of the planar Hall effect.

III. MICROSCOPIC MODELS OF THE CRITICAL FIELD
ANISOTROPY

Here, we discuss microscopic mechanisms of the in-plane
field anisotropy.

A. Sixfold anisotropy

Before addressing the twofold anisotropy, for complete-
ness we briefly discuss the possible origins of the pronounced
sixfold anisotropy reported in Ref. [10]. It is rather natural
that the SO interaction is necessary to couple Zeeman interac-
tion to the sixfold anisotropy of the lattice. Yet the Ising SO
coupling points out of plane with the in-plane field staying
perpendicular to the spin polarization for all field orientations.

We therefore do not expect the Ising SO taken alone to gener-
ate the angular dependence of the critical field. This, of course,
is in agreement with the direct calculation.

In contrast, Ref. [25] reports clearly different data for the
in-plane and out-of-plane exchange fields. Similarly, for the
purely in-plane field the anisotropy might result from the spin
polarization that can form different angles with the in-plane
field. A well-known SO coupling of this kind is the Rashba
SO coupling. It appears when the horizontal mirror symmetry
σh is broken. In fact, it has been shown in Ref. [35] that
in the presence of the Rashba SO coupling the topological
phase [36] is very sensitive to the direction of the magnetic
field. In particular, the two pairs of nodes present when the
Zeeman splitting exceeds the superconducting gap survive the
Rashba SO only for the field aligned along the �K directions.

Based on these observations we compute the angular de-
pendence of Bc in the presence of Ising and Rashba SO
interaction within a minimal model of a single-band supercon-
ductor with the band structure represented by the Hamiltonian

H0 =
∑
k,s

ξkc†
kscks +

∑
k,ss′

[γk − B] · σss′c†
kscks′ , (11)

where ξk is the energy measured from EF , γk = −γ−k is the
SO coupling term, and c†

ks creates a particle with the momen-
tum k and spin s. We denote by σ = (σ1, σ2, σ3) the vector of
Pauli matrices.

For a specified SO coupling γk, the critical field Bc(T ) is
determined by the solution of the linearized self-consistency
equation [16,37,38]

ln
( T

Tc

)
+ πT

∞∑
n=−∞

[
1

|ωn| −
〈 |ωn|

(
γ2 + ω2

n

)
ω2

n(B2
c + γ 2) + (Bc ·γ )2 + ω4

n

〉
F

]
= 0, (12)

where 〈· · · 〉F stands for the angular averaging over the Fermi
surface, ωn = πT (2n + 1), and Bc = Bc(B/B).

We write γk = γ I
k + γR

k , with the dominant SO coupling
of Ising type γ I

k and much weaker Rashba SO interaction
γR

k . For simplicity, we employ the tight-binding single-band
approximation

γ I
k = γ I ẑ[sin(k · d1) + sin(k · d2) + sin(k · d3)], (13a)

γR
k = γ R

√
3

2
x̂[sin(k · d2) − sin(k · d3)]

+ γ R 1

2
ŷ[sin(k · d2) + sin(k · d3) − 2 sin(k · d1)],

(13b)

where the vectors d i are expressed via the Bravais lat-
tice vectors a1,2 shown in Fig. 1 as d1 = a1, d2 = a2 − a1,
and d3 = −a2. Equations (13a) and (13b) can be obtained
based on the representations of D3h and C3v groups on the
hexagonal lattice, respectively [11]. The critical field obtained
from Eqs. (12), (13a), and (13b) is illustrated in Fig. 3. From
symmetry we expect the sixfold modulation to appear in sixth

order in the field, which would make the effect rather small,
as indeed is apparent from Fig. 3 for the typical choice of
parameters.

The origin of oscillations is deduced from the observation
made in Ref. [35] regarding the stability of the topological
phase. The oscillations arise because the Ising SO coupling
[Eq. (13a)] vanishes along �M. Indeed, for such momenta the
spin splitting is solely due to the Rashba SO [Eq. (13b)]. The
superconductivity k on the �M lines is least protected when
γR

k ‖ B. We stress that the present analysis does not relate
directly to the field-induced topological phase, since the above
calculation is performed in the normal state.

