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Multiband superconductivity in V3Si determined from studying the response to controlled disorder
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The London penetration depth λ(T ) was measured in a single crystal of V3Si. The superfluid density obtained
from this measurement shows a distinct signature of two almost decoupled superconducting gaps. This alone
is insufficient to distinguish between s± and s++ pairing states, but it can be achieved by studying the effect of
controlled nonmagnetic disorder on the superconducting transition temperature Tc. For this purpose, the same
V3Si crystal was sequentially irradiated by 2.5-MeV electrons three times, repeating the measurement between
the irradiation runs. A total dose of 10 C/cm2 (6.24 × 1019 electrons/cm2) was accumulated, for which Tc

changed from 16.4 K in a pristine state to 14.7 K (9.3%). Not only is this substantial suppression impossible for
a single isotropic gap, but also it is not large enough for a sign-changing s± pairing state. Our electronic band
structure calculations show how five bands crossing the Fermi energy can be naturally grouped to support two
effective gaps, not dissimilar from the physics of iron pnictides. We analyze the results using two-gap models for
both λ(T ) and Tc which describe the data very well. Thus the experimental results and theoretical analysis provide
strong support for an s++ superconductivity with two unequal gaps, �1(0) ≈ 2.53 meV and �2(0) ≈ 1.42 meV,
and a very weak interband coupling in the V3Si superconductor.

DOI: 10.1103/PhysRevB.105.024506

I. INTRODUCTION

At the time of its discovery in 1953 [1], a cubic (A15
structure) V3Si compound had the highest superconducting
transition temperature, around 17 K. Despite showing a clear
exponential attenuation of all thermodynamic quantities upon
cooling towards T = 0, which signaled a fully gapped Fermi
surface, most spectroscopic [2,3], transport [4,5], and ther-
modynamic measurements [3,6–8] showed unconventional
behavior or at least some unusual features. Such behavior can
be associated with a peculiar electronic band structure show-
ing Van Hove singularities in the density of states (DOS) close
to the Fermi level [3,9–11]. While this certainly plays an im-
portant role, now we know that a multigap superconductivity
is needed as well to understand the measurements. Here, we
focus on a multiband, multigap nature of superconductivity in
this fascinating material.

While MgB2 [12] is commonly accepted as the first
confirmed two-gap superconductor [13–15], the multiband
superconductivity was studied much earlier, albeit only the-
oretically. Soon after the development of the microscopic
model of superconductivity [16] the possibility of “overlap-
ping bands” was studied [17–19], eventually leading to a
general description of multiband superconductivity [20–23],
in particular, the effects of disorder [23]. Nevertheless, before
MgB2, there was no attempt to interpret the unusual prop-
erties of V3Si through the prism of multiband effects. The
observations of the unconventional London penetration depth
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[2,3], the anisotropic upper critical field Hc2 [6], an unexpect-
edly large decrease in Tc with nonmagnetic disorder, either
after neutron irradiation [5,24] or naturally present in real
material [25], a large Tc/TF ∼ 0.01 ratio (TF is Fermi temper-
ature) [3], and a variety of vortex lattice configurations [26] all
pointed to an unconventional behavior of a confirmed s-wave
superconductor. Surely, modern reinterpretation of many of
these results is consistent, if not fully explained with multi-
gap superconductivity. Therefore, retrospectively, V3Si is “the
first” two-band superconductor, much older than MgB2.

Experimental observation of a two-gap superconducting
state relies on a substantial decoupling between the two
bands and a substantial difference between them in terms
of dimensionality, electronic properties, pairing mechanism,
and/or scattering rates [7,27–29]. In terms of more recent
measurements, when multiband superconductivity became
widely accepted and discussed, circa 2001, while some
reports support single-gap conventional s-wave Bardeen-
Cooper-Schrieffer (BCS) superconductivity in V3Si [28],
many more experimental and theoretical studies point to two
distinct energy gaps in this material [7,30–32]. There is a
complication, though. Perhaps due to a variation of stoi-
chiometry, atomic disorder, or the extremely strain-sensitive
structure of Van Hove singularities in the vicinity of the
Fermi level, V3Si samples show a spread of behaviors,
especially in the properties related to a two-gap super-
conductivity [4,8,10,11,24,30,33]. Furthermore, establishing
a multiband nature from thermodynamic measurements is
necessary but insufficient for the microscopic understand-
ing of superconductivity, because the order parameter enters
thermodynamic quantities in the even powers and therefore
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the gaps of the same or opposite signs on different bands con-
tribute similarly [7,27,34,35]. In this situation, phase-sensitive
experiments are needed, but such experiments are often diffi-
cult or impossible to devise depending on a superconductor
[22,36,37]. While in high-Tc cuprates direct measurements
that depend on the phase variation along the Fermi surface
have provided a definitive proof of a sign-changing d-wave
order parameter [36], in multiband iron-based superconduc-
tors, a similar simple arrangement in real space is not possible,
and more complicated approaches are needed [37]. The inter-
pretations of more complex phase-sensitive experiments, such
as quasiparticles interference, are not straightforward either
[38,39].

