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Topological superconductors and exact mobility edges in non-Hermitian quasicrystals
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We study a class of non-Hermitian topological superconductors described by one-dimensional Aubry-André
Harper and mosaic quasiperiodic models with p-wave superconducting pairing, where the non-Hermiticity is
introduced by on-site complex quasiperiodic potentials. We generalize two topological invariants, one is based on
the transfer matrix method and the other is the generalized Majorana polarization, to characterize the topological
superconducting phases and verify the existence of Majorana zero modes in non-Hermitian quasiperiodic super-
conductors. By combing the Lyapunov exponent, the fractional dimension of wave functions, and topological
invariants, we investigate the localization phenomena, topological superconductivity, and topological phase
transitions. In the non-Hermitian Aubry-André Harper model with p-wave pairing, the system undergoes an
extended-critical-localized phase transition with increasing the complex phase. The localization transition is
consistent with the topological phase transition and unconventional real-complex transition of eigenenergy. In
the non-Hermitian mosaic model, we provide an analytical expression of mobility edges and prove the intrinsic
relation between the mobility edges and unconventional real-complex transitions. Our discoveries unveil the
richness of topological and localization phenomena in non-Hermitian quasicrystals with p-wave pairing.
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I. INTRODUCTION

Topological phases have become one of the most fas-
cinating and rapidly developing areas in condensed matter
physics [1–4]. The topological phase is found in Hermi-
tian systems, but has recently sparked tremendous interest
in non-Hermitian systems. Non-Hermitian topological phases
exhibit exotic phenomena, such as enriched topological
classification [5–10], the breakdown of the conventional bulk-
boundary correspondence [6,11–25], non-Hermitian skin
effect [12,15,21,26–31], the appearance of topological phases
with anomalous boundary modes [11,24,32–34], and non-
Hermitian Majorana modes [7,26,35–44]. Most of existing
studies have been focused on periodic lattices with transla-
tional invariance.

Recently, great interest has been devoted to studying the
topological phases in non-Hermitian quasicrystals, where the
interplay of topology, non-Hermiticity, and quasiperiodic-
ity leads to rich interesting physical phenomena [45–60].
Quasicrystals constitute an intermediate phase between fully
periodic lattices and fully disordered media, showing a long-
range order but no periodicity. The Aubry-André Harper
(AAH) model provides a paradigmatic example of a one-
dimensional (1D) quasicrystal [61,62]. The non-Hermitian
extensions of the AAH model produce exotic topological fea-
tures. In particular, a non-Hermitian extension of the AAH
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Hamiltonian by complexification of the potential phase re-
veals that the localization phase transitions are of a topological
nature and are characterized by winding numbers of en-
ergy spectra [57]. In a 1D nonreciprocal quasicrystal solely
induced by the modulated asymmetric hopping amplitude,
the topological phases with zero and nonzero energy edge
modes are stable and can be characterized by the general-
ized Bott index [60,63]. The interplay between nonreciprocal
hopping and complex quasiperiodic potentials gives rise to
boundary-dependent self-dualities, and the asymmetrical An-
derson localization is not necessarily in accordance with the
topological phase transitions [64]. For a Su-Schrieffer-Heeger
model with complex on-site potential, the delocalized, local-
ized, and intermediate phases are further characterized by a
pair of topological winding numbers [65]. Meanwhile, the
non-Hermitian extensions of the AAH model present remark-
able impacts of the (quasi)periodic on-site potentials on the
PT symmetry breaking [51,52,54,55,66], butterfly spectrum
[51,60], and mobility edges (MEs) [47,55,56,58,60,67–72].
On the other hand, the 1D non-Hermitian p-wave supercon-
ductor chain is another important paradigm in the topological
community, and the interplay of disorder and topology de-
serves further investigation. The fate of Majorana zero modes
(MZMs) and localization behaviors in non-Hermitian AAH
models with p-wave pairing have been discussed recently
[73–75]. However, the topological superconductivity and lo-
calization in other non-Hermitian quasiperiodic models have
not been paid much attention, such as the quasiperiodic mo-
saic model [76] that hosts multiple MEs with the self-duality
breaking. The MEs, which separate extended states from
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localized ones, induced by non-Hermiticity in the mosaic
topological superconductors, (TSs) are less understood. It is
unclear whether there is correspondence between the exact
MEs and unconventional real-complex transition of eigenen-
ergy. Furthermore, it is still worth studying whether there are
some special topological invariants to describe the topological
superconducting phase in non-Hermitian quasiperiodic TSs.

