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The magnetopiezoelectric effect (MPE) is a cross coupling between an electric current and strain in metals
with neither inversion symmetry nor time-reversal symmetry. Unlike the conventional piezoelectric effect, the
electric current allows a MPE-like response in superconductors, which we call the superconducting piezoelectric
effect (SCPE). The SCPE may enable a piezoelectric response without Joule heating and may provide a probe
of exotic superconducting symmetry. In this paper, we propose a formulation of the SCPE and calculate both the
MPE and SCPE in a two-dimensional noncentrosymmetric s-wave superconductor under an in-plane magnetic
field. We find that the magnitude of the SCPE is comparable to the MPE. We also clarify that the finite total
momentum of Cooper pairs in the helical superconducting state plays a crucial role in the SCPE.
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I. INTRODUCTION

Lack of inversion symmetry (IS) allows various physi-
cal responses prohibited in materials with IS, such as the
piezoelectric effect (PE) [1], the Edelstein effect [2], natural
optical activity [3], and so on. IS breaking also influences
the quantum phase of matter. For instance, mixing between
the spin-singlet and spin-triplet pairings occurs in noncen-
trosymmetric superconductors [4]. The strong parity mixing
is of interest since it is regarded as a key to the topological
superconductivity [5].

In materials with neither IS nor time-reversal symmetry
(TRS), a richer variety of phenomena can be realized, e.g., the
magnetoelectric effect [6,7] and nonreciprocal response [8,9].
Nonreciprocal phenomena in superconductors lacking both IS
and TRS were reported recently [10–14] and have attracted
much attention.

The magnetopiezoelectric effect (MPE), the electric-
current-induced lattice distortion, is one of the recently
discovered phenomena in materials with neither IS nor TRS.
In the linear response regime, the MPE response formula is
given by

si j = di jkJk, (1)

where si j is a strain tensor, di jk is a MPE coefficient, and Jk is
an electric current. This effect resembles the conventional PE,
namely, the electric-field-induced lattice distortion,

si j = d ′
i jkEk . (2)

At first glance, it seems that we merely replace an electric field
Ek with Jk by relating them through an electric conductivity.
However, the parities under the time-reversal operation are
opposite between Jk and Ek , i.e., −1 for Jk and +1 for Ek .
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Therefore, while the conventional PE does not require TRS
breaking, the MPE is realized only in materials lacking both
IS and TRS.

The inverse MPE was predicted as the generalization of the
magnetoelectric effect in noncentrosymmetric metals under
an external magnetic field [15]. Another study proposed the
MPE in antiferromagnetic metals whose order parameter has
the same symmetry properties as the odd-parity magnetic mul-
tipole moment [16]. IS and TRS are simultaneously broken
in such antiferromagnets. Experiments have been performed
for the latter with the antiferromagnetic metals EuMnBi2 and
CaMn2Bi2, and the MPE has actually been observed [17,18].
Remarkably, the latest experimental result revealed that the
MPE response becomes larger with higher conductivity [19].
This is consistent with the MPE, which occurs only in met-
als [16], while it is in contrast to the fact that the conventional
PE is suppressed by higher conductivity. These results point
to the solid discovery of the MPE and show that metals are
good candidates for lead-free piezoelectric materials. On the
other hand, it has also been pointed out that the MPE is largely
influenced by Joule heating [18]. For practical applications as
well as for establishing scientific grounds, it is desirable to
explore the Joule-heating-free MPE.

In this paper, we propose a piezoelectric response in
superconductors. The conventional PE is prohibited in super-
conductors because the electric field should vanish due to the
lack of resistance. On the other hand, the Joule-heating-free
supercurrent can flow, and a supercurrent-induced lattice dis-
tortion similar to the MPE can occur. We call this phenomenon
the superconducting piezoelectric effect (SCPE), which will
be one of the proposals for the Joule-heating-free MPE. Here
we emphasize that the SCPE and the MPE are essentially
different phenomena, as we will show below. Properties of
the PE, MPE, and SCPE are summarized in Table I. Irrespec-
tive of a practical application, the SCPE is expected to be a
probe of IS and TRS breaking in superconductors since it is
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TABLE I. Comparison of the PE, MPE, and SCPE. The symmetry requirement, source field, and presence or absence of Joule heating are
summarized. The PE, MPE, and SCPE occur in insulators and semiconductors, metals, and superconductors, respectively.

