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Enhancing d-wave superconductivity with nearest-neighbor attraction
in the extended Hubbard model
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Motivated by the recent discovery of the anomalously nearest-neighbor attraction arising from the electron-
phonon coupling, we quantitatively investigate the enhancing effects of this additional attractive channel
on the d-wave superconductivity based on dynamic cluster quantum Monte Carlo calculations of a doped
two-dimensional extended Hubbard model with nearest-neighbor attraction −V . Focusing on the range of
0 < −V/t � 2, our simulations indicate that the dynamics of d-wave projected pairing interaction is attractive at
all frequencies and increases with |V |. Moreover, turning on −V attraction enhances the (π, π ) spin fluctuations
but only enhances (suppresses) the charge fluctuations for small (large) momentum transfer. Thus, at V/t = −1
relevant to the “holon folding branch”, the charge fluctuations are insufficient to compete with the d-wave pairing
interaction strengthened by enhanced spin fluctuations. Our work suggests the underlying rich interplay between
the spin and charge fluctuations in giving rise to the superconducting properties.
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I. INTRODUCTION

The pairing mechanism mediated by virtual exchange
of a bosonic mode plays the key role in overcoming the
Coulomb repulsion between electrons in order to give rise
to a net attractive interaction for Cooper pairing. In con-
ventional Bardeen-Cooper-Schrieffer superconductors, this
bosonic mechanism is realized by the retardation nature of
the electron-phonon interaction [1]. Despite that there is no
general consensus, there has been strong evidence that in
strongly correlated superconductors such as the cuprates and
heavy fermion materials, the antiferromagnetic spin fluctua-
tions, namely the magnons, play the role of the bosonic mode.
In this scenario, the minimization of the repulsive interaction
due to the local Coulomb repulsion can be accomplished via
the sign changing of the pairing wave function, for instance,
the dx2−y2 -wave pair state in the cuprates [2].

Regarding the pairing mechanism in cuprates, there has
been long debate on the role of the electron-phonon in-
teraction and particularly its relation to superconductivity
(SC). Although it is widely believed that the pure electron-
electron interaction dominantly drive the Cooper pairing and
the electron-phonon coupling (EPC) only plays a minor role,
there has been spectroscopic evidence that the effects of strong
electronic interaction and the EPC reinforce each other to
drive a stronger SC in the strange-metal regime of Bi-2212
[3], which indicates the possible enhancement of SC through
multiple channels; for instance, the contribution from the
phonon coupling, in addition to the pure electronic interaction.
In fact, the EPC does not only manifest its importance in the
enhancement of Tc. Most recently, comparative spectroscopic
and theoretical investigation of a one-dimensional cuprate
Ba2−xSrxCuO3+d over a wide range of hole doping revealed
the existence of an anomalously strong nearest-neighbor
attraction [4], which probably originates from the EPC, in ac-
counting for the so-called “holon folding branch” feature [5].

Given the structural similarity among the cuprates,
the physics with nearest-neighbor attraction of the one-
dimensional material should be naturally extended to two-
dimensional CuO2 planes. Because how to enhance the
superconducting Tc is an important open question, the effects
of the additional attractive channel and its interplay with the
pure electron-electron interaction deserves more systematic
exploration. Here we adopt an extended Hubbard model with
both strong local repulsion and nearest-neighbor attraction
as the minimal model. In particular, we focus on the explicit
enhancement of the d-wave SC by the inclusion of additional
strong nearest-neighbor attraction. The Hamiltonian reads as

H = − t
∑
〈i j〉,σ

(c†
iσ c jσ + h.c.) + U

∑
i

ni↑ni↓

+ V
∑

〈i j〉,σσ ′
niσ n jσ ′ (1)