Scattering off nonmagnetic impurities is a phase-sensitive
method, albeit indirect, that was successfully used in iron-
based superconductors to probe the sign-changing multiband
s± order parameter [40–42]. As we discuss in Sec. III E,
the suppression of Tc formally depends on the Fermi sur-
face averaging of the order parameter in the first power,
〈�(k)〉FS, which is sign sensitive. For example, the isotropic
s-wave angular part averages to 1, but the d wave av-
erages to 0. Of course, more than one measurement is
needed for different levels of scattering in the system. In
our approach, simultaneous measurements of normal-state re-
sistivity (to characterize the amount of introduced disorder),
superconducting transition temperature Tc (phase-sensitive
measurement), and low-temperature variation of the London
penetration depth λ(T ) (to estimate the anisotropy of the
order parameter amplitude) provide enough information to
make that conclusion. Here, we show that this scheme can
be applied to prove the existence of two distinct gaps of
the same sign, or s++ order parameter, in the title mate-
rial, V3Si. The utility of such an approach was extended
significantly by recent theoretical analysis of the impurity
scattering in superconductors with nontrivial multiband struc-
ture [43,44]. For example, it is possible to have a singlet
unconventional pairing with a sign-changing superconducting
order parameter, yet fully gapped Fermi surface, similar to
what we uncover here. However, the electronic band structure
should support such an unconventional scenario in the first
place. We note that nodeless unconventional superconductiv-
ity has been studied in the context of triplet pairing, such
as the p wave, which shows a variety of nodal and node-
less behaviors depending on the material and experimental
conditions, for example, in some heavy-fermion supercon-
ductors [45,46]. However, most superconductors have singlet
pairing states, and studies of the effects of controlled disor-
der are a powerful tool to study unconventional and exotic
states, including multigap superconductivity [42]. For ex-
ample, a similar combination of London penetration depth
measurements of electron-irradiated samples was used to
study disorder-driven transitions of the superconducting gap
[47], to study the interplay of ferromagnetism and supercon-
ductivity [48], to prove fully gapped superconductivity in a
heavy-fermion superconductor [49], and to follow the doping
evolution of the order parameter [50]. If we include other
types of irradiation, many studies employed neutrons and
protons to induce nonmagnetic disorder. Such disorder was
used to induce a two-gap-to-single-gap crossover in MgB2

[51], to trace the evolution of s± symmetry in iron pnictides

[52] and study its crossover to the s++ state [41], and to
significantly suppress the superfluid density [53]. Evidently,
controlled disorder in conjunction with thermodynamic mea-
surements is a well-established approach to tune and probe the
superconducting state.

II. EXPERIMENT

Our V3Si crystals with Tc ≈ 16.4 K were cut out of a
“master boule” single crystal studied previously, for example,
in Refs. [54,55] and references therein. The resistivity above
Tc of pristine samples was in the range of 5–10 μ� cm, con-
sistent with previous reports [25,54,55]. The samples were
of submillimeter size. In particular, the crystal used in the
electron irradiation study was 0.73 × 0.62 × 0.20 mm3.

The variation of the in-plane London penetration depth
�λ(T ) was measured using a self-oscillating tunnel-diode
resonator (TDR) technique [27,34,56]. The TDR circuit res-
onates approximately at 14 MHz, and the frequency shift
is measured with a precision better than one part per 109

(1 ppb). Its inductor coil generates an ac magnetic field,
Hac < 20 mOe, so that the sample is always in the Meissner
state at the temperatures of interest. Details of the technique
and its principles are given in Refs. [57–59], and the de-
tailed calibration procedure is described in Refs. [58,60]. The
sample was mounted on a 1-mm-diameter sapphire rod and
inserted into a 2-mm-diameter inductor coil. The coil and the
sample were mounted in vacuum inside a 3He cryostat. The
TDR circuit was actively stabilized at 5 K, and the sample
was controlled from 0.4 K and up by independent LakeShore
controllers. It is straightforward to show that the change in the
resonant frequency when a sample is inserted into the coil is
proportional to the sample magnetic susceptibility as long as
the change in the total inductance is small and one can expand,
� f / f0≈ΔL/2L0, where 2π f0 = 1/

√
CL0 with subindex “0”

referring to an empty resonator. The coefficient of proportion-
ality that includes the demagnetization correction is measured
directly by pulling the sample out of the resonator at the base
temperature [60].