B. Mechanisms of twofold anisotropy

The natural question is whether the existing physically
motivated models conform to the phenomenology presented
thus far. We indeed find this to be correct. In some cases this
is not automatic, and we furnish some restrictions on these
models. We start with the discussion of the models formulated
in terms of the conventional OP.
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FIG. 3. The sixfold oscillations of the critical field Bc in units of
Tc as a function of the field direction θB obtained by solving Eq. (12)
with T = 0.8Tc, γ I = 80Tc, γ R = 4Tc, kFa1 = 2.9. Insets show the
direction of the Rashba SO coupling (R) and the magnitude of the
Ising SO coupling (I) aligned with the z axis in units of γ I shown in
the first Brillouin zone.

1. Anisotropic magnetic impurities

In the recent work in Ref. [24] the scenario of twofold
field anisotropy has been suggested based on the effect of
magnetic defects with an easy axis. This point of view has an
added advantage of explaining the hysteretic behavior tied to
the superconductivity [25] rather naturally. Moreover, it lends
itself to the phenomenology presented above.

Indeed, the isotropic part of the pair-breaking effect of the
field captured by the constant β in Eq. (3) [26],

β = πT
∞∑

n=−∞

�′
m

(
�′2

m + (γ I )2
)

(2�m + |ωn|)2(|ωn|�′
m + (γ I )2)

× 1

[�′
m(2�m + |ωn|) + (γ I )2]

, (14)

where �m is the scattering rate off the magnetic impurities and
�′

m = �m + |ωn|. Here and in what follows, we considered the
Ising SO coupling, Eq. (13a), for the momenta close to the
K points of the Brillouin zone. In this case the SO coupling
takes the form γ (ϕk ) ≈ ẑγ I sgn[cos(3ϕk )]. Although this ap-
proximation applies to K pockets, the results for the � pocket
are qualitatively similar.

What is crucial for us here is that in addition to β we have
αBεε̂ 
= 0 signifying the field anisotropy when the magnetic
impurities have an easy axis. The coefficient of the first term
of Eq. (4) controlling the twofold anisotropy reads

αBεε̂ = πT

( ∞∑
n=−∞

−�m�′2
m

(2�m + |ωn|)2[|ωn|�′
m + (γ I )2]

× 1

[�′
m(2�m + |ωn|) + (γ I )2]

)
ε̂ϕ, (15)

where

ε̂ϕ =
[

cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

]
(16)

contains the dependence of the critical field on the easy axis
direction, specified by the angle ϕ it forms with the x axis.
Equation (16) reflects the transformation property of a second
rank tensor, as the easy axis direction changes. Put simply, it
ensures that the twofold anisotropy enters via the combination
∝ cos[2(θB − ϕ)] which is naturally expected. We have con-
firmed this by a direct calculation as well. We emphasize that
the physically meaningful quantity is the product αBεε̂. In the
presented scenario, ε̂ does not have a meaning of strain. It is
therefore neither possible nor necessary to consider αBε and ε̂

separately in this case.

2. Coupling between the leading singlet and subleading
triplet channels

Following Ref. [9], we now consider the possibility of
the twofold anisotropy arising from the coupling between the
leading s-wave instability and the subleading unconventional
triplet OP(s). Our approach here remains the same. It again
builds upon the observation that the relevant observable is the
critical field.

Consider a two-component triplet order parameter η =
(η1, η2). The free energy including the two OPs can be written
as

F [ψ, η] = ε|ψ |2 + εt (|η1|2 + |η2|2) + c4|ψ |4

+
[
ψ∗

2∑
l=1

C∗
l (B, ε̂)ηl + c.c.

]
, (17)

where εt = (T − Tt )/Tt and Tt < Tc is the critical temperature
of the triplet channel. The free energy in Eq. (17) is minimized
with respect to ηi for ηi = −ψCi(B, ε̂)/εt . Substitution of this
solution into Eq. (17) gives the effective free energy,

F [ψ] =
[
ε − ε−1

t

∑
l

|Cl |2
]
|ψ |2 + c4|ψ |4, (18)

describing the condensation of the singlet OP.
The question at this junction is how the free energy in