with the usual nearest-neighbor hopping t = 1 as the unit
energy scale, the on-site Coulomb repulsion U , and an addi-
tional nearest-neighbor Coulomb attraction V < 0. Note that
this attractive V has an important difference from the con-
ventional extended Hubbard model with repulsive V , which
has been widely studied for the physics induced by the nonlo-
cal Coulomb repulsion [6–14]. Regarding its superconducting
properties, the consensus is that the d-wave pairing and the as-
sociated transition temperature are only weakly suppressed as
long as the repulsive V does not exceed U/2. This robustness
is owing to the retarded nature of d-wave pairing to minimize
the impact of nonlocal repulsion [6,8,11]. In the case of neg-
ative V , it is naively expected that attractive nearest-neighbor
interactions always enhance the SC because the neighboring
attraction naturally contributes the d-wave pairs as indicated
by early Hartree-Fock calculations [15]. Conversely, the re-
cent numerical exact diagonalization study [7] uncovered that
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the nearest-neighbor attractions also have thresholds above
which the SC will be finally suppressed, which corrects the in-
tuition that attractive and repulsive interactions have definitely
opposite effects on SC. We emphasize that the enhanced SC
explored in this work is around the moderate 0 � |V | � 2t
range, which is much smaller than the threshold needed to
suppress SC, to be consistent with the amplitude of the anoma-
lous nearest-neighbor attraction |V | ∼ t extracted from both
experimental and theoretical studies [4,5]. Also, we neglect
the important but still open question of whether the pure
Hubbard model at V = 0 hosts a superconducting ground state
or not [16,17].

II. DYNAMICAL CLUSTER APPROXIMATION

Here we adopt the dynamical cluster approximation (DCA)
[18–20] with a continuous time auxilary field (CT-AUX)
quantum Monte Carlo (QMC) cluster solver [21] to nu-
merically solve the model Eq. (1). As one of various
embedded-cluster methods, similar to the cluster dynamical
mean field theory (cDMFT), DCA maps the bulk lattice prob-
lem onto a finite cluster of size Nc, whose physics involving
complex interactions is solved exactly by various methods e.g.
QMC and exact diagonalization, while the remaining degrees
of freedom are treated at the mean-field level. Precisely, the
first Brillouin zone is divided into Nc patches denoted by its
center wave vector K surrounded by N/Nc lattice wave vectors
k’s. In this way, the original lattice problem of N sites is
simplified to an effective Nc-site cluster problem by coarse
graining the lattice single-particle Green’s function, which is
designed to converge to a cluster Green’s function obtained
by the cluster solver mentioned earlier [18,20]. Although the
inter-cluster interactions can be treated more accurately with
an additional bosonic dynamic mean-field [22] as adopted in
the extended DMFT [23], in this work we neglect its dynamic
contribution for simplicity [11].

To achieve the goal of simulating a wide range of doping
levels, most of our calculations are for smallest Nc = 2 × 2
DCA cluster to manage the sign problem of the underlying
CT-AUX QMC solver [21,24] down to the SC transition tem-
peratures T ∼ Tc. Despite the small cluster size, the pairing
interaction and dynamics should be fully descriptive at this
level. In fact, the simulations with larger cluster Nc = 4 × 4
are also performed to (1) confirm the enhancing effects of the
attractive V while at higher temperature scale due to the QMC
sign problem and (2) to investigate the competing role of spin
and charge fluctuations in a finer momentum resolution.

To investigate the superconducting, charge, and magnetic
instability of a particular model Hamiltonian, one has to de-
termine the structure of the interaction responsible for these
channels. Essentially, the cluster two-particle Green’s func-
tion

χcσσ ′ (q, K, K ′) =
∫ β

0

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3dτ4

× ei[(ωn+ν)τ1−ωnτ2+ωn′ τ3−(ωn′+ν)τ4]

×〈T c†
K+q,σ (τ1)cKσ (τ2)c†

K ′σ ′ (τ3)cK ′+q,σ ′ (τ4)〉
(2)

with conventional notation K = (K, iωn), K ′ = (K′, iωn′ ),
q = (q, iν) and the time-ordering operator T can be cal-
culated numerically via a DCA cluster solver (CT-AUX in
our case). Then the cluster two-particle irreducible vertex
	cσσ ′ (q, K, K ′) can be extracted through the Bethe-Salpeter
equation (BSE)

χcσσ ′ (q, K, K ′) =χ0
cσσ ′ (q, K, K ′) + χ0

cσσ ′′ (q, K, K ′′)

× 	cσ ′′σ ′′′ (q, K ′′, K ′′′)χcσ ′′′σ ′ (q, K ′′′, K ′),

(3)

where χ0
cσσ ′ (q, K, K ′) is the noninteracting two-particle

Green’s function constructed from the product of a pair of
fully dressed single-particle Green’s functions. The usual con-
vention that the summation is to be made for repeated indices
is adopted.