The low-temperature 2.5-MeV electron irradiation was
performed at the SIRIUS Pelletron facility of the Labora-
toire des Solides Irradiés (LSI) at the École Polytechnique
in Palaiseau, France. The acquired irradiation dose is con-
veniently expressed in C/cm2 and measured directly as a
total charge accumulated behind the sample by a Faraday
cage. Therefore 1 C/cm2 ≈ 6.24 × 1018 electrons/cm2. In
the experiment, the London penetration depth was measured,
then the sample was irradiated, and the cycle repeated. The
irradiation was carried out with the sample immersed in liq-
uid hydrogen at about 20 K. Low-temperature irradiation is
needed to slow down recombination and migration of defects.
Upon warming up to room temperature, a quasiequilibrium
population of atomic vacancies remains due to a substantial
difference in the migration barriers between vacancies and
interstitials. An example of such an incremental irradiation
and measurement sequence showing the resistivity change
measured in situ, as well as the annealing after warming up,
is given elsewhere [61]. In the present case, the sample was
dispatched between the laboratory and the irradiation facility
for the measurements and irradiation, and then the sequence
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FIG. 1. (a) V3Si unit cell with two formula units, Z = 2. (b) Brillouin zone (BZ) and Fermi surfaces (FSs) of the five different bands
crossing the Fermi level (EF ) for V3Si. The band numbers (bands 1–5) correspond to the numbers in the text. (The small FS of band 5 is circled
for clarity.) (c) Energy band dispersion along the high-symmetry directions of the BZ. (d) Partial density of states as a function of energy for
the five bands crossing EF .

was repeated until the sample had accumulated a substantial
dose of 10 C/cm2 ≈ 6.24 × 1019 electrons/cm2. Further in-
formation on the physics of electron irradiation can be found
elsewhere [62,63].

Density functional theory (DFT) with Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [64] has
been used to calculate the band structure of V3Si at the ex-
perimental lattice constant of a = 4.741 Å [65]. The DFT
calculations have been done using the Vienna ab initio sim-
ulation package (VASP) [66] in the projected augmented wave
method and a plane-wave basis set with a kinetic energy cutoff
of 246 eV. The charge density is converged on a (8 × 8 × 8)
Monkhorst-Pack k-point mesh, including the � point. For the
Fermi surface (FS) calculations, a much denser (30 × 30 ×
30) k-point mesh is used. The Fermi velocity for each band has
been calculated by the derivative of the DFT band dispersion,
i.e., group velocity, and then averaged over the Fermi surface
of each band in the Brillouin zone (BZ), the same method as
employed previously [67,68].

III. RESULTS AND DISCUSSION

A. Electronic band structure

V3Si has a primitive cubic crystal structure in space group
223 (Pm3n) with V sitting at the 6c positions and Si at the
2a positions as shown in Fig. 1(a). The band structure of
V3Si [Fig. 1(c)] has flat pieces along the �-X, �-M, and �-R
directions, which is similar to Nb3Sn, another A15 supercon-
ductor with the same, group V, transition metal. There are five

bands crossing the EF as highlighted in different colors in
Fig. 1(c). The corresponding partial densities of states (DOSs)
of these bands are plotted in Fig. 1(d) and summarized in
Table I. Among them, bands 1 and 2 are hole bands with states
gathering along the M-R direction, the edges of the cubic BZ
[see Fig. 1(b), bands 1 and 2]. On the other hand, band 5
has a very small electron pocket around the R point, and the
contribution to the DOS is negligibly small. In contrast, bands
3 and 4 are dominant in the DOS at EF , which corresponds to
most of the flat-band contributions around the � point as seen
in Fig. 1(c). The three-dimensional (3D) FSs in Fig. 1(b) show
complex FSs for both bands 3 and 4, which have multiple
sheets at EF . Analysis of Fig. 1(b) suggests that the five bands
can be naturally grouped into two effective ones. Specifically,
bands 1 and 2 are well separated in energy from bands 3 and 4
at intermediate k values inside the BZ, making the interband
transitions improbable. Furthermore, bands 1 and 2 are much
closer in energy, and this is also true for bands 3 and 4, but at
different k. This suggests grouping bands 1 and 2 into an ef-
fective, band I; grouping bands 3 and 4 into another effective,
band II; and discarding negligible-DOS band 5. Electronic
parameters of all five bands are reported in Table I. The
“effective” parameters of the two effective bands, bands I and
II, are given in the last two columns. The multiband average
for band I is v2

F,I = (n1v
2
F,1 + n2v

2
F,2)/(n1 + n2), and similar

for effective band II. As we explain in the two-band γ -model
section, Sec. III C, the relative contribution of each band to
the superfluid density, ρs = γ ρI + (1 − γ )ρII, is given by the
parameter γ = nIv

2
I /(nIv

2
I + nIIv

2
II ) (hence the γ model). As
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TABLE I. Electronic band structure parameters relevant to the γ -model fitting. The bands are naturally grouped into two effective bands,
bands I and II. The calculated parameter γ = (n1v

2
1 + n2v

2
2 )/

∑5
i=1 niv

2
i = nIv

2
I /(nIv

2
I + nIIv

2
II ) = 0.109, to be compared with the experimental

best fit, γ = 0.175. The effective quantities remapped on the two effective bands are shown in the last two columns.

1015v2
F DOS 1015v2

F DOS
Band (cm/s)2 (states eV−1 cell−1) Two bands (cm/s)2 (states eV−1 cell−1)

1 2.22 1.22 I 3.69 1.74
2 4.48 2.26

3 7.11 6.11 II 7.70 6.80
4 8.18 7.48

5 0.00315 0.11

shown in Table I, we estimate γ = 0.109, which is quite close
to the experimental γ = 0.175, as discussed in Sec. III C.