PE MPE SCPE

Symmetry condition IS breaking IS and TRS breaking IS and TRS breaking
Source Electric field Normal electric current Supercurrent
Joule heating Ideally absent Present Absent
System Insulators, semiconductors Metals Superconductors

sensitive to symmetry breaking. Moreover, as we show later,
we can utilize the SCPE to uncover the superconducting state
in detail.

As a representative example, we study the SCPE in
two-dimensional Rashba s-wave superconductors under an
in-plane magnetic field. In Sec. II, we present the model
Hamiltonian and formulate the SCPE. In Sec. III, we com-
pare the numerical results of the MPE and SCPE and find
that the obtained SCPE response is comparable to the MPE
response. By analyzing the chemical potential and magnetic
field dependences, we clarify that the finite total momentum
of Cooper pairs in the helical superconducting state plays an
essential role in the SCPE. Conversely, the SCPE may be a
good probe of helical superconductivity. Finally, we summa-
rize our results and discuss prospects in Sec. IV.

II. FORMULATION

A. Model Hamiltonian

To demonstrate the SCPE, we study two-dimensional s-
wave superconductors with C4v crystal structure under an
in-plane magnetic field based on the following Bogoliubov–de
Gennes Hamiltonian:

H = Hkin + HASOC + HZeeman + Hs-wave, (3)

Hkin =
∑

ks

ε(k)c†
k,sck,s, (4)

HASOC =
∑
kss′

g(k) · σss′c†
k,sck,s′ , (5)

HZeeman = −μB

∑
kss′

H · σss′c†
k,sck,s′ , (6)

Hs-wave =
∑

k

(�0c†
k+q,↑c†

−k+q,↓ + H.c.), (7)

where ε(k) = 2t1(cos kx + cos ky) + 4t2 cos kx cos ky − μ,

g(k) = α(sin ky,− sin kx, 0), H = (0, H0, 0), σ = (σx, σy, σz )
is the vector of Pauli matrices, and ck,s (c†

k,s) is the annihilation
(creation) operator with momentum k and spin s. Hkin is
kinetic energy in the tight-binding approximation measured
from a chemical potential μ, HASOC is Rashba-type spin-orbit
coupling, HZeeman is a Zeeman field, and Hs-wave represents
an s-wave superconducting order parameter introduced
phenomenologically. In the Rashba superconductor under
the in-plane magnetic field, the helical superconducting state
is realized with a finite total momentum of Cooper pairs
2q = (2q0, 0) without injecting an electric current [4,5]. We
can rewrite the Hamiltonian in the matrix form by using the

Nambu spinor ck,q = (ck+q,↑, ck+q,↓, c†
−k+q,↑, c†

−k+q,↓)T ,

H = 1

2

∑
k

c†
k,qH (k, q)ck,q

= 1

2

∑
k

c†
k,q

(
HN(k + q) �0(iσy)

�0(iσy)T −HN(−k + q)T

)
ck,q, (8)

where HN(k) corresponds to the normal state Hamiltonian,

HN(k) =
(

ε(k) g−(k)

g+(k) ε(k)

)
, (9)

with g± = gx(k) ± i(gy(k) − μBH0).

B. MPE mode

According to the symmetry argument, three MPE modes
are realizable in this model: the A1 and B1 modes when the
electric current flows in the x direction, J ‖ x̂, and the B2

mode when J ‖ ŷ. Figure 1 illustrates the three MPE modes.
For other settings different from Fig. 1, the relation between
the current direction (J ⊥ H or J ‖ H) and the MPE modes
changes, as shown in Appendix A.