Eq. (18) may result in a π -periodic critical field. It can appear
via the specific dependence of the coupling coefficients Cl

on the field and strain. The gap function is a mixture of the
isotropic singlet and anisotropic triplet components. Still, in
the considered scenario the thermodynamic state retains the
symmetry of the underlying lattice. The same is true for the
free energy in Eq. (18). Therefore the π periodicity follows if
the coefficient

∑
l |Cl |2 happens to generate the combination

∝ Tr[(BB)ε̂]. For this to happen, the couplings Cl should
contain two kinds of terms, Cl = CB

l + CεB
l , where CB

l ∝ B
and yet, additionally, CεB

l is linear in both B and ε̂.
To be specific, we consider a D3h symmetric system where

the A′
1 symmetric singlet coexists with E ′′ field-induced par-

allel spin triplets [17]. To the linear order in the field, the
coupling constants in this case are fixed by the symmetry
CB

l ∝ i(ẑ × B)l . To write the symmetry-allowed coupling lin-
ear in both strain and the field, note that the vector ε̂B with
components (ε̂B)l = ∑

l ′ ε̂ll ′Bl ′ belongs to E ′′ as does the B.
Hence Cl = λ1i(ẑ × B)l + λ2i(ẑ × ε̂B)l , where λ1,2 are two
constants. Consulting Eq. (18), we obtain, in the considered
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FIG. 4. (a) The angular dependence of the effective magnetic
field B2

eff , computed from the definition in Eq. (20). The magnitude
of the magnetic field |B| = 7Tc. (b) The angular dependence of the
critical field Bc obtained by solving Eq. (23) for the clean case with
T = 0.5Tc, γ I = 15Tc. In (a) and (b) the results obtained for the
values of λ(εxx, εxy ) = (0, 0), (0.1, 0), (0, 0.1), and (0.1, 0.1)/

√
2

are shown by the thin black, solid blue, dashed red, and dot-dashed
green lines, respectively. All curves are π periodic and have a phase
difference of π/8. Bc and Beff are given in units of Tc.

scenario,

αBε = −2ε−1
t λ1λ2. (19)

The question arises as to the microscopic origin of the cou-
pling proportional to both ε̂ and B. One possible assumption
leading to such a coupling is that the strain renormalizes the
Zeeman interaction such that it becomes

Heff = Beff · σ, Beff = B + λε̂B. (20)

The form of Eq. (20) is fixed by symmetry. This, however,
is insufficient to estimate the relative importance of the g-
factor anisotropy. For that reason, we describe the possible
mechanism of the correction to the g factor due to the tensor
perturbation in some detail in Appendix B. We have estimated
λ ≈ (λSO/�Ecr )(�Estr/�Ecr ), where λSO is the atomic SO
coupling strength, �Ecr is a crystal field splitting, and �Estr

is a typical energy scale associated with the strain.
It follows that λ in Eq. (20) is sensitive to the microscopic

details such as, for instance, the splitting between the eg and t2g

orbitals even and odd under the mirror, σh, respectively. Gen-
erally, the ratio �Estr/�Ecr is expected to be small. However,
it might not be small near the extended defects, which may
lead to modification of the OP or even the local time-reversal
symmetry breaking [39].

One consequence of Eq. (20) is that the twofold anisotropy
results already in the scenario based on a single component,

FIG. 5. The angular dependence of the critical field for different
values of impurity scattering rate �, obtained from Eq. (23) for T =
0.5Tc, γ I = 15Tc, λ(εxx, εxy ) = (0.1, 0.1). The results obtained for
� = 0, 1, 10, 100Tc are shown in solid blue, dashed red, dotted green,
and thin black lines, respectively. As in the clean case, Fig. 4(b),
Bc(θB ) has a π periodicity. The angular dependence is suppressed as
the disorder scattering rate � increases. Bc is given in units of Tc.

s-wave OP. Indeed, the pair-breaking effect is caused by the
Zeeman splitting of the electronic bands. With the effective
Zeeman interaction, Eq. (20), the spin splitting itself becomes
anisotropic. This is illustrated in Fig. 4(a) for different values
of the strain tensor ε̂. We therefore address this possibility in
the next section.