The high DOS at EF in V3Si indicates electronic instability,
consistent with literature reports [3,10,11]. Although one way
to reduce such instability is to promote an exchange splitting,
giving a magnetic solution at the DFT level, experimentally
V3Si is not magnetic. Another way to lift the electronic in-
stability is through the electron-phonon coupling. A similar
band structure with flat bands in Nb3Sn is susceptible to
lattice distortion by a phonon mode [69], indicating a strong
electron-phonon coupling in such compounds and hence an
obvious connection to superconductivity. Thus the nonmag-
netic electronic band structure of V3Si provides important
microscopic details for superconductivity models, such as
DOS at EF and Fermi velocity, which have been used success-
fully for MgB2, the first proven two-band superconductor. In
fact, we calculated the electronic band structure of MgB2 as a
benchmark to compare with the original γ model [7,29] and
one of the first DFT calculations of a two-gap system [67],
and obtained similar results.

B. London penetration depth and superfluid density

We begin by examining the superfluid density obtained
from the measured London penetration depth. Figure 2 shows
the temperature-dependent variation of London penetration
depth, Δλ ≡ λ(T ) − λ(Tmin), with the increasing dose of elec-
tron irradiation. Considering the exponential low-temperature
behavior, we can safely assume that λ(Tmin = 0.4 K) ≈ λ(0),
and then the normalized superfluid density is calculated
as ρs = (Δλ(0)/Δλ(T ))2 = (1 + Δλ/λ(0))−2. The inset in
Fig. 2 zooms in on the low-temperature region. There is a
clear, almost kneelike feature in Δλ(T ) around 10 K, which
we now know is expected for a two-gap superconductor with
different and weakly coupled gaps [27]. Similar features were
reported in high-quality V3Si crystals before and not surpris-
ingly were interpreted as definitive evidence of a two-gap
superconductivity [7,30]. The temperature of this kinklike
feature is suppressed upon irradiation approximately at the
same rate as Tc, signaling that both gaps change at a similar
rate. Furthermore, in Fig. 2, normal-state values above Tc

are determined by the skin depth. They increase upon irra-
diation due to the increase in residual resistivity following
the Matthiessen’s rule [70]. Importantly, the superconduct-
ing transition temperature Tc is monotonically and noticeably
suppressed from 16.4 to 14.7 K (9.3%). The upper cutoff

at Tc is determined by the normal-metal skin depth, which
allows us to estimate the resistivity in a contactless way using
ρ = μ0π f δ2 where δ(Tc ← T ) ≈ 2λ(T → Tc) and λ(T ) =
Δλ(T ) + λ(0), where λ(0) = 130 nm from Refs. [3,4]. The
extracted resistivity values are 8.6, 11, 13.6, and 15.4 μ� cm
for 0, 2.1, 5.7, and 10 C/cm2 electron irradiation doses, re-
spectively. These values appear to be quite comparable to
those of the literature [4,5,25]. We note that in a large body
of work on V3Si, a spread of λ(0) values ranging from 83
to 230 nm can be found. They were obtained using different
methods and in samples of different forms (crystal vs poly-
crystalline) and purity [71–73]. The value we use is within
the statistical maximum of the current literature values. Im-
portantly, our results and conclusions are independent of the
particular value of λ(0).

Figure 3(a) shows the normalized superfluid density of a
V3Si crystal in pristine state. A similar curve for a different
crystal, cut from the same master boule, showing the same
two-gap structure, was published in our earlier paper, where a
self-consistent γ model based on Eilenberger formalism was
introduced [7]. In the original γ model, two isotropic s-wave
gaps are obtained from the solution of the self-consistency
equation, and then all thermodynamic quantities, including
the superfluid density, can be calculated. The model was

FIG. 2. Temperature-dependent London penetration depth mea-
sured in a V3Si single crystal in pristine state and after three doses
of electron irradiation. The inset zooms in on the low-temperature
region showing a clear signature of a second gap developing at
around 10 K.
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further generalized to include anisotropic or even nodal gaps
[74]. Here, it is sufficient to consider the original isotropic
approach.

C. The isotropic γ model

The γ model considers two bands with Fermi velocities
vi and partial densities of states ni = Ni(0)/N (0), where N (0)
is the total density of states at the Fermi level, so that n1 +
n2 = 1. The dimensionless effective interaction constants are
defined as νik = N (0)Vik , where Vik is the electron-electron
interaction matrix. Note that in Ref. [7] we used λ for the inter-
action matrix. To avoid confusion with the London penetration
depth, here we use νik . Also note that this definition differs
from that used in the literature, gik = nkνik . Our notation
has the advantage of being symmetric, νik = νki. Therefore,
for two bands, we have three coefficients of the interaction
matrix, two in-band coefficients, ν11 and ν22, and an inter-
band coupling coefficient, ν12. In the analysis, we perform a
least-squares fit of the experimental superfluid density shown
in Fig. 3(a) in MATLAB. If all normal-state parameters of a
material are known, the coupling constants νik are the three
fitting parameters. They are reduced to two free parameters
by the equation for Tc(νik ),