To define the MPE mode, we introduce the weighted den-
sity operator n̂i for i = A1, B1, and B2,

n̂i = 1

V

∑
ks

Di(k)c†
k,sck,s, (10)

DA1 (k) = cos kx + cos ky,

DB1 (k) = cos kx − cos ky,

DB2 (k) = 2 sin kx sin ky. (11)

&

(a)

(b)

FIG. 1. Schematics of the MPE and SCPE. Lattice distortion
induced by the electric current is illustrated. (a) A1 and B1 modes
with the electric current flowing in the x direction. (b) B2 mode with
the electric current flowing in the y direction.
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The operators characterize the modulation of hopping pa-
rameters coupled to the lattice distortion. The coefficient is
determined to make the norms equivalent. Note that we clas-
sify these modes based on the irreducible representations of
the C4v point group, which is the symmetry of the system
with no magnetic field. Significantly, the B1 mode belongs
to the totally symmetric representation when we consider the
symmetry reduction due to the magnetic field. We adopt the
classification based on high symmetry to distinguish between
the quadrupole strain B1 mode and the expansion-shrink A1

mode.

C. SCPE and MPE

We formulate the SCPE and MPE on equal footing by the
coupling between the weighted density and electric current,

〈n̂A1〉 − 〈n̂A1〉0 = dA1〈Ĵx〉,
〈n̂B1〉 − 〈n̂B1〉0 = dB1〈Ĵx〉, (12)

〈n̂B2〉 = dB2〈Ĵy〉,
where Ĵ is the electric current operator and 〈· · · 〉 (〈· · · 〉0) rep-
resents the expectation value in the perturbed (unperturbed)
system. The lattice strain is obtained with the weighted den-
sity via the electron-lattice coupling, si = Ci

el〈n̂i〉. We leave
the evaluation of the material parameter Ci

el for future study
and regard dA1 , dB1 , and dB2 as the MPE and SCPE coeffi-
cients. In this section, we specifically consider the case of the
A1 mode as an example. Formulas for the B1 and B2 modes
are straightforwardly obtained.

We define the SCPE as distortion induced by supercurrent,
and thus, we can formulate it as an equilibrium phenomenon.
When a small supercurrent flows in the x direction, the Cooper
pairs get the corresponding total momentum 2q′ = (2q′, 0)
in addition to 2q in the static state. Thus, the supercurrent-
flowing state is described by the Hamiltonian (3) where
momentum q is replaced with q+q′ in Eq. (8),

H = 1

2

∑
k

c†
k,q+q′H (k, q+q′)ck,q+q′ . (13)

Using the Nambu spinor ck,q+q′ , operators n̂A1 and Ĵx are
written as

n̂A1 =
∑

k

c†
k,q+q′nA1 (k, q+q′)ck,q+q′ , (14)

Ĵx =
∑

k

c†
k,q+q′Jx(k, q+q′)ck,q+q′ , (15)

where the matrices are given by

nA1 (k, q+q′) = 1

2

(
DA1 (k+q+q′ )×I2 0

0 −DA1 (−k+q+q′ )×I2

)
, (16)

Jx(k, q+q′) = e

2

(
∂HN(k + q+q′ )/∂kx 0

0 −∂HN(−k + q+q′ )T /∂kx

)
.

(17)

Therefore, expectation values are calculated by

〈n̂A1〉eq,q+q′ = 1

V

∑
kα

[ñA1 (k, q+q′)]αα f (Eα (k, q+q′)), (18)

〈Ĵx〉eq,q+q′ = 1

V

∑
kα

[J̃x(k, q+q′)]αα f (Eα (k, q+q′)), (19)

where Eα are eigenvalues of the Hamiltonian (13),

Eα (k, q+q′) = [U †(k, q+q′)H (k, q+q′)U (k, q+q′)]αα,

(20)

and f (E ) is the Fermi distribution function. We introduced
ñA1 = U †nA1U and J̃x = U †JxU for the band representations
of n̂A1 and Ĵx, respectively. Then, we define the SCPE coeffi-
cient for the A1 mode by

d (SC)
A1

= d〈n̂A1〉eq

d〈Ĵx〉eq

∣∣∣∣
q′=0

. (21)

The other SCPE coefficients, d (SC)
B1

and d (SC)
B2

, are defined in
the same way.