3. Critical field anisotropy induced by the anisotropic g factor

Now we make an assumption of an anisotropic g fac-
tor given by Eq. (20) and study how this generates the
π -periodic critical field Bc. We adopt the same strategy as
before to describe the angular dependence of the critical field.
Specifically, we work within the phenomenological scheme
presented in Sec. II. In the expression for the free energy given
by Eq. (3) we have for the constant controlling the critical field
Bc0

β = πT
∞∑

n=−∞

(� + |ωn|)
ω2

n

[
(γ I )2 + �|ωn| + ω2

n

] , (21)

and because of Eq. (20), we have a simple relationship,

αBε = 2λβ. (22)

In fact, for the particular scenario of the field anisotropy
based on Eq. (20) we can compute the critical field without
making an expansion in B (see Appendix C for details),

ln
( T

Tc

)
+ πT

∞∑
n=−∞

{
1

|ωn| − (γ I )2 + �|ωn| + ω2
n

|ωn|
[
B2

eff + (γ I )2 + ω2
n

] + �
(
B2

eff + ω2
n

)}
= 0, (23)

where we have allowed for nonmagnetic disorder character-
ized by the elastic scattering rate �.

We solve Eq. (23) numerically for different choices of
the anisotropic part of the g-factor tensor λε̂. The results are
shown in Fig. 4(b). In the present approach the anisotropy of
the critical field is a direct consequence of the anisotropy of

the g factor [Eq. (20)]. This is illustrated by the juxtaposition
of the angular dependence of the effective field Beff [Eq. (20)]
for an external field, of a fixed magnitude and the angular
dependence of the critical field. Comparison of Figs. 4(a)
and 4(b) shows that maximal (minimal) Bc occurs for a mini-
mal (maximal) g factor.
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In the present scenario, the scalar disorder randomizing
different directions of motion tends to suppress the effect of
the g-factor anisotropy. The detrimental effect of the disorder
scattering on the critical field anisotropy is illustrated in Fig. 5.

4. Twofold periodicity resulting from the nematic transition

In the scenario of twofold periodicity resulting from the
nematic transition, suggested in Ref. [10], the role of tensor
perturbation ε̂ is played by the components (η1, η2) of the
triplet OP, which is assumed to form spontaneously. In this
scenario, taking, for instance, the system with C3v or D3h

symmetry, the contribution to the free energy that gives rise to
π periodicity reads ∝ 2BxByη1 + (B2

x − B2
y )η2. The rest of the

analysis is then similar to the above, with a similar outcome.

IV. CONCLUSIONS

We have constructed a phenomenological theory of the
in-plane magnetic field anisotropy in two-dimensional TMD-
based superconductors. The starting point of the discussion
is the analysis of constraints imposed on the conductivity
tensor by symmetry to all orders in the magnetic field. The
symmetry alone implies that the twofold anisotropy of the
trace of the conductivity tensor requires a symmetry-breaking
tensor perturbation. Alternatively, such a tensor perturbation
may result if the superconductivity breaks the symmetry of
the underlying lattice, e.g., via a nematic phase transition.

The individual entries of the conductivity tensor may have
a twofold anisotropy because of the standard planar Hall
effect. On the experimental level, therefore, it is important
to differentiate between the π periodicity of the trace of the
conductivity tensor and π periodicity related to the planar Hall
contribution. The very same discussion makes it clear that the
sixfold anisotropy requires either D3h or C3v symmetry.

We then turned to the thermodynamic properties, focusing
initially on the single component s-wave OP. We have iden-
tified the specific combination of the tensor perturbation and
the magnetic field that is responsible for π periodicity in both
transport and thermodynamic properties. This has allowed us
to formulate the existing scenarios of the π periodicity within
the same scheme. Such a reformulation reveals the limitations
of the existing approaches and their commonalities and differ-
ences.

We now outline the broader significance of our results in
the context of the existing literature. Reference [9] suggests
that the in-plane anisotropies are due to the coupling of the
leading s-wave superconducting instability and subleading
spin-triplet channels. The main claim of this part of Ref. [9] is
that coupling mediated by strain and/or magnetic field results
in the field anisotropies. Here, we clarify this statement by
deriving the explicit field dependence of the singlet-to-triplet
coupling in Sec. III. Based on the symmetry analysis of the
conductivity tensor we show that the twofold anisotropy may
result only if there are two kinds of these couplings: one linear
in the field and the other linear in both the strain and the
field. The microscopic model giving rise to such singlet-triplet
coupling is constructed in Sec. III B 2.

