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Long-range interaction of magnetic moments in a coupled system
of superconductor-ferromagnet-superconductor Josephson junctions
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A mechanism of a superconductivity-mediated interaction of two magnets in a system of coupled
superconductor-ferromagnet-superconductor (S-F-S) Josephson junctions (JJs) with spin-orbit interaction is
proposed. The predicted indirect magnetic interaction favors the antiparallel orientation of the magnets. Its
spatial scale is not restricted by the proximity length scales of the superconductor. Our estimates suggest that
the interaction strength is not reduced considerably even at the macroscopic scales of the order of millimeters.
At larger distances l between the magnets the coupling constant exhibits the long-range power-law 1/l behavior.
The mechanism of the interaction is based on two key ingredients: (i) the anomalous ground-state phase shift
in the S-F-S JJ provides a magnetoelectric coupling between the condensate phase and the magnetization, and
(ii) the interaction is mediated by the condensate phase of the superconducting region connecting both JJs. In
addition, we demonstrate high tunability of the total magnetic configuration of the system by the externally
controlled superconducting phase between the leads.
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I. INTRODUCTION

Nowadays, heterostructures consisting of superconduct-
ing and magnetic materials are being actively studied both
theoretically and experimentally [1–6]. The reason for this
interest is the possibility to realize in such hybrids proper-
ties and effects that are not possible in individual materials.
In particular, one of the actively developing directions is
the search and study of physical principles that can pro-
vide an indirect long-range interaction of magnetic moments
through a superconductor. The indirect exchange interaction
between magnetic moments carried by conduction electrons
in a metal [Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion] is well known [7]. It has been studied in various materials
[8–13]. However, the strongly oscillating and decaying nature
of this interaction at the atomic scale makes it possible to
achieve interaction between magnetic moments at character-
istic distances not exceeding a few nanometers in layered
structures.

In recent years, experimental and theoretical studies, in
which the nonmagnetic interlayer between the magnets in spin
valves is replaced by a superconductor [14–21], have been
actively carried out. As it was first pointed out by de Gennes, a
superconductor makes the antiferromagnetic configuration of
magnets more favorable [22]. The reason for this is that with
such a mutual orientation of magnets, superconductivity in the
interlayer is less suppressed as a result of partial compensation
of paramagnetic depairing. The characteristic scale of such
an interaction is the superconducting coherence length ξS , at
which the effect of proximity to a magnet manifests itself in

a superconductor. It is tens to hundreds of nanometers, de-
pending on the specific superconductor used. For the case of a
d-wave superconductor the interaction length can be enhanced
due to the presence of nodal quasiparticles [17]. In recent
work [23] it was also proposed to use not the proximity effect
to establish a coupling between magnets, but the so-called
electromagnetic proximity effect [24], the essence of which
is the appearance of Meissner currents in a superconductor in
response to the presence of an adjacent magnetic material. The
characteristic scale of this coupling is the penetration depth of
the magnetic field.

The interaction between localized magnetic moments
through superconductors has also been studied [25–30], and
an additional RKKY contribution decaying exponentially over
ξS and with a weaker power-law suppression, which favors
an antiferromagnetic alignment, has been reported. Further, it
has been shown [31] that in superconductors with spin-orbit
coupling (SOC) the superconducting condensate is coupled to
the impurity spins, which results in more long-range nonex-
ponential power-law suppression of the interaction between
magnetic impurities.

Here we propose a fundamental principle of using the
superconducting state to establish (i) a total control over the
magnetic configuration of two magnets, which are inserted
into Josephson junctions (JJs), and (ii) a long-range indirect
interaction between their magnetic moments. The interaction
does not exploit proximity effects in superconductors and,
therefore, is not restricted by the typical proximity scales.
The mechanism is based on the fact that superconductivity
is a macroscopic quantum state with a single phase of the
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condensate wave function and the condensate phase is cou-
pled to the magnetization via the magnetoelectric effects.
Then, the ground-state energy of a system of two coupled
Josephson superconductor-ferromagnet-superconductor (S-F-
S) junctions at a given phase difference between the leads
depends on the mutual orientation of the magnetizations of
the ferromagnetic interlayers, which means an interaction be-
tween them. The mechanism is of similar “magnetoelectric”
origin as suggested in Ref. [31] for impurity spins, but is
realized in a very different class of physical systems.