Note that the above formalism Eqs. (2) and (3) has their
counterparts for the corresponding lattice quantities, whose
numerical calculations are, however, impractical due to their
continuous nature. Therefore, one of the key DCA assump-
tions is that the cluster two-particle irreducible vertex 	c is
used as the approximation of the desired lattice two-particle
irreducible vertex 	.

The two-particle irreducible vertex and associated BSE
Eq. (3) can be classified according to the superconducting,
charge, and magnetic channels. In this work, we are mostly
interested in the particle-particle superconducting channel for
the zero center-of-mass and energy. To this aim, the super-
conductivity can be quantitatively displayed by the leading
eigenvalues of the BSE in the particle-particle channel in the
eigenequation form [25,26]

− T

Nc

∑
K ′

	pp(K, K ′)χ̄ pp
0 (K ′)φα (K ′) = λα (T )φα (K ), (4)

where 	pp(K, K ′) denotes the irreducible particle-particle ver-
tex of the effective cluster problem with the cluster momenta
K and Matsubara frequencies ωn = (2n + 1)πT . Note that
the spin indices are neglected for simplicity. Also, for the
superconducting channel, q = (q, iν) = 0 is assumed since
our focus in this work is the even-frequency even-parity (spin
singlet) d-wave pairing tendency [25,26]. The coarse-grained
bare particle-particle susceptibility

χ̄
pp
0 (K ) = Nc

N

∑
k′

G(K + k′)G(−K − k′) (5)

is obtained via the dressed single-particle Green’s function
G(k) ≡ G(k, iωn) = [iωn + μ − εk − �(K, iωn)]−1, where k
belongs to the DCA patch surrounding the cluster momen-
tum K, μ is the chemical potential, εk = −2t (cos kx + cos ky)
is the dispersion relation, and �(K, iωn) is the cluster self-
energy. In practice, we usually choose 16 discrete points
for both the positive and negative fermionic Matsubara fre-
quency ωn = (2n + 1)πT mesh for measuring the four-point
quantities like two-particle Green’s functions and irreducible
vertices. Therefore, the BSE Eq. (4) reduces to an eigenvalue
problem of a matrix of size (32Nc) × (32Nc).

The eigenvalue λα (T ) gives the pairing tendency of
the superconducting channel; while the symmetry of the
corresponding superconducting state is manifested by the
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momentum and frequency dependence of the eigenvector
φα (K, iωn). Note that the magnitude of λα (T ) denotes the
strength of the normal state pairing correlations. Accordingly,
the spatial, frequency, and more generally orbital dependence
of the eigenvector φα (K, iωn) can be viewed as the normal
state analog of the superconducting gap to reflect the structure
of the pairing interaction [25,26]. The superconducting Tc is
extracted via the temperature where the leading eigenvalue
of Eq. (4) λ(Tc) = 1. As expected for the extended Hubbard
model, the leading pairing symmetry occurs for the d-wave
channel with momentum structure cos Kx − cos Ky so that we
are only concerned in the leading eigenvalues λd and associ-
ated φd (K, iωn).

As discussed by Scalapino [26], the two-particle irre-
ducible particle-particle vertex 	pp as the pairing interaction
is connected to the four-point vertex function, which also
contains information about the irreducible particle-hole ver-
tex 	ph in magnetic and charge channels. Thus, the pairing
interaction 	pp has an intrinsic relation to these particle-hole
channels 	ph. In fact, the dominant contribution of the d-wave
pairing interaction has been shown to arise from the spin-
one (S = 1) particle-hole exchange [25,26]. Therefore, in this
work we also extract the irreducible particle-hole vertex 	ph

in the magnetic and charge channels of the effective cluster
problem, respectively, from Eq. (3) and thereby we have the
BSE in the eigenequation form similar to Eq. (4) but with
coarse-grained bare particle-hole susceptibility

χ̄
ph
0 (q, K, K ′) = δKK ′

Nc

N

∑
k′

G(K + k′)G(K + k′ + q). (6)

The corresponding eigenvalues for the particle-hole channels
reflect the magnetic and charge instabilities, e.g., spin and
charge density waves.