To address the above-mentioned issues, in this paper, we
study the localization phenomena and topological phase tran-
sition in 1D AAH and mosaic models with p-wave supercon-
ducting pairing and complex on-site potentials, respectively.
Two topological invariants, the Z2 topological invariant based
on the transfer matrix method and the generalized Majorana
polarization (MP), are generalized to characterize the topo-
logical superconducting phases and verify the existence of the
MZMs. By using the energy spectrum, Lyapunov exponent
(LE), the fractal dimensions of wave functions, and topologi-
cal invariants, we characterize the localization and topological
phase transitions. In the AAH model with p-wave pairing, the
system undergoes an extended-critical-localized phase tran-
sition with increasing the complex phase. The localization
transition is consistent with the topological phase transition
and unconventional real-complex transition of eigenenergy.
Meanwhile, the exponentially localized MZMs become more
and more extended and then merge into the bulk. In the mosaic
model with an even interval, the system always stays in the
topological superconducting phase for arbitrary finite com-
plex on-site potentials. We provide an analytical expression
of MEs and prove the intrinsic relation between the MEs and
unconventional real-complex transitions. In the mosaic model
with an odd interval, localization phenomena, topological
phase transitions, and rich MEs are induced. We cannot read
out the localization transition from the change of the spectrum
structure. Our analytical results are crucial to understanding
the non-Hermitian MEs, unconventional real-complex transi-
tions, and topological nature in non-Hermitian quasicrystals
with p-wave pairing.

The rests of the paper is organized as follows. In Sec. II,
the model Hamiltonians are introduced and two topological
invariants are generalized to non-Hermitian quasicrystals. In
Sec. III, we obtain the analytical expression of localization
transition points and MEs by applying Avila’s global theory.
In Sec. IV A, the localization phase transition and topo-
logical phase diagram in non-Hermitian AAH models with
p-wave superconducting pairing are studied. We also discuss
the intrinsic relation between the localization transition and
unconventional real-complex transitions. In Sec. IV B, the
non-Hermitian mosaic models with p-wave pairing are inves-
tigated. We provide an analytical expression of non-Hermitian
MEs and check whether there is correspondence between the
MEs and unconventional real-complex transitions. In Sec. V,
concluding remarks are given.

II. MODEL AND TOPOLOGICAL INVARIANTS

We consider a class of 1D quasiperiodic models with p-
wave superconducting pairing which can be described by

H =
L−1∑
j=1

[−tc†
j+1c j + �c†

j+1c†
j + H.c.] +

L∑
j=1

Vjc
†
j c j, (1)

quasiperiodic potential

FIG. 1. The 1D quasiperiodic potentials of AAH (κ = 1) and
mosaic (κ = 2 and 3) models. The red and black spheres denote the
lattice sites whose potentials are quasiperiodic and zero, respectively,
as shown by the corresponding red and black dashed lines.

with

Vj =
{

V0 cos[2π (ω j + θ )], j = mκ

0. otherwise,

where c†
j (c j ) is the creation (annihilation) operator of a spin-

less fermion at site j, t is the hopping amplitude and is set
as the energy unit (t = 1), � is the p-wave superconducting
pairing amplitude. Vj is the on-site complex quasiperiodic
potential with the strength of V0 ≡ 2λ and the complex phase
factor θ = φ + ih. h characterizes the non-Hermiticity of the
system, and we will take it positive real. This paper is focused
on the non-Hermitian effect, so we set φ = 0 for convenience.
ω is an irrational number characterizing the quasiperiod-
icity. It usually takes the value of the inverse of golden
ratio [ω = (

√
5 − 1)/2], which can be approached by ω =

limn→∞ Fn−1/Fn, where Fn are the Fibonacci numbers defined
recursively by Fn+1 = Fn + Fn−1 with F0 = F1 = 1 [72,76–
78]. Since the quasiperiodic potential periodically occurs with
interval κ , we can define a quasicell with the nearest κ lattice
sites. If the quasicell number is N , i.e., m = 1, 2, · · · , N , then
the system size becomes L = κN . When � = 0 and κ = 1,
the model reduces to the non-Hermitian AAH model [57].
For κ � 2, the model is referred to as the non-Hermitian
quasiperiodic mosaic model [72]. The quasiperiodic lattice
models with κ = 1, 2, and 3 are pictorially shown in Fig. 1.