The effect can be observed in the systems, where a cou-
pling between the direction of the magnetization of the magnet
and the Josephson phase occurs. It is known that such a
coupling physically manifests itself as the presence of an
anomalous phase shift in the ground state of a Josephson
junction and is realized in systems with a strong spin-orbit
coupling [32–43]. The strongest effect can be achieved in
Josephson junctions on a topological insulator [44–48] be-
cause in these materials the coupling between the electron
spin and its momentum is maximally strong (spin-momentum
locking) [49–52]. Josephson junctions with anomalous phase
shift generated by the Zeeman effect of the applied mag-
netic field have already been implemented experimentally by
several groups [53–56], including those on a topological in-
sulator. Modern materials and techniques allow for realization
of the anomalous ground-state phase in S-F-S JJs. One of the
possibilities is to use for the interlayers two-dimensional (2D)
or quasi-2D ferromagnets, where the Rashba spin-orbit cou-
pling can be strong due to the structural inversion symmetry
breaking. The other way is to exploit the ferromagnetic in-
sulator and three-dimensional (3D) topological-insulator (TI)
hybrids as interlayers [57–64].

II. SYSTEM AND MODEL

We consider two coupled S-F-S JJs, where S means a
conventional superconductor and F means that the interlayer
of each of the JJs consists of a spatially homogeneous ferro-
magnet with Rashba-type spin-orbit coupling. The spin-orbit
coupling can be intrinsic or due to the structural inversion
symmetry breaking, or it can be a hybrid interlayer consisting
of a ferromagnet and a spin-orbit material, or it can be a
ferromagnetic insulator on top of the 3D TI. The last model
is investigated in detail in the Appendix. If the ferromagnet
is an insulator, it is assumed that the magnetization M of
the ferromagnet induces an effective exchange field h ∼ M in
the underlying conductive layer. The sketch of the system is
represented in Fig. 1. The superconducting phase difference χ

between the leads is an external controlling parameter. First of
all we investigate the energy of the system as a function of χ

and m1 and m2, where mi is the unit vector along the direction
of the corresponding magnetization. It is assumed that the fer-
romagnets are easy-axis magnets with the easy axis along the
y direction. This choice of the easy-axis direction maximizes
the magnetoelectric coupling between the magnetic moment
and the superconducting phase, as it is discussed below.

The current-phase relation (CPR) of a separate S-F-S junc-
tion takes the form I = Ic sin(χi − χ0,i ), where χ0,i is the
anomalous phase shift and i = 1, 2. It has been found that
for Rashba-type SOC and ferromagnets on top of the 3D TI

FIG. 1. Sketch of the coupled system of two S-F-S JJs.

the anomalous phase shift is χ0 = r ĵ · (n × m), where ĵ is the
unit vector along the Josephson current and n is the unit vector
describing the direction of the structural anisotropy in the
system; in the case under consideration it is along the z axis.
The anomalous phase shift couples the superconducting phase
to the magnetization direction. r is a constant quantifying this
coupling strength. It is nonzero due to the presence of the
Rashba SOC or the spin-momentum locking in the 3D TI
surface states [35,41,45,46,65] and has been calculated in dif-
ferent models. For example, for Rashba-type SOC described
by the Hamiltonian HR = α[p × n]σ [σ = (σx, σy, σz )T is the
vector of Pauli matrices] in the ballistic regime and for large
Rashba constant α, the constant r is given by [35]

rb = 4hαd

(h̄vF )2
, (1)

where d is the length of the Josephson-junction interlayer, vF

is the Fermi velocity of the electrons in the interlayer, and h
is the absolute value of the exchange field in the interlayer of
the JJ. In the diffusive regime for weak α, highly transparent
interfaces and neglecting spin relaxation, the predicted result
for the constant r is

rd = τm∗2h(αd )3

3h̄6D
, (2)

where τ is the elastic scattering time, m∗ is the effective elec-
tron mass, and D is the diffusion constant [39]. For the S-F-S
JJs on top of the 3D TI it has been predicted that r = 2hd/vF

[46,65]. Therefore, we can conclude that symmetry of our
system dictates that

χ0,i = rmyi, (3)

irrespective of the particular model. This relation also survives
in the dynamic situation mi = mi(t ) and has been used for
calculation of the magnetization dynamics in voltage-biased
and current-biased JJs [65–68].