In contrast to the SCPE, the MPE is induced by a dissi-
pative current, and thus, it is a nonequilibrium phenomenon.
Therefore, we should calculate it using the linear response
theory, and the formulation has been established using the
Kubo formula in a previous study [16]. The susceptibility χ

(N)
A1

is given by

χ
(N)
A1

= 〈n̂A1 − 〈n̂A1〉eq〉
Ex

(22)

= −ie

V

∑
k,n,m

[ñA1 (k)]nm[ṽx(k)]mn

En(k) − Em(k) + iδ

f (En) − f (Em)

En(k) − Em(k)
, (23)

where n and m are indices for the eigenstates of the nor-
mal Hamiltonian (9) and vx(k) = ∂HN(k)/∂kx is the velocity
operator in the Bloch representation. Here ñA1 and ṽx de-
note the band representation in the normal state, and δ is
the infinitesimal quantity introduced to assume an adiabatic
procedure. In our calculation, δ is regarded as a scattering rate
and is assumed to be a small, finite value (the relaxation time
approximation). In the normal state, the matrix in Eq. (10) is
proportional to the identity matrix in the subspace spanned by
the spin degree of freedom, and therefore, we can simplify
Eq. (23) to

χ
(N)
A1

= −e

V δ

∑
k,n

DA1 (k)[ṽx(k)]nn
∂ f (En)

∂E
. (24)

The Kubo formula, Eq. (24), represents the response to the
electric field Ex instead of the electric current Jx. To define
the MPE in the form of a current-induced phenomenon as in
Eq. (12), we rewrite the response formula by calculating the
electric conductivity using the Kubo formula,

σx = −e2

V δ

∑
k,n

[ṽx(k)]nn[ṽx(k)]nn
∂ f (En)

∂E
, (25)

and define the MPE coefficient d (N)
A1

by

d (N)
A1

= χ
(N)
A1

σx

(
= 〈n̂A1 − 〈n̂A1〉eq〉

〈Ĵx〉
)

. (26)

As mentioned above, we adopt the relaxation time approxima-
tion. Thus, the susceptibility χ

(N)
A1

and conductivity σx depend
on the scattering rate δ. However, it is clear from Eq. (26) that
the MPE coefficient d (N)

A1
is intrinsic because it is independent

of δ.
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FIG. 2. MPE coefficients d (N)
A1

, d (N)
B1

, and d (N)
B2

as functions of the

chemical potential. Note that d (N)
A1

and d (N)
B1

are exactly the same. The
inset shows the region around μ = 0.6.

III. RESULT

In this section, we show the numerical results of the MPE
and SCPE on the basis of the model Hamiltonian (3). We
take e = 1 and μB = 1 for simplicity and adopt parame-
ters t1 = 1.0, t2 = −0.15, α = 0.30, and �0 = 0.10, and the
temperature T = 0.01 unless we explicitly state otherwise.
We choose these parameters by referring to a previous study
on the Rashba superconductor CePt3Si [20]. We confirmed
that qualitatively the same results are obtained for several
other parameter sets.

A. MPE

First, we show the results for the MPE. The chemical
potential dependence of the MPE coefficients d (N)

i under mag-
netic field H0 = 0.10 is shown in Fig. 2. Here d (N)

A1
and d (N)

B1

are exactly the same, as we prove in Appendix B. Thus, we
discuss only the A1 and B2 modes in the rest of this section.