1.7638kBTc = 2h̄ωD exp(−1/̃ν), (1)

where we assume the conventional electron-phonon mech-
anism of superconductivity with ωD being the Debye fre-
quency. In general, if the energy of the bosonic pairing “glue”
is known, it should be substituted instead of h̄ωD in Eq. (1).
The prefactor comes from the weak-coupling approximation
used in the γ model. The effective interaction constant ν̃(νik )
is obtained from the solution of algebraic equations containing
all coefficients, νik ; see Sec. II A of Ref. [7]. To fit the super-
fluid density, first the self-consistent gap equation is solved at
each temperature. Introducing dimensionless quantities, δi =
(�i/T )/(2πt ), where t = T/Tc, the gap equations are given
by

δi =
∑

k=1,2

nkνikδk (̃ν−1 − ln t − Ak ),

Ak =
∞∑

n=0

[
(n + 1/2)−1 − (δ2

k + (n + 1/2)2)−1/2
]
. (2)

Note that we often set the Boltzmann constant kB = 1 where
it is obvious and use it explicitly to emphasize the numerical
values or proper dimensions, e.g., Eq. (1). For a given set of
the coupling constants νik and partial densities of states ni,
this system can be solved numerically for δi(t ) and therefore
provide the energy gaps �i(t ) = 2πT δi(t ). This is a crucial
step missing in the so-called α-model description of two-band
superconductivity [13]. While it was useful early on to ex-
plain experimental signatures of two-gap superconductivity
in MgB2, the fitting parameters of the α model have little
physical meaning. A follow-up study used two-gap functions
precalculated from the microscopic theory and showed an
excellent agreement between experimental and theoretical su-
perfluid density ρs(t ) [75]. Indeed, the s-wave MgB2, for
which all normal-state parameters are known, is a perfect

FIG. 3. (a) Symbols show the superfluid density in pristine sam-
ple calculated from the data shown in Fig. 2. Blue and green solid
curves show labeled partial superfluid densities, ρ1 and ρ2, ob-
tained in the least-squares fitting. The thick orange curve behind the
data shows an excellent agreement of the data with the fitted total
superfluid density, ρs = γ ρ1 + (1 − γ )ρ2. Best-fit parameters are
ν11 = 0.700, ν22 = 0.578, ν12 = 0.005, and γ = 0.175. (b) Best-fit
solutions of the self-consistency gap equations, Eq. (2). The T = 0
gap ratios are Δ1/Tc = 1.787 and Δ2/Tc = 1.005.

demonstration of the γ model, where different quantities are
calculated from νik obtained from the fit of ρs(t ) [7,29].

Figure 3(b) shows two gaps calculated self-consistently
from Eq. (2). The individual gap ratios are �1/Tc = 1.787 and
�2/Tc = 1.005. This should be compared with the results of
microwave surface impedance measurements, where similar
apparent two-gap behavior was observed in the superfluid
density and values of �1/Tc = 1.8 and �2/Tc = 0.95, quite
close to ours, were derived [30]. In absolute units we obtain
�1(0) ≈ 2.53 meV and �2(0) ≈ 1.42 meV. After the gaps
are calculated, the total superfluid density, ρs = γ ρ1 + (1 −
γ )ρ2, can be evaluated and fitted to the experimental data. The
partial contributions to the superfluid density are given by [7]

ρi = δ2
i

∞∑
n=0

[
δ2

i + (n + 1/2)2
]−3/2

,

γ = n1v
2
1

n1v
2
1 + n2v

2
2

, (3)

where vi are the Fermi velocities (not to be confused with
Greek νi of the interaction matrix). Analyzing Fig. 1, we
group bands 1 and 2 into one effective band I and bands 3
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and 4 into another band, band II, and we can safely neglect
band 5. (Here, we use Roman numerals I and II to index these
“effective” bands.) For the first effective band, we find γ =
(n1v

2
1 + n2v

2
2 )/

∑5
i=1 niv

2
i = 0.109. If we included band 5, it

would make a difference only in the sixth decimal digit. Using
γ as another fitting parameter, the best fit of this model to
the data gave ν11 = 0.700 [fixed by Tc, Eq. (1)], ν22 = 0.578,
ν12 = 0.005, and γ = 0.175, with the effective ν̃ = 0.350 [see
Eq. (1)]. Remarkably, the best-fit value of γ is quite close to
the estimate from the electronic band structure calculations;
see Table I, where we find γ = 0.109. This gives confidence
in the model and shows its applicability to describe the su-
perconductivity in V3Si. Naturally, overall, a smaller partial
density of states on band I, somewhat counterintuitively, leads
to a larger gap, which is the property of the self-consistent
two-band model [7,35]. We note that the possible uncertainty
in the experimental value of λ(0) leads to some uncertainty
in the fitting parameters, but not large enough to alter the
general conclusion of the relative amplitudes of the obtained
interaction matrix.