When κ = 1, � �= 0 and h = 0, the model in Eq. (1)
describes a 1D Kitaev model with a real quasiperiodic po-
tential, where the behavior of Majorana end modes and
the localization of normal states have been studied recently
[79–81]. When h �= 0, the system corresponds to the non-
Hermitian AAH model with p-wave pairing, and the interplay
of non-Hermiticity and quasiperiodicity leads to an intriguing
extended-critical-localized phase transition [73,75].

To characterize the non-Hermitian topological supercon-
ducting phases of the 1D quasiperiodic lattice with p-wave
pairing, we make use of a Z2 topological invariant and the
generalized MP. These two topological invariants work well
in the Hermitian systems, and we would like to generalize to
non-Hermitian cases. The generalization of topological invari-
ants originally defined in Hermitian systems to non-Hermitian
systems is an important issue since the topological invari-

024514-2



TOPOLOGICAL SUPERCONDUCTORS AND EXACT … PHYSICAL REVIEW B 105, 024514 (2022)

ants in Hermitian systems cannot characterize the topological
phases in non-Hermitian cases precisely.

First, we construct the Z2 topological invariant based on
the transfer matrix that links topology to the eigenvalue struc-
ture of zero-energy end modes described by the Hamiltonian
in Eq. (1) [79,81,82]. The Dirac fermion operator c j can
be expressed as the combination of two Majorana fermion
operators c j = (a j + ib j )/2, then the Hamiltonian in Eq. (1)
is rewritten in terms of Majorana fermion operators as

H = i

2

∑
j

[(−t + �)a jb j+1 + (t + �)b ja j+1 − Vja jb j].

(2)
Specifically, the Majorana end modes that decay into the
bulk can be represented by the operators Qa = ∑

j α ja j ,
Qb = ∑

j β jb j , where the wave functions α j (β j ) obey the
zero-energy equations of motion derived from Eq. (1). These
equations can be represented in the transfer matrix forms
[79,81,82](

α j+1

α j

)
= Tj

(
α j

α j−1

)
, where Tj =

( Vj

t+�
�−t
�+t

1 0

)
, (3)(

β j+1

β j

)
= T ′

j

(
β j

β j−1

)
, where T ′

j =
( Vj

t−�
�+t
�−t

1 0

)
. (4)

Tj (T ′
j ) is the transfer matrix for the jth site. The existence of

MZMs is determined by the eigenvalues of the transfer matrix
of the whole lattice T = ∏L

j=1 Tj . Here T is a complex 2 × 2
matrix, therefore we cannot define a Z2 topological invariant
based on the sign of Pfaffian to characterize the topological
nature [79,81,82]. In the non-Hermitian system, both eigen-
values of T can still be calculated. Majorana modes bound to
the ends of an infinite chain with open boundary conditions
(OBCs) still require that both eigenvalues (A1 and A2) of
T be either smaller or greater than unity in magnitude. For
this situation, we define a topological invariant to character-
ize non-Hermitian topological superconducting phases, ν =
−sgn(ln |A1| ln |A2|) = −1. If T has exactly one eigenvalue
with a magnitude less than 1, the system is in the topologically
trivial phase with no Majorana end modes, indicated by ν = 1.

The MP is the other useful invariant to verify the existence
of MZMs [83–88]. The generalized MP in non-Hermitian TSs
has been studied in detail in Ref. [89]. Here, the particle-hole
symmetry of our models obeys H = −UHT U † with UU † =
±I . The two Majorana states are pinned at zero energy,
but non-Hermiticity modifies their anticommutation relations.
Different from Ref. [89], we use the left and right eigenstates
to define the MP vector, 〈�L|C|�R〉, where |�L(R)〉 represent
the left (right) eigenstate in Nambu space, C is the particle-
hole operator. In such a definition, the local structure of the
MP is a ferromagnetic structure, which is consistent with the
Hermitian limit [83,84]. All finite-energy eigenstates of the
Hamiltonian in Eq. (1) satisfy 〈�L|C|�R〉 = 0 and Majorana
states  satisfy 〈L|C|R〉 = 1. Additionally, in a region
R0 where such a Majorana state is localized, it must satisfy
[83–89]

C =
∣∣∑

j∈R0
〈�L|C j |�R〉∣∣∑

j∈R0
〈�R |̂r j |�R〉 = 1, (5)

where r̂ j is the projection onto site j and C j ≡ C r̂ j . The
particle-hole operator C = eiζ τ xK̂ corresponds to the spinless
systems. K̂ is a complex-conjugation operator, τ y (σ y) is the
Pauli matrice in the particle-hole (spin) subspace, ζ is an
arbitrary phase and can be chosen conveniently. When two
Majorana modes are localized at opposite ends of the chain,
one can simply set R0 = L/2 in Eq. (1) with L the length of
1D quasiperiodic lattices.