In this work we are only interested in the case of zero
frequency transfer (iν = 0) similar to the particle-particle su-
perconducting channel Eq. (4). Note, however, that we keep
the momentum transfer to calculate q-dependent lattice sus-
ceptibilities, which can be obtained by the coarse-grained
two-particle Green’s function χ̄ ph(q, K, K ′) (instead of cluster
quantities that result in cluster susceptibilities), which is in
turn calculated via the coarse-grained BSE transformed from
Eq. (3) as

[χ̄ ph(q, K, K ′)]−1 = [
χ̄

ph
0 (q, K, K ′)

]−1 − 	ph(q, K, K ′). (7)

Then our interested magnetic (s) and charge (c) lattice suscep-
tibilities χs,c(q, T ) can be deduced as

χs,c(q, T ) = T 2

N2
c

∑
K,K ′

χ̄ ph(q, K, K ′). (8)

We refer the readers to Ref. [27] for more details of the DCA
formalism of the calculations of two-particle quantities.

III. RESULTS

We first illustrate the temperature dependence of the lead-
ing d-wave eigenvalue λd (T ) for different V at fixed filling
ρ = 0.9 in Fig. 1(a). Apparently, the nearest-neighbor at-
tractive V leads to the increase of λd (T ) as the evidence
shows that the d-wave pairing tendency can be enhanced. To

FIG. 1. (a) Temperature dependence of the leading (dx2−y2 -wave)
eigenvalue λd (T ) of BSE Eq. (4) in the particle-particle channel at
U/t = 7 and 〈n〉 = 0.9; (b) The filling ρ dependence of the d-wave
superconducting Tc extracted from λd (Tc ) = 1 reveals the enhancing
effect of nearest-neighbor attraction; (c) Comparison of the leading
eigenvalues for d-wave superconducting, q = (π, π ) antiferromag-
netic, and q = (0, 0) charge channels.

clearly show the enhancing effects of V , Fig. 1(b) displays
the dependence of Tc extracted via λd (Tc) = 1 on the filling.
One can see that approximately 10–15% enhancement of Tc

with finite attraction is a general feature for all fillings con-
sidered here. Compared with the impact of repulsive V on
the d-wave pairing [11], the variation of Tc with ±V is not
exactly symmetric over V = 0 but has roughly the same scale.
Therefore, in this sense, the d-wave pairing has similar robust-
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FIG. 2. The d-wave projected irreducible particle-particle vertex
	d (iωm ) for different attraction V at U/t = 7 and 〈n〉 = 0.9 at T/t =
0.1. 	d is attractive at all frequencies.

ness against the additional channel of attractive interaction
from nearest-neighbor −V . In other words, the anomalously
nearest-neighbor attraction |V | ∼ t extracted from both ex-
perimental and theoretical studies to account for the “holon
folding branch” [4,5] does not have significant effects on the
d-wave superconducting Tc.

Besides the d-wave superconductivity, the (extended) Hub-
bard model can support other instabilities like spin and charge
density waves [6–14]. In particular, the additional nearest-
neighbor attraction is natural to host the charge ordering
instability. Therefore, to explore these instability apart from
superconductivity, Fig. 1(c) compares the temperature evolu-
tion of the leading eigenvalues for d-wave superconducting,
q = (π, π ) antiferromagnetic, and q = (0, 0) charge chan-
nels. The choice of these two particular q’s is motivated by
Fig. 4, which indicates that the leading lattice magnetic and
charge susceptibilities located at these two specific momen-
tum transfers.

On the one hand, apparently, the dominant instability at
low enough temperature is d-wave superconducting while at
higher temperatures the antiferromagnetic ordering instability
exceeds the pairing one [25]. On the other hand, the expected
charge ordering instability is always the subleading one since
our nearest-neighbor attraction V/t = −1 is still weak to sup-
press the leading d-wave pairing instability to induce the
desired charge ordering.