D. Effect of electron irradiation

In the last three decades, many studies involving particle
irradiation were performed on various conventional and un-
conventional superconductors, and there is a vast literature on
this topic [42,76–78]. Due to the differences in the rest mass
and irradiation temperature, the number and the morphology
of the created defects vary significantly between different
projectile particles. It appears that MeV electrons, thanks to
a small rest mass, transfer just enough energy upon collision
with ions, of the order of tens of eV, to produce well-defined
pointlike scattering centers [48]. Much larger energy transfer,
for example, from protons, produces many secondary colli-
sions and less localized damage. A more detailed discussion
of electron irradiation and created defects in solids can be
found elsewhere [62,63].

Figure 4 shows the ion-type-resolved cross sections of
the defect creation calculated using Sections Efficaces Cal-
cul Transport d’Électrons (SECTE) software, developed at
École Polytechnique (Palaiseau, France) by members of the
Laboratoire des Solides Irradiés, specifically for the in-
terpretation of MeV-range electron irradiation using their
Pelletron-type accelerator, SIRIUS [79]. Basically, this is
a computer-assisted atomic-weight-averaged interpolation of
the ion knockout cross sections tabulated by Oen [80]. In the
absence of microscopic calculations, we used the commonly
assumed value of the ion displacement energy upon a head-on
collision, Ed = 25 eV. The partial cross sections are very
similar, and we expect a roughly equal number of defects
on vanadium and silicon sites. At the operational energy of
2.5 MeV, the total cross section is estimated as σtot = 72
barns, which means that a dose of 1 C/cm2 produces roughly
1.8 defects per 1000 formula units (f.u.). This is a small
number of defects that cannot change the electronic structure
in any appreciable way, and the significant reduction in Tc ob-
served in our experiments must have a different explanation,
such as its pair-breaking nature.

First, let us examine the effect of electron irradiation on
superfluid density. While we do not know how much λ(0)

FIG. 4. Knockout defect creation cross sections for vanadium
and silicon ions in V3Si as a function of electron energy assuming the
displacement energy threshold Ed = 25 eV. At the operating energy
of 2.5 MeV, the total cross section is σtot = 71 barns, which leads to
an estimate of 4.4 × 10−4 displacements per atom (dpa) per 1 C/cm2

of irradiation.

changes, we attempted to adjust its value to scale all curves
onto a pristine one. As shown in Fig. 5 this worked rather
well with a small increase in λ(0) values shown in the legend.
This indicates that scattering does not alter the gap values
themselves and, due to very small interband coupling, has
practically no effect on the total superfluid density. Each
isotropic band follows the Anderson theorem [81], and the
change in Tc comes mostly from the interband scattering be-
tween order parameters of different magnitude. We note that
the relative change in λ(0) can be estimated from Tinkham’s
widely used approach [82], which gives, for moderate scat-
tering, λ ≈ λclean

√
1 + ξ0/�, where ξ0 ≈ 60 nm is the BCS

coherence length and � ≈ 30 nm is the electronic mean free
path in the pristine state. Both numbers are estimated for V3Si

FIG. 5. Evolution of superfluid density ρs upon irradiation. For
the pristine case, we used λ(0) = 130 nm from Ref. [3]. The curves
representing the irradiated state were calculated with the penetration
depth λ(0) values shown in the legend. They were chosen to collapse
the curves on the pristine one.
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from Tc, Fermi velocity, and resistivity; see Table I and Fig. 2.
As shown in Fig. 2, at the maximum irradiation dose, the
resistivity doubles. Therefore we expect the increase in λ(0)
by a factor of about 1.3, which is not large and does not alter
our conclusions, especially considering an apparent scaling
shown in Fig. 5.

E. Suppression of Tc by disorder in a two-band superconductor

While it is clear that the superfluid density shows a con-
vincing two-distinct-gaps feature implying small interband
coupling, this still leaves an unanswered important question
of the relative sign of the order parameter on each band. This
is because superfluid density, as well as any other thermody-
namic quantity, includes even powers of the gap function, so
that an s± state cannot be distinguished from an s++ state if
the gaps are the same; see, for example, Eq. (3). The suppres-
sion of Tc, on the other hand, is very sensitive to the overall
anisotropy of the order parameter, including a generalized
view when two bands are considered side by side along the
common path on the entire Fermi surface [83]. This situation
can be analyzed employing a very useful ansatz that tempera-
ture and angular parts of the order parameter can be separated,
�(T, kF ) = �(T )�(kF ), where kF is the Fermi wave vector
and the angular part obeys the normalization condition for
the Fermi surface average, 〈�2〉FS = 1 [83,84]. For example,
for a single-band s wave, � = 1, and for a d wave, � =√

2 cos(2ϕ). For a two-gap superconductor, Kogan introduced
a simple model in which each band is represented by its own
�i. We call it the “Omega approach” or “Omega model” [83].
In this case, the normalization reads

〈�2〉 = n1�
2
1 + n2�

2
2 = 1. (4)