The critical current depends crucially on the particular
model. For example, it can be independent on the magneti-
zation direction, as it has been reported for the ferromagnets
with SOC [35], or it can depend strongly on the x component
of the magnetization, as it takes place for the ferromagnetic
interlayers on top of the 3D TI [46,65]. Here, we focus on
the model where Ic does not depend on the magnetization
direction. The influence of the dependence Ic(m) on the results
is considered in detail in the Appendix. The energy of the
system consists of the Josephson energies of both junctions
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and the easy-axis anisotropy energies of both magnets:

E = h̄

2e
[Ic(1 − cos(ψ1 − χ0,1))

+ Ic(1 − cos(χ − ψ2 − χ0,2))] − KVF

2

(
m2

y1 + m2
y2

)
,

(4)

where K is the anisotropy constant and VF is the volume
of the ferromagnet. ψ1,2 are the values of the phase of the
middle superconductor (Smid in Fig. 1) at the F1/Smid and
Smid/F2 interfaces. ψ1,2 = ψ0 ∓ κ (I/2Ic), where the second
term accounts for the phase gradient due to the supercurrent
flowing through the system and κ ∝ l , where l is the length of
Smid. The current conservation dictates

Ic sin(ψ1 − χ0,1) = Ic sin(χ − ψ2 − χ0,2). (5)

Eliminating the phase ψ0 making use of Eq. (5), the energy of
the coupled JJs takes the form

E = 2EJ

[
1 − cos

(
χ

2
− χ̄0 − κ

I

2Ic
+ πn

)]

− EM
(
m2

y1 + m2
y2

)
, (6)

where EJ = h̄Ic/2e, EM = KVF /2, χ̄0 = (χ0,1 + χ0,2)/2, and
n is an integer number. Equation (6) should be supplied by the
“self-consistency equation” for the Josephson current:

I = Ic sin
(χ

2
− χ̄0 − κ

I

2Ic
+ πn

)
. (7)

III. PHASE-DEPENDENT STABLE MAGNETIC
CONFIGURATIONS

At first we discuss the dependence of the total magnetic
configuration (m1, m2) on the external phase difference χ

and its tunability by this parameter. To simplify the analysis,
we disregard the order-parameter phase gradient κ in the
middle superconductor. As it is suggested by our estimates
of κ (see below), this approximation should be valid up to
the submillimeter scale. The influence of κ on the magnetic
configuration and its tunability is discussed at the end of this
section.

Neglecting κ , Eq. (6) is reduced to

E± = 2EJ

[
1 ∓ cos

(
χ

2
− r(my1 + my2)

2

)]

− EM
(
m2

y1 + m2
y2

)
. (8)

The energy E as a function of (my1, my2) at a given χ con-
sists of two branches E±, which differ by the phase π at
Smid. Examples of the corresponding plots are presented in
Figs. 2(a), 2(d), 2(e) and 2(h). The upper energy value at
a given magnetic configuration is unstable. Now we focus
on the magnetic configurations, corresponding to the extrema
of the energy. The magnetic part of the energy has a mini-
mum at my1(2) = ±1. We call the states with my1 = ±1 and
my2 = ±1 by the “corner states.” Let us consider the energy
in the vicinity of my1 = my2 = 1. At rEJ/2 < EM this corner
point is always a minimum of the energy (8) at any phase
difference. On the contrary, at rEJ/2 > EM it can become a
maximum of the energy (8) at a particular value of χ . The

situations corresponding to the other “corner states” lead to
the same result. Consequently, the corresponding magnetic
configuration can be made absolutely unstable by varying the
phase. Thus, the parameter r removes the degeneracy between
the corner states, making some of them stable and the others
unstable at a given phase difference. It allows for the control
of the magnetic configuration by variations of the supercon-
ducting phase χ . The other important parameter in the system
is the ratio of the magnetic anisotropy and Josephson energies
EM/EJ . The larger the parameter EM/EJ , the higher the energy
barrier between the different stable states, which worsens the
tunability.