The most significant difference between Refs. [10] and [9]
is the pronounced sixfold anisotropy at higher fields reported
in Ref. [10] and not observed in the experiments with a

larger number of layers. A microscopic theory of the six-
fold periodicity based on the combined action of Rashba and
Ising SO coupling is presented in Sec. III A. Let us empha-
size that the sixfold modulation of the dispersion relation
and/or sixfold variation of the gap function do not produce
the desired sixfold periodic critical field, because the ther-
modynamic quantities are averages over the Fermi surface,
and the parallel field couples to spin via isotropic Zeeman
interaction. The nematic transition [10] scenario, similarly to
that of Ref. [9], requires close competition between the lead-
ing spin-singlet and subleading spin-triplet pairing channels.
Our phenomenology is flexible enough to incorporate such
a scenario in order to produce predictions for transport and
thermodynamic quantities other than the critical field.

In Ref. [24], two of us have studied the magnetic
anisotropic impurities as a possible source of the twofold field
anisotropy. In this paper, we have reformulated this model in
terms of the symmetry-based phenomenology in Sec. III B 1.
The phenomenology developed in this paper allows us to
readily obtain the field and temperature dependence of the su-
perconducting gap, the critical temperature, and the transport
field anisotropy based on a single input of the critical field
anisotropy studied in the previous work.

Clearly, more detailed studies are required to fully clarify
the origin of in-plane field anisotropy in TMD-based few-
layer systems under different external conditions. We believe
that the presented phenomenological theory may serve as a
convenient framework in addressing the related questions.
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APPENDIX A: ANISOTROPY OF FLUCTUATION
SPECTRUM AND PLANAR HALL EFFECT

Here, we trace the relation between the anisotropy of the
fluctuation spectrum and the finite planar Hall effect. To this
end, we compute the fluctuation conductivity from Eq. (8) yet
now with ξB 
= 0 in the dispersion of the superconducting fluc-
tuations, Eqs. (3) and (4). This term describes the anisotropy
of the dispersion relation of superconducting fluctuations due
to the finite magnetic field. Such an anisotropy gives rise to
the fluctuation-induced planar Hall effect. This contribution is
contained in the general expression (1) as a term proportional
to σp.

The result is presented in Fig. 6. Clearly, the planar Hall
contribution is π periodic and exhibits an enhancement for
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FIG. 6. Fluctuation planar Hall effect due to the field-induced
fluctuation spectrum anisotropy. σ AL in units of e2 is computed from
Eq. (8) for T = 0.75Tc, ξBBc0/ξ = 1, and αBε = βε = βBε = 0. The
solid black, dashed blue, and thin red lines denote the σ AL

xx , σ AL
yy , and

σ AL
xy components of σ AL , respectively. Each of the three components

is shown for B = 1.04Bc0 and B = 1.01Bc0. The fluctuation correc-
tion, the π periodicity, and the planar Hall (anisotropic) part of the
conductivity tensor become more pronounced as the field approaches
the critical one.

the field and/or the temperature approaching the transition.
We stress that such a contribution has to be disentangled
from the π periodicity of Tr σ̂ . The microscopic origin of the
field-induced spectrum anisotropies is beyond the scope of the
present work.

APPENDIX B: STRAIN-INDUCED ANISOTROPY OF THE
ATOMIC g FACTOR

Here, we argue that the strainlike perturbation described by
a tensor ε̂ gives rise to the anisotropy of the Zeeman coupling
expressed as Eq. (20). Such a g-factor anisotropy most readily
follows in the atomic limit. Once an atom is subject to strain-
like perturbation, its response to a Zeeman field is expected to
become anisotropic in the presence of the SO coupling.

To illustrate the idea, consider the electronic states at the
� point predominantly having a character of dz2 orbitals. At
� the two states |0, 1/2〉 and |0,−1/2〉 are spin degenerate.
The in-plane field B couples these states via the usual Zee-
man interaction, Hz = B · σ, where the Pauli matrices σ =
(σx, σy, σz ) act in the subspace of the two states |0,±1/2〉. We
subject this system to the strainlike perturbation Hε. Here, we
are not interested in its exact form. What matters is its trans-
formation properties under the symmetry operations. Hence
we write Hε = ∑

i, j ε̂i jXiXj , where we denote by Xi any vec-
tor operator. Such a perturbation causes the virtual transitions
to the states with different orbital content. Our goal is to show
that such transitions modify the effective Hamiltonian acting
in the space |0,±1/2〉 thus taking the form of Eq. (20).

