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Coexistence of spontaneous dimerization and magnetic order in a transverse-field
Ising ladder with four-spin interactions
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The spin-1/2 transverse field two-leg Ising ladder with nearest-neighbor exchange and plaquette four-spin
interaction J4 is studied analytically and numerically with the density matrix renormalization group approach.
The quantum phase diagram in the transverse field B versus J4 plane has been obtained. There are three
different phases: a paramagnetic (PM) phase for high values of the transverse field and, for low values of B,
a ferromagnetic (FM) ordered phase for small J4, and a dimerized-rung (DR) phase for large negative values
of J4. All phases are separated by quantum phase transition lines meeting at a multicritical point. The critical
lines have been obtained by exploring the entanglement entropy. The results show that along the critical lines
the central charge is c = 1/2, while at the multicritical point one has c = 1. The scaling dimension of the energy
operator is Xε = 1, in agreement with the universality class of the critical behavior of the quantum Ising chain.
An effective field theory for the multicritical point is also discussed. The FM and the DR order parameters have
also been computed and we found a region where the FM and the DR phases coexist.
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I. INTRODUCTION

The topic of quantum spin systems is by far one of the
most fascinating and interesting branches of experimental and
theoretical physics. Although in the beginning the study of
quantum spin systems was specifically related to magnetism
and the corresponding magnetic properties [1,2], it has by
now migrated to several areas such as high-temperature super-
conductors [3], ferromagnetic nanowires [4], and spintronics
[5], among others. Quantum phase transitions have also been
recently revisited and a close analogy to the simple fluid phase
diagram has been experimentally detected in the geometri-
cally frustrated quantum antiferromagnet SrCu2(BO3)2 [6].

Low-dimensional quantum spin models with competing
interactions represent a fertile ground for unconventional
magnetic behavior. Examples in one dimension include the
transverse Ising model with next-nearest-neighbor interac-
tions [7] and with linear interaction among four spins [8–10],
ladder models describing cuprates [11,12], and spin mod-
els with four-spin interactions used to explain ferroelectrics
[13–15]. Zero-dimensional models are also important when
applied to magnetic molecules and nanomagnetism [16–18],
multiferroics [19,20], and ultracold atoms trapped in optical
lattices [21,22].

While nearest-neighbor exchange is often the dominant
interaction in Mott insulating materials, longer-range and
multispin interactions may play an important role, particu-
larly in the vicinity of a metal-insulator transition [23,24].
In fact, the ring exchange interaction has been invoked to
reproduce the dispersion relation observed in inelastic neu-
tron scattering experiments on cuprates such as La2CuO4

and La6Ca8Cu24O41 [25–28]. More recently, four-spin inter-
actions have been argued to stabilize a chiral spin liquid on
the triangular lattice [29].

Motivated by experiments on materials with a ladderlike
structure [30–34], spin ladder models have been extensively
studied and shown to display rich phase diagrams. For
instance, the frustrated antiferromagnetic spin ladder in a
magnetic field exhibits a magnetization plateau at half satu-
ration which is attributed to a gapped state that spontaneously
breaks the lattice translational symmetry [35–37]. A columnar
dimer phase was also proposed at zero magnetic field [38,39],
but the numerical evidence for this phase is still ambiguous
[40]. Moreover, four-spin interactions in spin ladders can give
rise to other unusual types of order, such as scalar chirality
and intraleg staggered dimerization [41–46].