To have a better understanding of the pairing interaction
and its variation with the additional nearest-neighbor attrac-
tion, we resort to the d-wave projected dynamical pairing
interaction

	d (iωm) =
∑

K,K′ gd (K)	pp(K, iωn, K′, iωn′ )gd (K′)∑
K g2

d (K)
, (9)

and its dependence on the bosonic Matsubara frequency ωm =
ωn − ωn′ , where gd (K) = cos Kx − cos Ky gives the d-wave
projection factor, and the fixed ωn′ = πT is adopted. As
shown in Fig. 2, the pairing interaction 	d (iωm) is attractive
(negative) in all cases and the finite additional −V naturally
strengthens the attractive interaction favoring neighboring

FIG. 3. The leading d-wave eigenfunction φd (K = (π, 0), iωn)
of BSE Eq. (4) for different V at U/t = 7, T/t = 0.1 and 〈n〉 = 0.9.
The retardation of φd becomes stronger with increasing |V |.

spin configuration. At high frequencies, 	pp approaches the
bare interaction V (q = K − K′), which is the Fourier trans-
form of the nearest-neighbor interaction V . As confirmed in
Fig. 2, for our 2 × 2 cluster, we have 	d (iωm) ∼ 4V at large
iωm. Different from the repulsive V cases, where 	d (iωm) is
only attractive at low frequencies but repulsive at high enough
frequencies so that the effective attraction arises from the
low frequency components of 	d (iωm) [11], the persistent
attractive nature of 	d (iωm) reflects the cooperation between
the original effective attraction from pure local Coulomb re-
pulsion and the additional nearest-neighbor attraction.

The attractive feature and retardation nature of the d-wave
pairing interaction can be reflected via the leading d-wave
eigenvector φd (K, iωn) of Eq. (2), whose frequency depen-
dence is shown in Fig. 3 at K = (π, 0) and T = 0.1 for
varying V . For all cases, φd falls to zero with a retardation
characteristic frequency scale, which mirrors the pairing in-
teraction in Fig. 2.

Although the linear change of 	d (iωm) in Fig. 2 looks iωm

independent, the decisive factor in the BSE Eq. (4) is the ratio
between 	d at different V , which indeed strongly depends on
the bosonic Matsubara frequency iωm. Also, the BSE also
involves the coarse-grained bare two-particle susceptibility
χ̄

pp
0 , whose ratio between the values at different V is iωn

dependent as well. Therefore, it is not surprising that the
variation of eigenvectors φd with V strongly depend on iωn

instead of simple linear change. In this mathematical sense,
the relation between 	d and φd can be complex. However, it
is physically plausible that φd becomes more retarded because
of the additional nearest-neighbor attraction, which is similar
to the phonon mediation induced retardation in conventional
superconductors. This is confirmed by the gradually increas-
ing frequency scale of φd ’s decaying. This might also hint that
at sufficiently strong attractive V , the leading eigenvector may
lose the d-wave character, namely that the d-wave SC would
be finally destroyed and replaced by the competing charge
orders [7].

As mentioned earlier, the pairing interaction 	pp has intrin-
sic relation to the irreducible particle-hole vertex 	ph. Given

024510-4



ENHANCING D-WAVE SUPERCONDUCTIVITY WITH … PHYSICAL REVIEW B 105, 024510 (2022)

FIG. 4. The momentum transfer q dependence of the DCA lat-
tice (a) spin and (b) charge susceptibilities, χs and χc respectively,
for DCA cluster Nc = 4 × 4, T/t = 0.3,U/t = 7, 〈n〉 = 0.9. Turn-
ing on −V attraction slightly (because of relatively high temperature)
enhances the spin fluctuations at all q’s but only enhances (sup-
presses) the charge fluctuations for small (large) q. The inset shows
the results for smaller cluster Nc = 4 but lower T/t = 0.1 to illustrate
the enhancement of χs(π, π ).