1. Atomic Hamiltonian and crystal field

Consider the d-shell atomic levels of a transition metal
ion. For definiteness, we consider the limit of the crystal field
being stronger than the SO coupling. Neglecting for a moment
the SO coupling, the crystal field lifts the fivefold orbital
degeneracy of a d shell into A1g, E1g, and E2g. These orbitals
appropriate to the D∞h symmetry are characterized by the z

component of the angular momentum, m = 0, m = ±1, and
m = ±2, respectively.

The crystal field quenches the in-plane components of the
angular momentum, Lx,y, while the expectation value of Lz in
the orbital states listed above stays finite. For this reason, we
represent the atomic Hamiltonian in the form Ha = H0 + V ,
where the perturbation reads

V = λSO(Lxσx + Lyσy) + gLB · L + Hε. (B1)

The unperturbed Hamiltonian H0 describes the bare atomic
d-shell atomic level structure and includes the crystal field
effects as well as a part of the SO interaction, λSOLzσz, left
unquenched by the crystal field. In addition, the last but one
term in Eq. (B1) contains a usual coupling of the magnetic
field to the orbital motion of an electron in the atom.

Our approach here is to consider the terms other than H0 as
a small perturbation. This is justified in the limit of the crystal
field being stronger than the SO coupling. Indeed, in this case
the λSOLzσz as part of H0 lifts the double spin degeneracy.
The states then form five Kramers doublets, |0,±1/2〉, | ±
1,±1/2〉, | ± 1,∓1/2〉, | ± 2,±1/2〉, | ± 2,∓1/2〉, where
the state |m, s〉 has the z component of the spin s = ±1/2.
The doublets transform as the E1/2g, E3/2g, E1/2g, E5/2g, and
E3/2g spinor representation of the double group D∞h.

2. Perturbation theory and effective Hamiltonian

For definiteness, we consider the space of |0,±1/2〉 as
appropriate to the electronic states residing at the hole pocket
centered at �. Equation (20) is an effective Hamiltonian de-
scribing the spectrum in the above space of two states.

By adopting the results of Ref. [40] for use in the present
problem we obtain for the matrix elements of the effective
Hamiltonian, apart from the original Zeeman splitting,

H eff
ss′ =

∑
m,m′ 
=0

s1,2

(E0s − Ems1 )−1(E0s − Em′s2 )−1

× 〈0s|VX |ms1〉〈ms1|VD|m′s2〉〈m′s2|VX |ms′〉, (B2)

where Ems are the unperturbed energies defined by H0. In
Eq. (B2) the perturbation (B1) is split into diagonal and
off-diagonal parts, V = VX + VD, defined in terms of the pro-
jection operator P = |0, 1/2〉〈0, 1/2| + |0,−1/2〉〈0,−1/2|
as VX = PH(1 − P ) + (1 − P )HP , VD = V − VX .

It is convenient to rewrite the perturbation Hamilto-
nian (B1) in the form

V = λSO(L+σ− + L−σ+) + gL(B+L− + B−L+)

+ (ε−L̄2
+ + ε+L̄2

−), (B3)

where σ± = σx ± iσy, L± = (Lx ± iLy)/2, L̄± = X1 ± iX2

transforming as L±, and ε± = εxx − εyy ± 2iεxy. With
Eq. (B3) the effective Hamiltonian takes the form

H eff = σ+
〈0|λSOL−|1〉〈1|gLL−|2〉〈2|ε−L̄2

+|0〉
(E0,1/2 − E1,−1/2)(E0,1/2 − E2,1/2)

+ σ+
〈0|gLL−|1〉〈1|λSOL−|2〉〈2|ε−L̄2

+|0〉
(E0,1/2 − E1,1/2)(E0,1/2 − E2,−1/2)

+ · · · + H.c.,

(B4)
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where |m〉 is the orbital state with the out-of-plane component
of angular momentum m, H.c. stands for the Hermitian con-
jugation, and · · · denotes the remaining four terms obtained
from the general expression (B2). All such terms produce a
similar contribution. As a result we estimate

λ ≈ gL

(
λSO

�Ecr

)(
�Estr

�Ecr

)
, (B5)

where �Ecr is the typical spin splitting and �Estr is the typical
energy scale associated with the strain perturbation Hε.