The purpose of the present work is to study the effects
of four-spin interactions on the transverse-field Ising model

2469-9950/2022/105(2)/024430(9) 024430-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4913-3480
https://orcid.org/0000-0003-2767-8535
https://orcid.org/0000-0002-1829-8429
https://orcid.org/0000-0002-5135-1674
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.024430&domain=pdf&date_stamp=2022-01-31
https://doi.org/10.1103/PhysRevB.105.024430


XAVIER, PEREIRA, NUNES, AND PLASCAK PHYSICAL REVIEW B 105, 024430 (2022)

defined on a two-leg ladder. Based on analytical consider-
ations and density matrix renormalization group (DMRG)
methods, we map out the phase diagram of the model and
characterize the nature of the transitions. In the regime of
dominant four-spin interaction, we find a nonmagnetic phase
which breaks translational invariance by means of rung dimer-
ization. Remarkably, for intermediate values of the four-spin
interaction this dimer order coexists with the conventional
ferromagnetic (FM) order of the quantum Ising model at weak
fields. Analyzing the entanglement entropy, we identify two
critical lines in the Ising universality class, with central charge
c = 1/2. These lines cross at a multicritical point with central
charge c = 1, below which the coexistence phase appears.

The paper is organized as follows. In Sec. II we introduce
the model and discuss the phases for some simple limits of
the parameters. The determination of the critical behavior,
using the entanglement entropy and the DMRG procedure,
is described in Sec. III. Our main results are presented in
Sec. IV. Finally, some concluding remarks are left for Sec. V.

II. MODEL AND PHASES

Consider the following Hamiltonian for a two-leg quantum
Ising ladder with periodic boundary conditions (PBC):

H = −
∑

n=1,2

L∑
i=1

(
σ z

n,iσ
z
n,i+1 + Bσ x

n,i

)

−
L∑

i=1

(
Jz
⊥σ z

1,iσ
z
2,i + J4σ

z
1,iσ

z
1,i+1σ

z
2,iσ

z
2,i+1

)
. (1)

Here σ
η
n,i (η = x, z, y) are the Pauli spin matrices at the ith site

of leg n = 1, 2 and L is the length of the ladder, which has a
total of N = 2L sites. The first term with a coupling constant
set to unity corresponds to the Ising interaction along the legs.
In addition to a transverse magnetic field B, the Hamilto-
nian includes a rung coupling Jz

⊥ in the z spin direction as
well as a four-spin interaction J4 on square plaquettes. For
Jz
⊥ = J4 = 0, the model reduces to two decoupled transverse-

field Ising chains. For Jz
⊥ = 0 but J4 �= 0, the model has a

Z2 × Z2 symmetry in analogy with the quantum Ashkin-
Teller model [47,48]. This Z2 × Z2 symmetry is generated
by Rn = ∏

i σ
x
n,i with n = 1, 2 and is equivalent to global

π rotations around the x axis for each leg independently. In
the complete model, the Jz

⊥ interaction breaks this symmetry
down to a single Z2 symmetry generated by R = R1R2.
Hereafter we set Jz

⊥ = 1, which describes a spatially isotropic
transverse-field Ising ladder supplemented by four-spin
interactions.

We are interested in the ground state (GS) phase diagram of
the model as a function of B > 0 and J4 < 0. To gain insight
into the possible phases, let us consider some particular limits
of the Hamiltonian parameters. For J4 = 0, the physics is
governed by the competition between the ferromagnetic Ising
coupling and the transverse magnetic field. In this limit we
expect a continuous phase transition in the two-dimensional
Ising universality class from a FM phase for B < Bc to a
paramagnetic (PM) phase for B > Bc. The FM phase has two
degenerate ground states that spontaneously break the R sym-
metry. In a four-site plaquette, the classical FM ground states

FIG. 1. Sketch of the dimerized-rung phase. The enclosed up-
down dimers are located in one sublattice.

can be represented by + +
+ + and − −

− −, where ± denotes
a spin polarized in the ±ẑ direction. In the PM phase, the
unique GS is adiabatically connected with the product state
with all spins polarized in the x̂ direction. On the other hand,
for B = 0 and J4 �= 0 we have a classical Ising model with
four-spin interactions. While J4 > 0 favors the FM states, for
J4 < −3/2 we find a new type of order that we refer to as
the dimerized-rung (DR) phase, which we will discuss in the
following.