In the case of an anisotropic gap, even nonmagnetic (no-
spin-flip) scatterers suppress the superconducting transition
temperature Tc. With spin-flip scattering both channels reduce
Tc. Openov gives a generalized expression of Abrikosov-
Gor’kov [85] type where gap anisotropy is explicitly taken
into account [86,87]. We note that a more general theory of
the Tc suppression by disorder scattering, extended to topo-
logically nontrivial superconductors, is discussed elsewhere
[43,44]. Here, it suffices to consider the � approach, which
gives

ln tc = ψ

(
g + gm

2tc
+ 1

2

)
− ψ

(
1

2

)

− 〈�〉2

[
ψ

(
g + gm

2tc
+ 1

2

)
− ψ

(
gm

tc
+ 1

2

)]
, (5)

where tc = Tc/Tc0, with Tc0 being the transition temperature in
a pristine state, and ψ is the digamma function. Dimensionless
magnetic and nonmagnetic scattering parameters are given by

g(m) = h̄

2πkBTc0

1

τ(m)
, (6)

where τ and τm are nonmagnetic and magnetic (spin
flip) scattering times, respectively. [Note that the original
Abrikosov-Gor’kov theory uses a different definition of the
scattering parameter, ρ = h̄/(πkBTcτ ), with the actual (sup-
pressed) Tc.] The effect of gap anisotropy can be immediately

FIG. 6. Suppression of Tc upon different types of particle irradia-
tion. Normalized Tc suppression upon electron irradiation (this paper)
is compared with two different previous studies using proton [88] and
neutron [5] irradiation. It is clearly shown that the electron irradiation
is most effective in suppressing Tc.

seen from Eq. (5): it contains � in the first power. For a single-
band s wave, 〈�〉 = 1, and we obtain tc = 1, recovering the
Anderson theorem [81]. For a d wave, 〈�〉 = 0, and we obtain
an expression where both magnetic and nonmagnetic impuri-
ties suppress Tc. It is instructive to note that the critical value
for the complete Tc suppression of an s-wave order parameter
by magnetic impurities, gm = 0.14, is exactly half of the value
for a d-wave order parameter suppression by nonmagnetic
impurities, g = 0.28.

We can now use Eq. (5) with the two-gap � approach,
in which 〈�〉 = n1�1 + n2�2. Specifically, we consider two
isotropic gaps described by constant values �1 and �1. Intro-
ducing the gap ratio r = �2/�1 and the ratio of the partial
densities of state n = n2/n1 = N1/N2, we obtain for the total
average in this two-gap model

〈�〉2 = (nr + 1)2

(n + 1)(nr2 + 1)
. (7)

Hence, without magnetic scattering (gm = 0), the transition
temperature of a two-band superconductor is given by,

ln tc = ψ

(
g

2tc
+ 1

2

)
− ψ

(
1

2

)

− (nr + 1)2

(n + 1)(nr2 + 1)

[
ψ

(
g

2tc
+ 1

2

)
− ψ

(
1

2

)]
. (8)

It is important to emphasize that the superfluid density as a
function of (reduced) temperature and Tc are two independent
measurements, which makes the analysis better defined and
constrained.

To compare the experimentally observed decrease in Tc

with our model, we need a proper parameter characterizing
the scattering rate. The problem is that different sources of dis-
order produce somewhat different effects. Figure 6 compares
the relative change in the transition temperature, �tc ≡ (Tc −
Tc0)/Tc0, in V3Si per 1 μ� cm of resistivity increase caused
by electron irradiation in this paper with two previous studies
where defects were induced by proton [88] and neutron [5]
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irradiation. The rates of the relative change are d�tc/dρ =
−0.013(μ� cm)−1 (electron irradiation), −0.008 (μ� cm)−1

(neutron irradiation), and −0.006 (μ� cm)−1 (proton irradia-
tion). Due to their small rest mass and matching range of the
energy transfer (1–100 eV), electrons produce the most effi-
cient pointlike defects and have the largest suppression rate.
A similar trend is observed in other materials, for example,
well-studied iron-based superconductors [42,48]. On the other
hand, the observed rates are not too different, roughly 0.01
(μ� cm)−1, and we can put it in perspective by comparing
with other superconductors. For that, we need to calculate the
dimensionless scattering rate, Eq. (6). In our case of measured
λ(T ) and ρ(T ) the simplest estimate of the scattering time
τ is via the London and Drude electrodynamics, τ (Tc) =
μ0λ

2
clean(0)/ρ(Tc). Note that the clean-limit value, λclean(0),

needed for the density of states in the normal metal, enters
this estimate, whereas (normal metal) scattering time comes
from resistivity. This approach is well justified in isotropic s-
wave superconductors and s++ compounds assuming that the
gap smearing caused by the modest amounts of nonmagnetic
disorder is much smaller than the gap amplitudes.