III. LOCALIZATION AND CRITICAL PHASE

When p-wave pairing � �= 0, we can transform the dis-
ordered p-wave superconductor model to a disordered normal
state model, and the transfer matrix method can still be used to
determine the Anderson localization properties [73,79,80]. By
performing a similarity transformation to the transfer matrix
Eq. (3) as Tj = √

ξST̃jS−1 with S = diag(ξ 1/4, ξ−1/4) and
ξ = t−�

t+�
[73,75,79]. The new transfer matrix T̃j is

T̃j =
( Vj√

t2−�2 −1
1 0

)
. (6)

Thus, the total transfer matrix T ≡ ∏L
j=1 Tj becomes

T (V0, h,�) =
(√

t − �

t + �

)L

ST̃ S−1. (7)

By applying Avila’s global theory of quasiperiodic Schröinger
operators [90], the LE can be defined as [72,79,82,91]

γ = lim
L→∞

1

L
ln ‖T ‖, (8)

where ‖T ‖ denotes the norm of the matrix T [90]. Substituting
Eq. (6) into Eq. (7), and taking the logarithm of the eigenval-
ues of Eq. (7), we obtain the LE as [79,91]

γ (V0, h,�) = γ

(
V0√

t2 − �2
, h, 0

)
+ 1/2 ln

(
t − �

t + �

)
, (9)

which determines the topological phase transition in the
quasiperiodic lattice with p-wave pairing [73,75,79]. When
γ (V0, h,�) = 0, there is a delocalization-localization transi-
tion regarding the Majorana wave function α.

In Eq. (9), γ (V0/
√

t2 − �2, h, 0) corresponds to the LE
of the normal states [79], which can be calculated following
Refs. [72,78]. According to Eq. (6), the transfer matrix in the
non-Hermitian AAH and mosaic models can be written as

T̃ κ
j =

[
E − 2λ cos(2πωκm+ih)√

t2−�2 −1
1 0

](
E −1
1 0

)κ−1

. (10)

The (κ − 1)th power of the matrix can be calculated by use of
the similarity transformation:(

E −1
1 0

)κ−1

=
(

aκ −aκ−1

aκ−1 −aκ−2

)
, (11)

with

aκ = 1√
E2 − 4

[(
E + √

E2 − 4

2

)κ

−
(

E − √
E2 − 4

2

)κ
]
.
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For the non-Hermitian AAH model, κ = 1, a0 =
0, and a1 = 1. In the large-h limit, we have

T̃ κ
j = e(2πωκm)i+|h|

(− λ√
t2−�2 0
0 0

)
+ o(1). (12)

We obtain γ (V0/
√

t2 − �2, h, 0) = |h| + ln |λ/
√

t2 − �2| +
o(1) and substituting it into Eq. (9), the LE becomes

γ (V0, h,�) = |h| + ln

∣∣∣∣ λ√
t2 − �2

∣∣∣∣ + 1/2 ln

(
t − �

t + �

)
.

(13)
Let Eq. (13)=0, then the critical localization transition point
is

hc = − ln

∣∣∣∣ λ

t + �

∣∣∣∣, (14)

which means when h > hc, the states become localized.
Equation (14) can be used to predict the topological phase
transition hc in the 1D p-wave quasiperiodic TSs.