The classical GSs of the DR phase obey the local constraint
that all plaquettes have only one spin with a different sign.
An example is sketched in Fig. 1. Importantly, the constraint
implies an alternation between rungs with parallel or antipar-
allel spins. Here it is convenient to introduce the pseudospins
T z

i = σ z
1,iσ

z
2,i and Sz

i = σ z
1,i and represent states in the local

basis for each rung by |T z
i , Sz

i 〉. The subspace of classical DR
states with energy E0 = −L|J4| is then defined by T z

i+1 = −T z
i

with arbitrary {Sz
i }. As a consequence, the DR states break

translational symmetry i �→ i + 1 upon the choice of antipar-
allel spins T z = − on the even or odd sublattice. We refer
to a rung with antiparallel spins as an up-down dimer. The
classical GS degeneracy is given by 2L+1. We stress that the
DR phase should not be confused with the rung singlet phase
that appears in the case of isotropic spin interaction [42].
Unlike the DR phase, the rung singlet phase does not break
any symmetries and has a unique ground state.

A small transverse magnetic field must lift the exponential
degeneracy of the classical model. To see this effect, we first
rewrite the Hamiltonian in terms of the rung pseudospins:

H = −
L∑

i=1

[
J4T z

i T z
i+1 + (

1 + T z
i T z

i+1

)
Sz

i Sz
i+1 + T z

i

]

− B
L∑

i=1

(
1 + Sx

i

)
T x

i , (2)

where T x
i = σ x

2,i and Sx
i = σ x

1,iσ
x
2,i, so that the pseudospins

obey {T x
i , T z

i } = {Sx
i , Sz

i } = 0 and [T x
i , Sz

i ] = [Sx
i , T z

i ] = 0. In
this notation, the global π rotation is written as R = ∏

i Sx
i .

The analysis of the Hamiltonian becomes particularly simple
in the limit |J4|, B � 1. Dropping the exchange interaction
terms, we obtain

H ≈ −
L∑

i=1

[
J4T z

i T z
i+1 + B

(
1 + Sx

i

)
T x

i

]
. (3)

In this limit, the operators Sx
i become conserved quantities. If

we fix Sx
i = +1 for all rungs, the model reduces to an Ising

chain with a uniform transverse field for the T pseudospins.
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In terms of the original spins, the state on each rung becomes
a superposition:

|T z = +, Sx = +〉 = 1√
2

(∣∣∣∣++
〉
+

∣∣∣∣−−
〉)

, (4)

|T z = −, Sx = +〉 = 1√
2

(∣∣∣∣+−
〉
+

∣∣∣∣−+
〉)

. (5)

From now on we are going to consider only negative
values of J4. For B 
 −J4, the GSs are selected within the
sector with T z

i+1 = −T z
i . The only remaining degeneracy is

that associated with the broken translational invariance. The
two GSs can be viewed as crystals of up-down dimers and are
distinguished by the order parameter

D = 1

L

L∑
i=1

(−1)i
〈
T z

i

〉 = 1

L

L∑
i=1

(−1)i
〈
σ z

1,iσ
z
2,i

〉
. (6)

Remarkably, the excited states with energy ∼B 
 |J4| also
originate from the sector with the local constraint T z

i+1 = −T z
i ;

thus, they all have D �= 0 in the thermodynamic limit. The
elementary excitation in the regime B 
 |J4| corresponds to
inverting the eigenvalue of Sx

i , by applying a phase flip to the
rung state ∣∣∣∣σ

z
1

σ z
2

〉
�→ σ z

1

∣∣∣∣σ
z
1

σ z
2

〉
, (7)

without disrupting the long-range DR order.
As we increase the magnetic field in the regime B, |J4| �

1, the quantum fluctuations suppress the DR order. According
to Hamiltonian (3), there is an Ising transition at B ≈ |J4|/2
at which the DR order parameter vanishes. For B � |J4| �
1, the GS has T x

i = Sx
i = +1, which is equivalent to σ x

1,i =
σ x

2,i = +1. Thus, this high-field phase must be smoothly con-
nected with the PM phase found in the regime B � 1 � |J4|.
Note that once we restore the interleg coupling Jz