We see similar behaviors in d (N)
A1

and d (N)
B2

; their magnitudes
significantly increase in the low carrier density region and
show a small peak around μ = 0.6. To understand these com-
mon features, we calculate the band-resolved contributions to
the susceptibility χ

(N)
i . As shown in Fig. 3, the two bands

FIG. 3. Total susceptibility and band-resolved contributions for
(a) χ

(N)
A1

and (b) χ
(N)
B2

. (c) and (d) show the conductivities σx and σy,
respectively. We set the scattering rate to δ = 0.01.
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d
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)

i

H0

A1
B2

FIG. 4. Magnetic field dependence of the MPE coefficients, d (N)
A1

and d (N)
B2

. We set μ = −1.0 to avoid the influence of the characteristic
band structures in the low carrier density region and near the Van
Hove singularities.

give almost opposite contributions, which cancel each other.
In the low carrier density region, one band goes above or
below the Fermi level, and the cancellation is suppressed.
Therefore, the magnitude of χ

(N)
i increases as the Fermi level

approaches the band edge. Similar discussions were provided
for other response functions in the Rashba system, such as
the bulk rectification current [21]. Furthermore, the electric
conductivity σ decreases there [Figs. 3(c) and 3(d)], and thus,
the MPE coefficients d (N)

i are rapidly enhanced. The peaks
around μ = 0.6 are attributed to the Van Hove singularities
at μ = 0.5, 0.7 for each band. Although they partially cancel
out each other, the peak structure remains in χ

(N)
i . We note

that the peak structure of the MPE coefficients d (N)
i around

μ = 0.6 is less pronounced than that at the band edges be-
cause of the sizable conductivity. These results corroborate
that the MPE is determined by the Fermi surface effect [16]
and is thus distinct from the conventional PE.

We also calculate the magnetic field dependence of d (N)
i ,

and Fig. 4 shows the result. We set μ = −1.0 to avoid the
effects of the peculiar band structure around μ = 0.6 and
the band edges. The MPE coefficients are nearly propor-
tional to the magnetic field and vanish at zero magnetic field.
This linear relation indicates the controllability of the MPE,
which is different from the previous theories [16,22] and
experiments [17–19]. Previous studies worked on the parity-
breaking antiferromagnet, which we can control by domain
switching using the electric current [23–26]. On the other
hand, the MPE in noncentrosymmetric metals can also be
controlled by the magnetic field.

B. SCPE

Now let us discuss the SCPE. Before showing the main
results, we explain the details of the calculation of SCPE
coefficients by considering d (SC)

A1
as an example. First, we

determine (half of) the total momentum of Cooper pairs q0 in
the static state. It is obtained so as to minimize the free energy
given by

F = 〈H〉eq − T S, (27)

= −T

V

∑
k,α

ln (1 + e−Eα (k,q)/T ). (28)
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FIG. 5. (a) Free energy F , (b) electric current 〈Ĵx〉eq, and
(c) weighted density for the A1 mode 〈n̂A1 〉eq as functions of qx .
Half of the momentum of Cooper pairs q0 realizing the minimum
free energy is illustrated by arrows. (d) 〈Ĵx〉eq dependence of 〈n̂A1 〉eq

obtained by combining the results of (b) and (c). We set μ = −1.0
and H0 = 0.10.

To this end, we calculate the qx dependence of the free energy
F with the fixed chemical potential μ and magnetic field H0

[see Fig. 5(a)]. Note that F is symmetric with respect to qy and
shows the minimum at qy = 0 for any μ and H0. Therefore, we
find q = (q0, 0) on the qx axis, which characterizes the helical
superconducting state with minimum free energy. Next, we
calculate the qx dependence of the electric current 〈Ĵx〉eq and
weighted density 〈n̂A1〉eq around qx = q0 [Figs. 5(b) and 5(c)].
We can confirm the vanishing electric current 〈Ĵx〉eq = 0 in the
static state with qx = q0 ( 	= 0). This is physically reasonable.
Finally, combining these results, we obtain the 〈Ĵx〉eq deriva-
tive of 〈n̂A1〉eq around q0 [Fig. 5(d)], which gives the SCPE
coefficient d (SC)