The condition EM/EJ < (r/2)2 allows for appearance of
additional minima of the energy (8), which differ from the
corner states. Indeed, in order to have an energy minimum
at my1 �= ±1, we need ∂E±/∂my1 = 0 and ∂2E±/∂m2

y1 =
±2(r/2)2EJ cos[χ/2 − r(my1 + my2)/2] − 2EM > 0, which
is only possible under the above condition. The minima corre-
sponding to my1 �= 1 and my2 �= 1 do not occur in this model.

The two lines EM/EJ = r/2 and EM/EJ = (r/2)2 divide
the phase diagram of the system into four regions, which are
marked by numbers I–IV in the central panel of Fig. 2. As
discussed above, in regions I and III all the corner magnetic
configurations are stable or metastable at an arbitrary phase
difference. It leads to the absence of unstable parts of the
energy branches in Figs. 2(b) and 2(f). At the same time, the
analogous Figs. 2(c) and 2(g), corresponding to regions II and
IV, respectively, have unstable parts. It means that in these
regions the magnetic configuration can be easily manipulated
by the phase variations.

The right column of Fig. 2 corresponds to regions III and
IV, where “nonaligned” stable magnetic states are possible
at particular values of χ . The “nonaligned” stable states are
demonstrated in Figs. 2(e) and 2(h) by points and arrows.
The energy of these stable nonaligned states as a function
of χ is represented in Figs. 2(f) and 2(g) by black lines.
The ranges of χ values, where the nonaligned stable states
exist, are small and for this reason the corresponding parts
of the energy branches are shown on larger scale. Therefore,
in region IV the magnetic configuration of the system can be
switched between ↑↑, ↓↓, antiparallel (AP), and nonaligned
states by varying the phase difference. With good accuracy,
the influence of nonzero κ on the phase diagram can be taken
into account by replacing r → r/(1 + κ/2).

We concentrate on the parameters falling into region II
of the phase diagram. On the one hand, in this region the
magnetic configuration is tunable by the phase difference.
On the other hand, the physical picture is more transparent
here because of the absence of the nonaligned extreme states.
Therefore, all the extreme magnetic configurations are real-
ized by the corner states. An example of the energy of the
corner magnetic configurations as a function of χ is presented
in Fig. 2(c). Due to the reflection symmetry with respect to
the (x, z) plane, E↑↑(χ ) = E↓↓(−χ ) and E↑↓(χ ) = E↓↑(−χ ).
It is seen from Fig. 2(c) that at r �= 0, E↑↑(χ ) and E↓↓(χ )
are asymmetric functions of χ and, therefore, the degeneracy
between them is removed. At the same time E↑↓(χ ) is a
symmetric function of χ and, consequently, the states ↑↓ and
↓↑ remain degenerate and we refer to them as the antiparallel
(AP) state. ↑↑, ↓↓, and AP states can be stable (solid) or
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FIG. 2. Middle: the phase diagram representing four physically different regions corresponding to the corner stable or metastable magnetic
configuration (I); corner stable or unstable (II); corner + nonaligned stable or metastable (III); and corner + nonaligned stable or unstable (IV)
extremum states. (a) Energy of the system for the pink point from region I as a function of (my,1, my,2 ) at χ = 2.3. (b) Energy branches of the
corner magnetic configurations for the pink point from region I as functions of χ . The thin part of each branch is unstable with respect to a π

shift of ψ0 and jump to the corresponding bold part. (c), (d) The same as (a) and (b) but for the pink point from region II. The dashed parts of
the branches correspond to unstable corner states. (e), (f) The same as (a) and (b) but for the pink point from region III. (g), (h) The same as
(a) and (b) but for the pink point from region IV. κ = 0.

unstable (dashed) depending on χ . The upper branches of the
energy, which are unstable with respect to the π jump of Smid

phase, are shown by thin lines. Each of the states represents
the ground state of the system for the particular range of χ .
Thus, at the chosen parameters any of the corner magnetic
states can be realized by adjusting the phase, that is, the total
control over the magnetic configuration is possible.

We have estimated the parameters EM/EJ and r for the
model of the insulating ferromagnet on top of the 3D TI.
We take the parameters corresponding to Nb/Bi2Te3/Nb
Josephson junctions [69]: the junction length d = 50 nm,
Ic = 40 A/m, vF = 105 m/s. We assume EM ∼ [(10 −
102) erg/cm3] × dF for yttrium-iron-garnet (YIG) thin films
[70], where dF = 10 nm is the F thickness along the z
direction. It gives EM/EJ ∼ 10−2–10−1. Based on the ex-

perimental data on the Curie temperature of the magnetized
TI surface states [63], where the Curie temperature in the
range 20–150 K was reported, we can roughly estimate h �
0.01–0.1hYIG. It corresponds to the dimensionless parameter
r = 2hd/vF � 2–13.