⊥ = 1, cor-
responding to the last term in the first line of Eq. (2), the
expectation value L−1 ∑

i〈T z
i 〉 becomes nonzero throughout

the entire phase diagram. We stress that the order parameter
of the DR phase is the staggered part of 〈T z

i 〉, whereas the FM
phase is characterized by 〈Sz

i 〉, 〈T z
i Sz

i 〉 �= 0. While the above
analysis predicts only DR order for −J4 � 1, nothing pre-
cludes the coexistence of DR and FM orders at intermediate
couplings. In fact, for the classical model with J4 < −3/2,
the subspace of degenerate GSs contains states with nonzero
total magnetization that satisfy the constraint T z

i+1 = −T z
i .

In Sec. IV we shall see that DR and FM orders coexist for
J4 ∼ −1.5 at weak fields.

III. METHODOLOGY

As stated in the Introduction, the purpose of this paper
is to determine the GS phase diagram of the model and to
characterize the universality classes of the critical lines using
the entanglement entropy. Before presenting our results, and
for the sake of clarity, let us briefly discuss how to infer the
critical behavior from the scaling of the Rényi entanglement
entropies near second-order phase transitions.

Consider a one-dimensional system composed of subsys-
tems A with x sites (x = 1, . . . , L) and B with L − x sites.
The α-Rényi entanglement entropies (REE) of the GS are

defined as

Sα (L, x) = 1

1 − α
ln Tr

(
ρα
A

)
, (8)

where ρA = TrBρ, constructed from the GS, is the reduced
density matrix of the subsystem A. The von Neumann en-
tropy, also known as entanglement entropy, corresponds to
α → 1.

The scaling of the REE of the GS is universal and we
can explore this universality to determine the critical behav-
ior of the model. For noncritical systems, the REE satisfies
the entropic area law (see Ref. [49] for a review). For one-
dimensional systems, the entropy is expected to approach a
constant value at large subsystem sizes, i.e., Sα (L, x � 1) →
bα . On the other hand, for critical systems with PBC, the REE
is expected to behave in the scaling regime 1 
 x 
 L as

Scrit
α (L, x) = SCFT

α (L, x) + SUSC
α (L, x). (9)

The first term on the right-hand side of the above equation is
the leading correction predicted by the conformal field theory
(CFT) and is given by [50–53]

SCFT
α = c

6

(
1 + 1

α

)
ln

[
L

π
sin

(
πx

L

)]
+ aα, (10)

where c is the central charge and aα is a nonuniversal constant.
The unusual subleading correction SUSC

α has the following
universal scaling [54–59]:

SUSC
α = gα cos(κx + φ)

∣∣∣sin
(πx

L

)∣∣∣−pα

, (11)

where gα is another nonuniversal constant and the exponent
pα is related to the scaling dimension of the energy operator
Xε by pα = 2Xε

α
. The wave vector κ and the phase φ depend

on the model. For instance, κ = 0 = φ for the Ising model and
κ = π , φ = 0 for the spin-s XXZ chains at zero magnetic field
[58]. For the XXX chain, the scaling is affected by a marginal
operator that accounts for logarithmic corrections. As a result,
we must replace the central charge in Eq. (10) by [59]

ceff = c + 1

b2

[
2g

1 + πgb ln
[

L
π

sin
(

πx
L

)]
]3

, (12)

where g is a constant and b is a universal coefficient in the
operator product expansion of the CFT.

It is possible to explore the above scaling laws to determine
the critical behavior, as the procedure outlined in Ref. [60],
which we use here and explain in the following. For a fixed
value of the four-spin interaction, the pseudocritical transverse
field BL

c is given by the maximum value of the entanglement
entropy difference (MVEED) defined by


S1(L, B) = S1(L, x = L/2) − S1(L, x = L/4). (13)

Thus, according to the different scalings of critical and non-
critical behavior presented above (see Ref. [60] for more
details), as L → ∞, we should have


S1(L, B) =
{ c

6 ln(2), B = BL
c ,

0, B �= BL
c .