A1
. In the numerical calculation, the derivative is

evaluated by the difference around q0 with a small momentum
q′,

d (SC)
A1

= δ〈n̂A1〉eq

δ〈Ĵx〉eq

∣∣∣∣
qx=q0

= 〈n̂A1〉eq,q0+q′ − 〈n̂A1〉eq,q0−q′

〈Ĵx〉eq,q0+q′ − 〈Ĵx〉eq,q0−q′
. (29)

We obtain the other SCPE coefficients d (SC)
B1

and d (SC)
B2

in the
same way, while we examine the qy dependence instead of qx

for the B2 mode d (SC)
B2

.
Then, we show the numerical results of the SCPE. The

chemical potential dependence of the SCPE coefficients d (SC)
i

and q0 with magnetic field H0 = 0.10 is shown in Fig. 6. We
obtain finite SCPE coefficients d (SC)

i , and their magnitudes are
comparable to the MPE coefficients d (N)

i in Fig. 2. Because
the SCPE and MPE coefficients are defined on equal footing
and the MPE was observed [17–19], Fig. 6 reveals the non-
negligible coupling of the supercurrent and lattice distortion.

In Figs. 2 and 6, we also find significant differences be-
tween the SCPE and MPE. Whereas the A1 mode coefficient
equals that of the B1 mode in the MPE, they are different
in the SCPE both qualitatively and quantitatively. The SCPE
is smaller than the MPE for the B2 mode, while the magni-
tude relation can be opposite for the A1 mode. These results
indicate that the SCPE and MPE are essentially different

FIG. 6. SCPE coefficients (a) d (SC)
A1

, (b) d (SC)
B1

, and (c) d (SC)
B2

.
(d) Chemical potential dependence of q0. The inset in (a) shows the
region around μ = 0.6.

phenomena. This is reasonable because the source field is
different between the SCPE and MPE (see Table I). The super-
current induces the SCPE without Joule heating, although the
dissipative current causes the MPE. Furthermore, the SCPE is
not a Fermi surface effect because the excitation spectrum can
be gapped in the superconducting state, while the MPE arises
from the Fermi surface effect [16].

On the other hand, we also notice common features in
d (SC)

i , d (N)
i , and q0; all of them rapidly change in the low carrier

density region and show a structure around μ = 0.6 [27].
The chemical potential dependence of the normal MPE is
explained by the band structure near the Fermi level, as is
evident from Eqs. (24) and (25). Thus, it is expected that the
SCPE is also influenced by the Fermi surface in the normal
state.

We understand the similar chemical potential dependence
between the SCPE and MPE by considering the origin of
the Cooper pairs’ momentum 2q0. In the Rashba system, the
degenerate bands are split by the spin-orbit coupling and shift
in the opposite direction under an in-plane magnetic field [4].
Because of the nonequivalence of the split bands, Cooper pairs
have nonzero total momentum 2q0 (helical superconducting
state [4]). Thus, the behavior of q0 is sensitive to the Fermi
surface. Because the SCPE is induced by the supercurrent, it
is most likely related to the Cooper pairs. Therefore, the SCPE
coefficients d (SC)

i are indirectly affected by the Fermi surface
through q0 and then show behaviors qualitatively similar to
the MPE coefficients d (N)

i .
The magnetic field dependence of the SCPE further sup-

ports the essential role of the Cooper pairs’ momentum 2q0 in
the SCPE. As shown in Fig. 7, the SCPE coefficients d (SC)

i do
not show linear dependence on the magnetic field, in contrast
to the MPE coefficients d (N)

i in Fig. 4. The SCPE coefficients
show an abrupt change around H0 = 0.10, and they follow
the magnetic field dependence of q0 [Fig. 7(d)]. We see a
remarkable similarity between the SCPE and Cooper pairs’
momentum, which suggests an indirect Fermi surface effect
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FIG. 7. Magnetic field dependence of the SCPE coefficients
(a) d (SC)

A1
, (b) d (SC)

B1
, and (c) d (SC)

B2
and (d) half of the Cooper pair

momentum q0. We set μ = −1.0 for the same reason as in Fig. 4.

even though there is no Fermi surface in the superconducting
state.