IV. LONG-RANGE INDIRECT MAGNETIC INTERACTION

The minima of all the energy branches [see Fig. 2(c)]
correspond to I = 0. In the vicinity of the minima E can be ap-
proximated by E = EJ (I/Ic)2 − EM (m2

y1 + m2
y2). The current

I can be found from Eq. (7) as I/Ic ≈ χ/2 − χ̄0 − κ (I/2Ic) +
πn and n is chosen to have I/Ic close to zero, which results in

I

Ic
= χ̃ − 2χ̄0

2 + κ
, (9)
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where χ̃ = χ + 2πn. Substituting Eq. (9) into the energy, we
obtain

E ≈ −2EJr(my1 + my2)χ̃

(2 + κ )2
+ EJr2

(
m2

y1 + m2
y2

)
(2 + κ )2

+ 2EJr2my1my2

(2 + κ )2
− EM

(
m2

y1 + m2
y2

) + const. (10)

The first term in Eq. (10) accounts for the individual coupling
of the magnetic moments to the phase, the second term works
as an additional contribution to the magnetic anisotropy, and
the third term describes the interaction between the mo-
ments. The coupling constant Jeff = 2EJr2/(2 + κ )2 > 0 and,
therefore, the interaction favors the antiparallel alignment. At
larger external phases χ the first term dominates resulting in
the ↑↑ or ↓↓ ground state, as it is seen from Fig. 2(c), but
at smaller phases the antiferromagnetic interaction overcomes
this term. The spatial dependence of Jeff is determined by
κ ∝ l , that is Jeff ∝ l−2 for large l . For estimates of κ ∼
eIcl/σS�S, where � is the superconducting order parameter,
σS is the normal-state conductivity of the middle supercon-
ductor and S is its cross section, we take typical parameters
of Nb/Bi2Te3/Nb JJs [69], Ic = w[40 A/m], where w ∼ 1 μm
is the width of the JJ along the y direction, σS = σNb =
107 (� m)−1, �Nb = 2.5 × 10−22 J, and S = (1 μm)2. Then,
κ ∼ 1 at l ∼ 1 mm. Therefore, the results represented in
Fig. 2 and calculated at κ = 0 are applicable for the distances
between the magnets up to submillimeter scale. In addition,
for the lengths of the middle superconductor of the order of
∼1 mm the inductance energy EL = LI2/2 becomes of the
same order of magnitude as the Josephson energy and should
be taken into account. Accounting for this energy results in
the substitution EJ → EJ + LI2

c /2 in Eq. (10). Because of
L ∝ l that modifies Jeff ∝ l−1 at large distances between the
magnets.

It is worth to stress that the effective magnetic interaction
described by Eq. (10) can be only realized under the fixed
superconducting phase χ . If instead we consider the current
I as an external fixed parameter, there is no interaction be-
tween the magnets. The reason is explained in Fig. 3, where
the ground-state energy of the individual S-F-S junction with
the anomalous phase shift and the CPR of the junction are
presented as functions of χ . It is seen that if we fix a current
[dashed line in Fig. 3(b)], then for not very large current
values this current can be supplied by two different phases
χ . Both values of χ describe energetically degenerate states,
as it is demonstrated in Fig. 3(a), but correspond to the op-
posite directions of the magnetic moment of the interlayer.
Therefore, at small enough applied currents the orientation of
each of the magnets is chosen by the system spontaneously
and independently on the orientation of the other magnet.