APPENDIX C: CRITICAL FIELD OF A
SUPERCONDUCTOR WITH AN ANISOTROPIC g FACTOR

Here, we study the effect of the anisotropy of the g factor
as expressed by Eq. (20) on the critical field of a supercon-
ductor. In particular, we derive the expressions (21) and (22)
controlling the critical field and the twofold anisotropy. We as-
sume that the superconductor is described by the Hamiltonian
equation (11).

The 4 × 4 Green’s function Ĝ(k; ωn) satisfies the Gor’kov
equation,

[iωnσ̂0 − ĤBdG − �̂]Ĝ(k; ωn) = σ̂0, (C1)

where σ0 is the 2 × 2 unit matrix, ωn = πT (2n + 1) are
the Matsubara frequencies, and ĤBdG is the Bogoliubov–de
Gennes (BdG) Hamiltonian corresponding to the normal-state
Hamiltonian [Eq. (11)],

ĤBdG =
[
ξk + [γ (k) − Beff ]·σ �

�† −ξk + [γ (k) + Beff ]·σT

]
,

(C2)

where the Zeeman field B is replaced by Beff introduced in
Eq. (20) to incorporate the effect of strain.

As in the main text, in Eq. (C2) the isotropic OP coincides
with the spectral gap in the BCS limit, � = ψ iσ2. The self-
energy �̂ is due to the disorder scattering,

�̂ = �

∫
dϕk

2π

∫
dξk

π
σ̂zĜ(k; ωn)σ̂z, (C3)

where � is the scattering rate off the scalar disorder, σ̂z =
diag(σ0,−σ0), and tan ϕk = ky/kx. We introduce the quasi-

classical Green’s function in the form

ĝ(kF) =
∫ ∞

−∞

dξk

π
iσ̂zĜ(k; ωn)

=
[

g(kF; ωn) −i f (kF; ωn)
−i f ∗(−kF; ωn) −g∗(−kF; ωn)

]
, (C4)

where kF = k/k. We parametrize the function f (kF; ωn) in
Eq. (C4) in the standard form as follows [41]:

f (kF; ωn) = [ f0(kF; ωn)σ0 + f (kF; ωn) · σ]iσ2. (C5)

To find the critical field, it is sufficient to evaluate the func-
tions f0 and f to the linear order in ψ , denoted here by f (1)

0
and f (1), respectively. These expressions can be found from
the Eilenberger equation linearized in the OP in the form [42]

ωn f (1)
0 = if (1) · Beff + sgn(ωn)ψ

+�sgn(ωn)
[〈

f (1)
0

〉 − f (1)
0

]
, (C6a)

ωnf (1) = i f (1)
0 Beff + γk × f (1)

+�sgn(ωn)[〈f (1)〉 − f (1)], (C6b)

where 〈· · · 〉 = ∫
dϕk/2π stands for the angular average

over the Fermi surface.
The critical field is determined by the self-consistency

equation written to the first order in the OP [19]

ln
( T

Tc

)
+ πT

∞∑
n=−∞

(
1

|ωn| − 1

ψ

〈
f (1)
0

〉) = 0. (C7)

To simplify the calculations, we consider the SO coupling
of the form γ (ϕk ) = ẑγ I sgn[cos(3ϕk )]. Such a coupling is
appropriate for the SO coupling at K pockets. Our results are
qualitatively unchanged with other k dependence of the Ising
SO coupling. With the above choice of the SO coupling the
solution to Eq. (C6) reads

〈
f (1)
0

〉 = ψ
(
(γ I )2 + �|ωn| + ω2

n

)
|ωn|

(
B2

eff + (γ I )2 + ω2
n

) + �
(
B2

eff + ω2
n

) . (C8)

Substituting Eq. (C8) into Eq. (C7) gives Eq. (23) of the main
text. The second-order expansion of Eq. (C8) in Beff yields
Eq. (21) for the coefficient β.
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