that the magnetic channel plays the central role in mediating
the d-wave pairing and also the additional nearest-neighbor
interactions, either repulsive [6,8,11] or attractive [7], favor
charge ordering, we calculate the zero frequency DCA lattice
spin (s) and charge (c) susceptibilities via Eq. (8), whose
dependence on the momentum transfer q are shown in the
main part of Fig. 4 for DCA cluster Nc = 4 × 4 and T/t =
0.3, 〈n〉 = 0.9. At V = 0, the magnetic susceptibility χs peaks
at q = (π, π ) as expected for the repulsive Hubbard model
on square lattice, which is consistent with the scenario that
the antiferromagnetic fluctuations mediate the d-wave pairing
[25,26]. In turning on V/t = −1, χs exhibits a tiny increase
at all q’s, which is due to the relatively high temperature
T/t = 0.3 to compromise with the severe sign problem at
lower temperature for large DCA cluster Nc = 4 × 4. The
complementary inset of Fig. 4(a) explicitly shows the increase
of χs at q = (π, π ), which is consistent with the increase
of the eigenvalues in the magnetic channel [green line in
Fig. 1(c)]. Apparently, the common peak structure of χs at
finite V , namely the spin fluctuation is strongest at large mo-
mentum transfer, can enhance the d-wave pairing interaction

and in turn push up Tc. Hence, the physical picture in terms
of the mediating role of spin fluctuations in SC is the same as
the system without V . In addition, owing to the additional at-
traction, the nearest-neighbor spin configurations are favored
to be compatible with the d-wave SC.

Compared with the behavior of χs, the charge susceptibil-
ity χc shows more nontrivial features. In particular, turning
on −V attraction enhances the charge fluctuation at small
momentum transfer, e.g., q = (0, 0), (π/2, 0) instead of q =
(π, π ) expected for repulsive V interaction [11]. The inset
of Fig. 4(b) at Nc = 4, T/t = 0.1 has a similar variation
with q. The favored nearest-neighboring charges are prone
to enhance the small q charge fluctuations, which coexists
with the d-wave pairing favored by q = (π, π ) spin fluctu-
ations. Therefore, both attractive and repulsive interactions
favor charge fluctuations but at different wave vectors, which
is reminiscent of the previous exact diagonalization investi-
gation based on the spin and charge structure factors of the
extended Hubbard model [7]. Apparently, as |V | exceeds some
threshold, the charge fluctuations would exceed the magnetic
fluctuations and finally destroy the d-wave SC. Summarizing
Fig. 4, at our interested moderate V/t = −1, the enhanced
SC originates from the enhanced spin fluctuation at large
momentum transfer q = (π, π ), where the associated charge
fluctuations are suppressed, namely the charge ordering ten-
dency at V/t = −1 is insufficient to suppress SC, whose
impact can only manifest itself at much large V attraction to
host the charge order at small q.

IV. SUMMARY

In conclusion, we adopted dynamic cluster quantum Monte
Carlo calculations of the extended Hubbard model with
nearest-neighbor attraction to study the impact of the addi-
tional attractive channel on the d-wave SC. In particular, we
focus on the attractive interaction with amplitude |V | ∼ t ,
which is motivated by the recent discovery of an anomalously
strong nearest-neighbor attraction probably arising from the
electron-phonon couplings [4,5].

It is found that the additional −V enhances the d-wave SC
and the variation of Tc with ±V has roughly the same scale,
which confirms the expectation that the repulsive (attractive)
V suppresses (enhances) the SC before it is ultimately de-
stroyed by sufficiently large |V | [7]. Distinct from the case
of repulsive V , the d-wave projected pairing interaction 	d

is attractive at all frequencies and its amplitude increases
with |V | and thereby favors the d-wave SC. Reflecting the
behavior of 	d , the d-wave eigenfunction φd of the BSE in
the particle-particle channel falls to zero with a characteris-
tic frequency scale, which increases with |V | indicating the
stronger retardation induced by the additional −V . Further-
more, the examination of the momentum transfer q-resolved
spin and charge susceptibilities indicates that, on the one
hand, (π, π ) spin fluctuations become stronger at V/t = −1
compared with the case at V = 0; on the other hand, −V
attraction only enhances the charge fluctuations for small
momentum transfer instead of large wave vector, e.g., (π, π ).
Thus, at the stage of our interested V/t = −1 relevant to the
“holon folding branch” [4,5], the charge fluctuations of much
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smaller amplitude than its magnetic counterpart are insuffi-
cient to compete with the d-wave pairing interaction.

Our presented work provides complemental knowledge
on the extensively studied extended Hubbard model, espe-
cially on quantitative examination of the role of the additional
nearest-neighbor attraction uncovered recently. These results
suggest the underlying rich interplay between the spin and
charge fluctuations in giving rise to the superconducting
properties.
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