Experimentally, the phase χ can be controlled by several
ways. One of them is to insert the considered system into
the superconducting loop under the applied magnetic flux, the
other way is to insert it into the asymmetric Josephson inter-
ferometer, where the considered system is in parallel with an
ordinary Josephson junction with a much higher critical cur-
rent. Then, the magnetic state of the system can be controlled
by the external current. Moreover, if the system is in the
regime of the AP ground state, where the interaction between

)a( )b(

E
/E

J

I
/I

c

χχ

FIG. 3. (a) Ground-state energy of the individual S-F-S junction
with the anomalous phase shift. Due to the presence of the anoma-
lous phase shift, which depends on the magnetization direction, the
standard cosine energy curves for both magnetization orientations
are shifted. As a result, the ground state at a given phase is realized
by different magnetization orientations, as shown by different colors
and arrows in the figure. (b) CPR of the individual S-F-S junction
with the anomalous phase shift. For a given value of the applied
current, shown by the dashed line, there are two states of the system
supporting the current. They are marked by the black points and
correspond to the opposite orientations of the magnetic moment, but
are degenerate in energy, as it is indicated by the same black points
in (a).

the magnets dominates over the individual interactions of the
magnets with the phase, the orientation of a magnet can be
remotely switched by the external impact on the other magnet.
Further, we investigate the dynamics of the above-mentioned
processes.

V. DYNAMICS

The dynamics of each of the magnets i = 1, 2 is described
by the Landau-Lifshitz-Gilbert (LLG) equation

∂mi

∂t
= −γ mi × Heff + αmi × ∂mi

∂t

− γ rI

2eMddF
[m × ey], (11)

where γ is the gyromagnetic ratio, Heff = (K/M )myey is
the local effective field in the ferromagnet induced by the
easy-axis magnetic anisotropy, and α is the Gilbert damping
constant. The last term in Eq. (11) describes the spin-orbit
torque, exerted on the magnet by the electric current I
[71–74]. The torque is averaged over the ferromagnet thick-
ness dF along the z direction. The total current flowing
through each of the JJs consists of the supercurrent and the
normal quasiparticle current contributions [75,76]:

I = Ic sin(χi − χ0,i ) + 1

2eRN
(χ̇i − χ̇0,i ), (12)

where χ1 = ψ0(t ) and χ2 = χ (t ) − ψ0(t ). Here, we assume
κ = 0. The dynamics of the magnetizations m1,2 is calculated
numerically from Eqs. (11) and (12). The equations for the
both JJs are coupled via the phase ψ0(t ). If the normal cur-
rent, represented by the second term in Eq. (12) is small, the
torque is mainly determined by the supercurrent and can be
calculated via the additional contribution to the effective field
in Eq. (11) δHeff = −(1/MddF )dE/dm [65–68], which leads
to Eq. (11) with I → Ic sin(χi − χ0,i ).

The resulting control over the magnetic state of the system
(corresponding to the parameters falling into region II of the
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FIG. 4. (a) Time evolution of my1 (red) and my2 (blue) un-
der the adiabatic variation of the phase χ = 2 eV t . t0 = M/γ K ,
eV t0 = 10−4, 2eRN Ict0 = 103, r = 0.7, EM/EJ = 0.2, α = 0.02, κ =
0. (b) Matching the dynamic magnetic configuration (black line),
presented in (a) to the energy of the system. (c) Time evolution of
my1 (red) and my2 (blue) initiated by m1 reversal at t = 0 under a
given χ .

phase diagram) by the adiabatic phase variation is demon-
strated in Figs. 4(a) and 4(b). Figure 4(a) represents my1 (red)
and my2 (blue) as functions of χ ∝ t starting from the initial
AP configuration. In Fig. 4(b) we match the dynamic magnetic
configuration of the system with the energy of the equilibrium
state at the same phase difference. The matching is performed
for the phase interval χ ∈ (π, 3π ).

The results of the remote switching of m2 by the external
impact on m1 are demonstrated in Fig. 4(c). The phase χ is
chosen in such a way that the equilibrium magnetic config-
uration is AP. At t = 0, m1 is fixed in the new position by
external means (for example, by the applied magnetic field).
It is seen that m2 also switches in order to make the magnetic
configuration AP, which is energetically favorable at the given
χ . The characteristic time of the reversal is much larger than
t0 = M/γ K , which is the characteristic time of magnetization
dynamics, and depends essentially on the particular value
of χ .

The dynamics of the magnetic configuration in region IV
of the phase diagram under the adiabatic phase variations
χ = 2eV t is shown in Fig. 5. Figure 5(a) demonstrates that the
switching between ↓↓ and AP configurations occurs via the

nonaligned states, where one of the y components of the mag-
netization is less than unity. Figure 5(b) illustrates matching
between the dynamical trajectory of the time evolution of the
magnetic configuration and the equilibrium energy branches.