These results indicate a close link between the SCPE and
helical superconductivity. The nonlinear magnetic field de-
pendence of q0 has been explained by the crossover from the
helical superconducting state to the Fulde-Ferrell state [28].
Thus, our results in Fig. 7 indicate that the SCPE could be use-
ful not only for determining the symmetry of superconducting
phases but also for probing the helical and Fulde-Ferrell
states.

IV. SUMMARY AND DISCUSSION

We proposed the piezoelectric response in superconductors
and named it SCPE. We found that the SCPE is comparable
to the MPE in magnitude and clarified a close link with the
helical superconductivity.

Our results show that MPE materials are good candi-
dates for SCPE materials. Therefore, it is expected that
potential candidates hosting a sizable SCPE response can
be found in materials with a large MPE response. Since
the MPE and SCPE are enhanced by strong antisymmet-
ric spin-orbit coupling, noncentrosymmetric superconductors
with heavy elements may be favorable [5]. In addition, strong
electron-phonon coupling gives the large SCPE. Several
noncentrosymmetric superconductors show relatively strong
electron-phonon coupling and thus may be good candidates
for the observation of the SCPE [29–32]. Furthermore, the
applied supercurrent flow can induce simultaneous breaking
of the IS and TRS even in the absence of the intrinsic IS break-
ing [13,33,34]. Therefore, centrosymmetric superconductors
are also candidates for SCPE materials.

It is possible to verify the SCPE experimentally by exam-
ining the magnetic field dependence. The SCPE requires TRS
breaking, and thus, the lattice distortion is nonreciprocal for
the magnetic field reversal. This property may enable us to
extract the SCPE signal from non-negligible noise.

The search for the helical superconducting state with fi-
nite total momentum of the Cooper pairs was conducted
in noncentrosymmetric superconductors under a magnetic
field [4,28]. Indications of helical superconductivity were

recently obtained in several superconductors via measure-
ments of the upper critical field [35–37] and nonreciprocal
transport [38], and direct observation in the superconduct-
ing state is still awaited. Based on the finding of a close
relation between the Cooper pair momentum and the SCPE,
we proposed the probe of the helical superconducting state
using the SCPE. In theoretical studies of the superconducting
diode effect [39–41], which was recently discovered in exper-
iments [12], the essential role of the helical superconductivity
was also pointed out, and the sign change in the nonreciprocal
critical current is revealed to be a signature of the crossover
in the helical superconducting state [40]. The SCPE is com-
plementary to such phenomena and paves the way to detect
helical superconductivity using the linear response.

The SCPE is expected to be useful for probing symmetry
breaking in superconductors because IS and TRS breakings
are required. Significantly, such spontaneous symmetry break-
ing was recently proposed in several superconductors. For
example, multiple superconducting phases with spontaneous
IS and TRS breaking were proposed in UTe2 [42], and TRS
breaking was reported in noncentrosymmetric superconduc-
tors, such as CaPtAs [43] and so on [44]. In particular,
the discovery of superconductivity in UTe2 has stimulated
vast studies for clarifying the spin-triplet superconducting
state [45]. However, recent observations of antiferromagnetic
correlation [46–49] also imply spin-singlet pairing. The pos-
sible coexistence of spin-triplet and spin-singlet Cooper pairs
may lead to spontaneous IS and TRS symmetry breaking [42],
even though the crystal structure is centrosymmetric. Deter-
mining the symmetry of multiple superconducting phases in
UTe2 is urgent [50–54], and the SCPE may be helpful for
solving the current issues.
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APPENDIX A: MPE MODE AND RELATIONS
BETWEEN DIRECTIONS OF J AND H