Similarly, regarding the Majorana wave function β,
the transfer matrix Eq. (4) can be transformed into
T ′

j = √
ξ ′S′T̃ ′

j S′−1 with S′ = diag(ξ ′1/4, ξ ′−1/4) and ξ ′ = t+�
t−�

[73,79]. Thus, we get the LE

γ ′(V0, h,�) = |h′| + ln

∣∣∣∣ λ√
t2 − �2

∣∣∣∣ + 1/2 ln

(
t + �

t − �

)
,

(15)
and the critical localization transition point is

h′
c = − ln

∣∣∣∣ λ

t − �

∣∣∣∣, (16)

which means when h′ > h′
c, the wave function β becomes

localized.
When κ = 2, the Hamiltonian in Eq. (1) becomes the non-

Hermitian quasiperiodic mosaic model with p-wave pairing.
The MEs are also expected to appear [72,78,81,92,93]. By
performing a similarity transformation to the transfer matrix,

T̃ κ
j � e(2πωκm)i+|h|

(− λ√
t2−�2 −1
1 0

)(
a2 −a1

−a1 0

)
, (17)

where a2 = E . Then the MEs are obtained approximately by

Ec =
∣∣∣∣ t + �

λe(|h|−ln |t−�|)

∣∣∣∣. (18)

The eigenstates with energies |E + iε| < Ec and |E + iε| >

Ec correspond to the extended states and localized states,
respectively [71,72].

To get an intuitive understanding of the above analytical
results, we investigate the fractal dimension of the wave func-
tion, which is given by � = −limL→∞[ln(IPR)/ ln L] [78].
For any given normalized wave function, the inverse partic-
ipation ratio (IPR) is defined as IPR(n) = ∑L

j=1(|μn, j |4 +
|νn, j |4), where L denotes the total number of sites, j is the
site index, and μn, j , νn, j are the two components of the nth
eigenstate in Nambu space. It is known that � → 1 for the
extended states and � → 0 for the localized states. To charac-
terize the localization of the whole system, the mean inverse
of the participation ratio (MIPR) is also defined, MIPR =
1

2L

∑2L
n=1 IPR(n). For the extended state, the MIPR is of the

order 1/L, whereas it approaches 1 for the localized state
[73,75].

IV. RESULTS AND DISCUSSIONS

In this section, we will discuss the localization and topo-
logical phase transitions from the perspective of energy
spectrum, the fractal dimension �, unconventional real-
complex transition of eigenenergy, and topological invariants
in the non-Hermitian AAH and mosaic models with p-wave
superconducting pairing, respectively. The collaboration be-
tween the p-wave superconducting pairing and non-Hermitian
quasiperiodic potential yields localization phenomena, topo-
logical phase transitions, and rich MEs which are very
different from the standard AAH and mosaic models.

A. Non-Hermitian AAH model with p-wave pairing

We first study the topological and localization phase tran-
sition induced by the quasiperiodic potential amplitude λ in
1D AAH model (κ = 1) with p-wave pairing. As shown in
Fig. 2(a), the absolute values of energy eigenvalue |E | and
the corresponding fractal dimension � are presented as the
function of λ under OBCs for the parameters � = 0.5, h =
0.5, and L = 300. With the increase of λ, the exponentially
localized MZMs become more and more extended and finally
merge into the bulk when λ > (t + �)e−h, which indicates a
phase transition from a topological superconducting phase to
a trivial phase. The transition point is about λc = (t + �)e−h.
Meanwhile, the topological phase transition is accompanied
with the localization of bulk states [see the fractal dimension
� in Fig. 2(a)]. The fractal dimension � shows a sudden drop
at λc and approaches 0. From the MIPR in Fig. 2(b), we find
that there are two delocalized phases for the region λ < λc,
i.e., the extended phase and the critical one [73,75]. The MIPR
of the critical phase shows a plateau behavior, which is greater
than that of the extended one and less than that of the localized
one. The topological phase transition point is consistent with
the critical-localized transition point, and the extended-critical
phase transition point is at λ′

c = (t − �)e−h.
In Figs. 2(c)–2(f), we discuss the effect of complex phase

h on the localization and topological phase transition for
fixed quasiperiodic potential amplitudes. We first consider
the extended phase with λ = 0.25, see Figs. 2(c)–2(d). With
the increase of h, the system also experiences an extended-
critical-localized phase transition, and the transition point is
determined by Eqs. (14) and (16), respectively. Meanwhile,
the system undergoes a topological superconducting phase
to a trivial phase transition, and the exponentially localized
MZMs become more and more extended and then merge into
the bulk when h > hc. Again, the topological phase transition
point is consistent with the critical-localized transition point.
For λ = 0.5, the system is in the critical phase initially, and a
critical-localized phase transition occurs as h increases. The
transition point is determined by Eq. (14). There is no ex-
tended phase in such case, but the localization transition is
still accompanied by the topological phase transition.