VI. CONCLUSIONS

In conclusion, we have proposed a mechanism of long-
range antiferromagnetic interaction via the superconducting
phase between the magnets incorporated into a system of
coupled S-F-S JJs. It is based on (i) the magnetoelectric
coupling between the condensate phase difference and the
magnetization in the weak link of the JJs with anomalous
ground-state phase and (ii) the macroscopic character of the
superconducting phase in the middle superconductor, which
interacts with both magnets, thus mediating the interaction
between them. The interaction strength is not determined by
the proximity length scales and decays ∝ l−1 at large distance
l between the magnets. It is also demonstrated that the total
magnetic configuration of the system can be controlled and
manipulated via the superconducting phase.
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APPENDIX: ROLE OF THE DEPENDENCE OF THE
CRITICAL CURRENT ON THE MAGNETIZATION

DIRECTION

Here, by considering the particular model of the S-F-S JJs
on top of the 3D TI we investigate the role of the dependence
of the critical current on the magnetization direction Ic(m).
The interlayer region of a S-3D TI-S JJ is covered by a
ferromagnet. We believe that our results can be of potential
interest for systems based on Be2Se3/YIG or Be2Se3/EuS hy-
brids, which were realized experimentally. It is assumed that
the ferromagnet induces an effective exchange field h ∝ M
(where M is the ferromagnet magnetization) in the underlying
3D TI surface states, as it has been reported experimentally
[63]. The sketch of the setup is shown in Fig. 6(a).
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FIG. 5. (a) Time evolution of my1,2 under the adiabatic variation of the phase χ = 2eV t in region IV (r = 0.7, EM/EJ = 0.05). eV t0 =
5 × 10−4. (b) Matching the dynamical magnetic configuration, presented in (a) to the energy of the system. Black line is the dynamical
trajectory of the system. (c) Energy in the range χ ∈ (−1.2, 0), where the system switches from ↓↓ to AP configuration via the nonaligned
state, on a larger scale. The yellow line is the equilibrium nonaligned energy branch and the thin black line is the dynamical trajectory of the
system.
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FIG. 6. (a) Sketch of the system of two coupled S-F-S JJs on top of a 3D TI. (b) Ic as a function of mx for r = 13.2, d/ξN = 4.1 (solid blue);
r = 2.6, d/ξN = 4.1 (solid red); r = 13.2, d/ξN = 0.74 (dashed blue); r = 2.6, d/ξN = 0.74 (dashed red). Ic is normalized to Ic(mx = 0).

The Josephson current assuming the ballistic limit for the
3D TI surface states and in the vicinity of the critical temper-
ature takes the form [65]

Is = Ic sin(χ − χ0), (A1)

Ic = Ib

∫ π/2

−π/2
dφ cos φ exp

[
− 2πT d

vF cos φ

]
cos[rmx tan φ],

(A2)

χ0 = 2hyd/vF = rmy, (A3)

where r = 2hd/vF for the 3D TI and Ib = evF NF �2/(π2T ),
vF and NF are the Fermi velocity and the normal-state density
of states at the 3D TI surface. Here, the critical Josephson
current is only suppressed by the x component of the ex-
change field. The y component of the field does not lead to
the suppression, instead it gives rise to the anomalous phase
shift. This statement is also valid for the diffusive case. The
Josephson current in 3D TI-based Josephson current has been
considered in Ref. [46] and exactly the same expression for
the anomalous phase shift χ0 has been obtained. The result
for the critical current is different in the diffusive case, but

it still only depends on the x component of the exchange
field. The suppression of the critical current as a function of
mx ≡ Mx/Ms is presented in Fig. 6(b). For estimates we take
d = 50 nm, vF = 105 m/s, and Tc = 10 K, which corresponds
to the parameters of Nb/Bi2Te3/Nb Josephson junctions [69].
In this case ξN = vF /2πTc ≈ 12 nm. We have also plotted
Ic(mx ) for Tc = 1.8 K, which corresponds to the Josephson
junctions with Al leads.