We rewrite Eq. (1) as

si j = d ′
i jkl JkHl (A1)

by explicitly writing the external magnetic field Hl . Here d ′
i jkl

should be invariant under the symmetry operations of the C4v

point group characterizing the model Hamiltonian (3).
In the two-dimensional system, we have three independent

components for d ′
i jkl in the C4v symmetry, and they are de-

noted the A1, B1, and B2 modes. The strain tensors sxx + syy,
sxx − syy, and sxy are involved in the A1, B1, and B2 modes,
respectively. The couplings of these modes and external mag-
netic fields are JxHy − JyHx, JxHy + JyHx, and JxHx − JyHy,
respectively. For example, the allowed components for the A1

mode are denoted by d ′
xxxy = −d ′

xxyx = d ′
yyxy = −d ′

yyyx.
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Following the above symmetry analysis of d ′
i jkl , we un-

derstand the relation between the applied electric current and
induced strain. When we take H ‖ ŷ as in Fig. 1, the A1 and
B1 modes are induced by the current J perpendicular to the
magnetic field H , while the B2 mode is induced by J parallel
to H . In contrast, when we set H ‖ [110], the A1 and B2 modes
are induced when J is perpendicular to H , and the B1 mode is
induced when J is parallel to H .

Some candidates for the large SCPE material have a chiral
structure denoted by the point group O [30,32], and hence, we
briefly discuss that case. There are three independent SCPE
coefficients:

d ′
xxxx = d ′

yyyy = d ′
zzzz, (A2)

d ′
xxyy = d ′

xxzz = d ′
yyzz = d ′

yyxx = d ′
zzxx = d ′

zzyy, (A3)

d ′
xyxy = d ′

xzxz = d ′
yzyz = d ′

yxyx = d ′
zxzx = d ′

zyzy. (A4)

These coefficients denote the distortion related to the A1, E ,
and T2 modes in the O point group, respectively.

APPENDIX B: EQUIVALENCE OF THE MPE
COEFFICIENTS d (N)

A1
AND d (N)

B1

We can diagonalize the normal state Hamiltonian (9) using
the normalized unitary matrix

U (k) = 1√
2|g+(k)|

(
g+(k) −|g+(k)|
|g+(k)| g−(k)

)
, (B1)

and the eigenvalues are given by

En(k) = [U †(k)HN (k)U (k)]nn = ε(k) ± |g+(k)|. (B2)

We then calculate the band representation of the velocity
operator ṽx(k) and obtain

[ṽx(k)]nn =
[
U †(k)

∂HN (k)

∂kx
U (k)

]
nn

= ∂En(k)

∂kx
. (B3)

Therefore, Eq. (24) is transformed into

χ
(N)
A1

= −e

δ

∑
n

∫ π

−π

∫ π

−π

DA1 (k)
∂En(k)

∂kx

∂ f (En)

∂E

dkx

2π

dky

2π

= −e

δ

∑
n

∫ π

−π

∫ π

−π

DA1 (k)
∂ f (En(k))

∂kx

dkx

2π

dky

2π
(B4)

in the thermodynamic limit V → ∞.
Since both the A1 and B1 modes are induced by the electric

current in the x direction, the difference between χ
(N)
A1

and χ
(N)
B1

is calculated as follows:

χ
(N)
A1

− χ
(N)
B1

= −e

(2π )2δ

∑
n

∫ π

−π

∫ π

−π

[DA1 (k) − DB1 (k)]
∂ f (En(k))

∂kx
dkxdky

= −2e

(2π )2δ

∑
n

∫ π

−π

∫ π

−π

cos ky
∂ f (En(k))

∂kx
dkxdky

= −2e

(2π )2δ

∑
n

∫ π

−π

cos ky[ f (En(π, ky)) − f (En(−π, ky))]dky

= 0. (B5)

Thus, we have χ
(N)
A1

= χ
(N)
B1

. The MPE coefficient d (N)
i is de-

fined as Eq. (26), and therefore, d (N)
A1

and d (N)
B1

are also exactly
the same.

We note that this coincidence is not essential because the
MPE coefficients depend on the choice of the weighted den-
sity operator (11). As mentioned in Sec. III, however, this
result indicates that the MPE and SCPE are essentially dif-
ferent phenomena. The SCPE coefficients d (SC)

A1
and d (SC)

B1
are

significantly different even though we use the same weighted
density operator as in Eq. (11).
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