The non-Hermitian TS model in Eq. (1) only preserves
the particle-hole symmetry, and the PT -symmetry is broken.
Therefore, the unconventional real-complex transition of en-
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FIG. 2. The absolute values of eigenenergies |E | and the corresponding fractal dimension � as a function of the strength of quasiperiodic
potential λ (a) and complex phase h (b),(c) for κ = 1 under OBCs. The system size is L = κN = 300. (d)–(f) The corresponding MIPR in
(a)–(c). The dashed lines show the sharp increase of the MIPR at phase boundaries obtained by Eqs. (14) and (16).

ergy spectrum is expected to exist [73,74,94]. To study the
real-complex transition of energy spectrum, periodic bound-
ary conditions (PBCs) are used, which will avoid the edge
effects. In Fig. 3, we take � = 0.5, L = 987 and display
the eigenenergies with various λ and h under PBCs. When
λ = 0.25 and h = 0.1, the eigenenergies are completely real
and the system is in the extended and topologically supercon-
ducting phase. When λ = 0.25, h = 1, and λ = 0.5, h = 1,
the system is in the critical and topological superconducting
phase, and the spectrum is complex with loops. If λ = 0.25
and h = 2, the system is in the localized and topologically
trivial phase. There is a loop in the spectrum encircling the
origin of the complex energy plane, which is absent when
h < hc. The loop encircling the origin causes a band inversion
and a topological phase transition happens, where the system
enters a topologically trivial phase without unpaired MZMs
[73,75].

The topological superconducting phase in non-Hermitian
TSs can also be characterized by two generalized topological
invariants: the Z2 topological invariant based on transfer ma-
trix and the generalized MP. To have a more comprehensive
view of the topological nature and its connection with the
localization property of states in 1D non-Hermitian TSs, we
present the fractal dimension � of the bulk states, the Z2

topological invariant, zero-energy modes and the generalized
MP in the parameter space spanned by λ and h in Fig. 4,

respectively. For the fractal dimension � of the bulk states,
we can calculate the � of the second smallest absolute value
of the energy for convenient, which is always in the bulk state.
Figure 4(a) shows the fractal dimension � of the bulk state as a
function of λ and h. We find a region with � → 0 (dark blue)
in the λ − h parameter space, which means that all the bulk
states are localized. For the region � → 1, all the states are
extended or critical except the MZMs. Notably, the boundary
(white dashed curve) of the delocalization-localization transi-
tion is determined by Eq. (14), hc = − ln | λ

t+�
|. In Fig. 4(b),

the Z2 topological invariant ν = −1 indicates the topological
superconducting phase and ν = 1 is the topologically trivial
phase. The phase diagram obtained by the transfer matrix
is the same as that obtained by the localization transition
in Fig. 4(a). The boundary of the topological phase transi-
tion is consistent with that of the delocalization-localization
transition. In Figs. 4(c)–4(d), we use the zero-energy end
modes and the generalized MP to further verify the connection
between the localization and topological phase transitions.
The minimum values E0 of |E | are presented in the λ − h
parameter space. The region with E0 = 0 means the existence
of the MZMs, and E0 �= 0 corresponds to the topologically
trivial phase. The MP C in Fig. 4(d) also confirm the above
statements. The Z2 topological invariant and the generalized
MP are therefore useful tools to characterize the topological
superconducting phase in non-Hermitian quasiperiodic TSs.
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FIG. 3. The unconventional real-complex transition of eigenen-
ergy under PBCs. Here we take L = 987 with negligible finite-size
effects in numerical calculations. (a) λ = 0.25, h = 0.1 is taken
from the extended and topologically superconducting phase. The
eigenenergies are completely real. (b), (c) λ = 0.25, h = 1 and λ =
0.5, h = 1 are taken from the critical phase, the spectrum is complex
with loops in the energy plane. (d) λ = 0.25, h = 2 is taken from
the localized phase, a loop in the spectrum encircling the origin of
the complex energy plane exists, which is absent in the topological
superconducting phase.

B. Non-Hermitian mosaic model with p-wave pairing

When κ � 2, Eq. (1) describes the quasiperiodic mosaic
model, which is highly significant to further explore the rich
ME physics. Moreover, the MEs with analytic functional
form can help in understanding the ME physics quantitatively
and better investigate the effect of interacting effects on the
MEs. In the following, we will study the exact MEs induced
by the interplay between p-wave pairing and non-Hermitian
quasiperiodic potential in the mosaic models.