In our case, we can use Tinkham’s widely used approach
[82], λ ≈ λclean

√
1 + ξ0/�, which provides a remarkably good

agreement with the exact BCS formulas [89,90] in a wide
range of the scattering rate from clean to dirty limit. Here,
ξ0 ≈ 60 nm is the BCS coherence length and � ≈ 30 nm
is the electronic mean free path in the pristine state. Both
numbers are estimated for V3Si from Tc, Fermi velocity, and
resistivity; see Table I and Fig. 2. As shown in Fig. 2, at the
maximum irradiation dose, the resistivity doubles. Therefore
we expect an increase in λ(0) by a factor of about 1.3. This
is an insignificant change to alter the main features reported
here: the exponential attenuation at low temperatures and a
higher-temperature kink signaling two barely coupled gaps of
different magnitude. This is further confirmed by the apparent
scaling of the superfluid density for all doses of electron
irradiation (Fig. 5).

The experimental dimensionless scattering rate can be es-
timated as

g ≈ h̄

2πkBμ0

ρ(Tc)

Tc0λclean(0)2
. (9)

Note that we measure resistivity change with respect to the
pristine sample to subtract inelastic scattering, but this also
removes background impurity scattering in samples before
irradiation. Fortunately, judging by very low pinning, this
correction is negligible [26]. Also, note that this dimension-
less rate contains unmodified Tc0, which is different from the
original Abrikosov-Gor’kov definition [85].

Figure 7 shows the normalized change in supercon-
ducting transition temperature, �tc ≡ (Tc − Tc0)/Tc0, as a
function of the dimensionless scattering rate g. Fig-
ure 7(a) compares V3Si single crystal with known node-
less and nodal s± superconductors, isovalently substi-
tuted Ba(Fe0.76Ru0.24)2As2 and BaFe2(As0.7P0.3)2, and hole-
doped underdoped Ba0.81K0.19Fe2As2 and optimally doped
Ba0.66K0.34Fe2As2 (BaK122) [42]. The theoretical curves
from Eq. (8) are shown by different line types. Clearly, all
sign-changing s± superconductors show a suppression rate
significantly higher than that in two-gap V3Si, which is con-

FIG. 7. Normalized change in superconducting transition tem-
perature, �tc ≡ (Tc − Tc0 )/Tc0, as a function of the dimensionless
scattering rate g. (a) Comparison of V3Si single crystal with known
nodeless and nodal s± superconductors shown in the legend. The
theoretical curves from Eq. (8) are shown by line types. Clearly,
all sign-changing s± superconductors show a suppression rate larger
than that in V3Si. (b) Similar comparison with another s++ two-band
superconductor, NbSe2 [91], and an unconventional Dirac semimetal
compound, PdTe2 [43,92]. As soon as the CDW is suppressed, NbSe2

shows a similar suppression rate to that of V3Si. AG, Abrikosov-
Gor’kov.

sistent with the s++ theoretical curve for gap ratio r = +0.4,
while the same gap ratio, but of opposite sign, r = −0.4,
is close to the BaK122 data. Interestingly, a nodal multi-
band s± superconductor, BaFe2(As0.7P0.3)2, shows an even
greater rate of Tc suppression, most likely because in this
case the interband and in-band scattering channels are both
pair breaking. Figure 7(b) compares V3Si with another s++
two-band superconductor, NbSe2 [91], and an unconventional
Dirac semimetal compound, PdTe2 [43,92]. In NbSe2, the
situation is complicated by the charge density wave (CDW),
whose competition with superconductivity (SC) leads to the
initial increase in Tc. However, as soon as the CDW is de-
stroyed by disorder, further suppression of Tc is quite similar
to that in our subject compound, V3Si [91]. The second
compound, unconventional PdTe2, shows a rate of suppres-
sion quite similar to that of V3Si. Moreover, it also has a
fully gapped Fermi surface leading to exponential attenua-
tion of the penetration depth. However, peculiarities of the
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electronic band structure of PdTe2 support an unconventional
pairing mechanism [43,92], whereas V3Si does not have such
topological features and is consistent with BCS-type two-
gap superconductivity. This is a good example showing that,
sometimes, thermodynamic measurements alone cannot fully
answer the type-of-pairing question. They must be supported
by the theoretical analysis based on the material’s electronic
band structure.

IV. CONCLUSIONS

We used controlled pointlike disorder induced by 2.5-MeV
electron irradiation at different doses to study the supercon-
ducting order parameter in a V3Si single crystal. Simultaneous
measurements of London penetration depth and supercon-
ducting transition temperature Tc set stringent experimental
boundaries on possible superconducting states. Specifically,
we observe (1) exponentially attenuated low-temperature be-
havior of λ(T ) (which means a fully gapped Fermi surface),
(2) a kink at higher reduced temperatures (signaling two
barely coupled gaps), and (3) a significant shift in Tc (sig-
naling gaps of different amplitude). The discussed analysis is

applicable for any choice of λ(0). Using a two-band analysis
for the quantities of both ρs(T ) and �Tc, we conclude that
s++ pairing with two barely coupled gaps of different ampli-
tudes, �1(0) ≈ 2.53 meV and �1(0) ≈ 1.42 meV, provides
an excellent fit and overall self-consistent description of the
experiment. This makes V3Si the earliest (superconductivity
discovered in 1953) proven s++ superconductor, preceding
MgB2 (superconductivity discovered in 2001) by half a cen-
tury.
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