Making use of the current conservation condition (5), the
energy of the system can be expressed in the form

E± = h̄

2e

[
Ic1(mx1) + Ic2(mx2) ∓ I (m1, m2)

]

− KVF

2

(
m2

y1 + m2
y2

)
, (A4)

where

I (m1, m2) =
√

I2
c1 + I2

c2 + 2Ic1Ic2 cos(χ − χ0,1 − χ0,2) (A5)

and Ic1(2) = Ic1(2)(mx1(2)). Equation (A4) is exploited to cal-
culate the phase diagrams, presented in Fig. 7 and the energy
surfaces in Fig. 8. Physically different regions of the phase
diagram are marked by the same numbers as for the previous

)b()a(
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/E
J

E
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J

rr

II
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IVa
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IV

FIG. 7. (a) Phase diagram of the S-F-S JJ on top of the 3D TI. For description of the different regions see text. (b) The bottom left corner
of the diagram on a large scale.
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FIG. 8. Energy as function of (my1, my2). (a) χ = 2.0, r = 0.7, and EM/EJ = 0.2; (b) χ = −2.5, r = 2.5, and EM/EJ = 0.5.

model with constant critical current. Figure 7(b) is the bottom
left corner of the phase diagram, presented in Fig. 7(a) on a
larger scale. It demonstrates region II, which is very small
in Fig. 7(a). The black curves in this figure represent the
lines EM/EJ = r/2 and EM/EJ = (r/2)2, which separate the
different regions in the framework of the previous model. It
is seen that the boundaries between the different regions are
changed due to the dependence of the critical current on the
magnetization direction. Region III disappears in this model,
and region IV is expanded. It is also seen from Fig. 7(a)
that region IV can be divided into two subregions. Only
“edge” nonaligned states with my1 = ±1 or my2 = ±1 are
possible in subregion IVa, analogously to the previous model.
At the same time, additional nonaligned states, corresponding
to my1 �= ±1 and my2 �= ±1, appear in subregion IVb. The
reason is the suppression of the critical current by mx. The
lower critical current means the smaller Josephson energy at a
given phase difference, which is more energetically favorable.
The suppression is also controlled by the parameter r, as it
can be seen from Eq. (A2). Consequently, from the point of
view of the Josephson energy, it is favorable to enhance mx.
This tendency competes with the magnetic anisotropy energy,
which tends to enhance my. Therefore, at large enough values
of r and, simultaneously, small enough EM/EJ , the nonedge
states my1 �= ±1 and my2 �= ±1 can become energetically
favorable, which is realized in region IVb.

The described above competition between the Josephson
and magnetic energies is further illustrated in Fig. 8. It demon-

strates the system energy as a function of (my1, my2) for the
same parameters, which are used for Figs. 2(d) and 2(h). The
only difference between the corresponding figures is that Ic

does not depend on mx in Fig. 2 and it depends on mx in
Fig. 8. It is seen that at small r = 0.7 the difference between
the corresponding Figs. 2(d) and 8(a) is not essential. At the
same time, at r = 2.5, Figs. 2(h) and 8(b) are qualitatively
different. The reason is connected to the suppression of the
critical current at nonzero mx and the resulting energy gain, as
it is described above.

Further, in Fig. 9 we demonstrate the influence of Ic(mx )
on the dynamics of the magnetic configuration under the adia-
batic phase variations. This figure can hardly be differed from
Figs. 3(a) and 3(b). First of all, the energy branches of the
corner states do not differ at all. It is natural because mx = 0
for the corner states and, therefore, the dependence Ic(mx )
does not influence them. Moreover, the dynamical trajectory
is also very similar. It is valid for small enough r because in
this case the nonaligned states are energetically close to the
corner states and only exist in the narrow regions of the super-
conducting phase ψ0. For this reason, the system practically
does not occur in the nonaligned states. At larger r the regions
of the nonaligned states existence expand and the dynamics
can be modified. However, these regions probably are not of
great interest for studying because of the strong Josephson
current suppression at the magnetization orientations mx �= 0.
The suppression strongly weakens the interaction between the
magnets, mediated by the Josephson coupling.
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FIG. 9. (a) Time evolution of my,1,2 under the adiabatic variation of the phase χ = 2eV t for the S-F-S JJ on top of the 3D TI. eV t0 =
5 × 10−4. (b) Matching the dynamical magnetic configuration, presented in (a) to the energy of the system. Black line is the dynamical
trajectory of the system. r = 0.7, EM/EJ = 0.2.
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