Figure 5(a) shows the absolute values of eigenenergies and
the corresponding fractal dimension � as the function of h
under OBCs with the parameters � = λ = 0.5 and L = 600.
With the increase of h, a finite energy gap and a pair of
zero-energy end states always exist, which indicates that the
system is always in the topological superconducting phase.
From the fractal dimension � of bulk states in Fig. 5(a),
we can clearly see that the ME separates the extended and
localized states. The numerical results of ME are consistent
with the analytical expression in Eq. (18), indicating by the
dashed line in Fig. 5(a). � approximately changes from one to
zero when the energies across the dashed line. In Fig. 5(b), we
depict the Z2 topological invariant based on transfer matrix
and the generalized MP to check the topological nature of
the non-Hermitian mosaic model with p-wave pairing. The
ν = −1 and C = 1 reveal that the system stays in the topolog-
ical superconducting phase.

It is also found that correspondence between the exact MEs
and unconventional real-complex transition of eigenenergy
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FIG. 4. The localization transition and its connection with the
topological phase transition in the non-Hermitian AAH model (κ =
1) with L = κN = 300 under OBCs. The white dashed curves cor-
respond to the critical values hc = − ln | λ

t+�
| in λ − h plane. The

p-wave pairing is � = 0.5. (a) The fractal dimension � of the second
smallest energy eigenvalue |E |, (b) the Z2 topological invariant ν

based on the transfer matrix, (c) the minimum values E0 of |E |,
and (d) the generalized MP C as the function of the quasiperiodic
potential amplitude λ and complex phase h.

exists. In Fig. 5(c), we present the spectrum of the system
under PBCs with fixed h = 0.2. For the extended states, the
eigenenergies are completely real, as indicated in the dashed
ellipses. For the localized states, the spectrum is complex with
loops. In Fig. 5(d), h = 0.8, all the bulk states are localized,
so the spectrum is complex with loops. Because the system
is always in the topological superconducting phase, there is
no loop in the spectrum encircling the origin of the complex
energy plane [73,75].

In Fig. 5(e), we present the absolute value of eigenenergy
|E | and the corresponding fractal dimension � as the func-
tion of � with fixed λ = h = 0.5. With the increase of �,
the MZMs become localized and then extended again. The
bulk states still exhibit delocalization-localization transitions.
When the eigenenergies across the dashed lines as shown in
Fig. 5(e), � approximately changes from one to zero. Again,
the numerical results of the MEs are consistent with the an-
alytical curves obtained by Eq. (18). At the region around
� = 1, all the states are completely localized. In Fig. 5(f), we
also present the imaginary parts of corresponding eigenener-
gies |Im(E )| as the function of |E | and �. The exact MEs are
identical to the boundary of the unconventional real-complex
transition.

Figure 6 shows the behaviors for the mosaic model with
κ = 3. In Fig. 6(a), � = 0 is considered, and we show the
absolute values of the eigenenergies and the corresponding
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FIG. 5. (a) The absolute values of eigenenergies |E | and the corresponding fractal dimension � as a function of the complex phase h
for κ = 2 under OBCs. The dashed curve is the exact ME obtained from Eq. (18). (b) The two topological invariants ν = −1 and C = 1
reveal that the system will always exist in the topological superconducting phase for any finite h. (c), (d) The eigenenergies of Eq. (1) with
L = κN = 1974 under PBCs. (e) The absolute values of eigenenergies, the fractal dimension �, and (f) imaginary parts |Im(E )| as the function
of p-wave pairing � with λ = h = 0.5. The exact MEs are identical to the boundary of the unconventional real-complex transition.

fractal dimension � versus h with fixed λ = 0.5. The analyt-
ical expressions of the MEs are |Ec| = (1 ± 1

λe|h| )1/2, which
are plotted as dashed lines. In Fig. 6(b), the p-wave pairing
� is switched on. With the increase of h, the topological
phase transition takes place, which can be verified by the
Z2 topological invariant ν = −1 and the generalized MP
C = 1. The exponentially localized MZMs become more and
more extended and then disappear into the bulk. Furthermore,
the interplay between p-wave pairing and non-Hermitian
quasiperiodic potential in the mosaic model can induce lo-
calization phenomena. The MEs separating the extended and
localized states are very different from the standard mosaic
model [76]. In this case, it’s difficult to deduce the exact MEs
from the transfer matrix method. According to the numerical
results, we can introduce the following expressions to describe
the MEs approximatively:

E1
c =

[
1 − ln

∣∣∣∣ t − �

t + �

∣∣∣∣ − 1

λ/(t + �)

1

e|h|−ln | t−�
t+�

|

]1/2

;

E2
c =

[
1 − ln

∣∣∣∣ t − �

t + �

∣∣∣∣ + 1

λ/(t + �)

1

e|h|−ln | t−�
t+�

|

]1/2

;

E3
c =

[
1 + ln |t − �| − 1

λ/(t + �)

1

e|h|−ln |2(t−�)|

]1/2

;

E4
c =

[
1 + ln |t − �| + 1

λ/(t + �)

1

e|h|+ln |2(t−�)|

]1/2

. (19)

When the eigenenergies across the dashed lines as shown in
Fig. 6(b), � approximately changes from one to zero.

To check whether there is correspondence between the
MEs and unconventional real-complex transition of eigenen-
ergy, we take � = λ = 0.5, L = 987, and display the
eigenenergies of Eq. (1) with various h in Figs. 6(c)–6(f) under
PBCs. When h is small, the eigenenergies close to Re(E ) = 0
are in the extended states, and the complex spectrum with
loops are in the localized states. With the increase of h = 0.7,
a complex spectrum with multiple loops is observed. Two
pairs of loops are in the localized states and the other two
pairs are in the extended states. Near the topological phase
transition point, see Fig. 6(e), two loops encircling the origin
of the complex energy plane are in the localized states and the
other eigenenergies are in the extended states. In Fig. 6(f), the
system enters into the topologically trivial phase. There is a
large loop in the spectrum encircling the origin of the complex
energy plane. The states in this large loop are localized, and
the states in other small loops are still extended. In such a case,
we cannot read out the localization transition from the change
of the spectrum structure. The correspondence between the
MEs and unconventional real-complex transition is broken.

V. CONCLUSIONS

In summary, we study the localization phenomena and
topological phase transition in 1D AAH and mosaic quasiperi-
odic models with p-wave superconducting pairing and
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FIG. 6. (a) The absolute values of eigenenergies |E | and the corresponding fractal dimension � as the function of complex phase h for
κ = 3 with λ = 0.5 and � = 0. The dashed curves are the exact MEs |Ec| = (1 ± 1

λe|h| )1/2. (b) |E | and the fractal dimension � as the function
of h for κ = 3 with λ = � = 0.5. The dashed curves correspond to the MEs calculated by Eq. (19). The system is under OBCs and the size is
L = κN = 987. (c)–(f) The eigenenergies of the corresponding phase in Fig. 6(b) under PBCs.

complex on-site potentials, respectively. In such systems, we
generalize two topological invariants, the Z2 topological in-
variant based on the transfer matrix, and the generalized
MP, to characterize the topological superconducting phases.
In non-Hermitian AAH quasicrystals with p-wave pairing,
the system undergoes an extended-critical-localized phase
transition with increasing the complex phase, and the critical-
localized transition is accompanied by the topological phase
transition. By analyzing the localization transition, the fractal
dimensions of the states, and unconventional real-complex
transition of eigenenergy, we prove the existence of the
correspondence between the localization transition and un-
conventional real-complex transition. In mosaic models with
even intervals, the system always stays in the topological
superconducting phase for arbitrary finite complex on-site
potentials. We provide analytical expression of MEs and prove
the intrinsic relation between the MEs and unconventional
real-complex transition. In the mosaic model with odd inter-
vals, localization phenomena, topological phase transitions,
and rich MEs are induced. The correspondence between the
MEs and unconventional real-complex transitions is broken.
We cannot read out the localization transition from the change
of spectrum structure. In experiments, the models we studied

can be simulated in photonic systems [95,96], where the on-
site complex quasiperiodic potentials are introduced by the
low-finesse intracavity etalon [57]. Recently, the Kitaev model
was also simulated on quantum computers, which enabled
the related quantum phenomenon to be physically realized
[97–99]. Our study would be of importance and attractive for
analytically exploring the richness of non-Hermitian localiza-
tion phenomena and topological natures.
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