(14)

Note that one can use the above equation to get not only the
critical value of B, but also the finite-size estimate of the cen-
tral charge, given by cL = 6
S1(L, BL

c )/ ln(2). Besides, we
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TABLE I. Finite-size estimates of BL
c and cL for J4 = 0 obtained

from the MVEED method; see Eqs. (13) and (14).

BL
c at J4 = 0

L BL
c cL

8 1.82660 0.50721
16 1.83171 0.50122
20 1.83194 0.50077
24 1.83213 0.50052
28 1.83214 0.50038

extr. 1.83214(5)

can also estimate the dimension of the energy operator Xε by
fitting the numerical data with the following difference [58]:

dα (L, x) = Sα (L, x) − c

6

(
1 + 1

α

)
ln

[
L

π
sin

(
πx

L

)]
, (15)

which, asymptotically, behaves as

dα (L, x) = aα + gα cos(κ� + φ)
∣∣∣sin

(πx

L

)∣∣∣−pα

. (16)

In order to compute the REE of the GS of the two-leg
ladder model described in Sec. II, we have used the standard
DMRG approach keeping up to m = 400 states per block and
the discarded weight was typically 10−10–10−12, in most of
the cases. For the multicritical point, where c = 1, we kept
up to m = 1000 states and the discarded weight was typically
10−8–10−10. In this later case we have compared the entangle-
ment entropy with different values of 600 < m < 1000, and
found that it has converged.

IV. RESULTS

We obtain the phase diagram by following the procedure
described in Sec. III and computing the desired quantities for
different values of system size L. In what follows, we have
considered mostly lengths ranging from L = 8 to L = 28. In
some instances, such as when computing the energy exponent
or the DR order parameter, we have also used lengths up to
L = 60.

A. Phase diagram and critical behavior

First, we illustrate how accurate estimates of the critical
points Bc(J4), as well of the central charge c, can be ob-
tained using the procedure discussed above. Here we use
PBC. Table I shows a representative example of the finite-size
estimates of BL

c and cL obtained from the maximum value of

S1(L, B) for J4 = 0. We clearly see that the transition from
the FM to the PM phase at J4 = 0 has central charge c = 1/2,
and is therefore in the same university class as the critical
point of the transverse-field Ising chain.

The finite-size estimates for the critical field for J4 = 0
in Table I are consistent with the value Bc = 1.838 found
in Ref. [61]. The estimate in Ref. [61] was determined after
extrapolating the data for a two-leg ladder with open boundary
conditions to the thermodynamic limit L → ∞. A similar ex-
trapolation is performed in Fig. 2, where we show the results

0 0.05 0.1
1/L

1.826

1.828

1.83

1.832

B
cL

J
4
 = 0 

FIG. 2. Critical transverse field BL
c for J4 = 0, estimated from the

maximum value of the entanglement entropy, as a function of 1/L.
The solid line is a fit to Eq. (17).

for the critical field from Table I, as a function of the inverse
length, fitted according to the scaling equation

BL
c = Bc + aL−1/ν (1 + bL−ω ), (17)

where Bc is the critical field in the thermodynamic limit, a
and b are nonuniversal constants, and ν = 1 and ω = 2 are
the correlation length and correction-to-scaling Ising criti-
cal exponents, respectively. We obtain the extrapolated value
Bc = 1.83214(5), which we believe is more accurate than the
previous value from Ref. [61].

We have also determined BL
c and cL for several other values

of J4 and system sizes L. Similarly to the results for J4 = 0 in
Table I, the critical fields for L = 28 are already in excellent
agreement with the extrapolation to the thermodynamic limit.
For this reason, in Fig. 3 we present the critical lines estimated
from data for L = 28.

Our numerical results in Fig. 3 reveal the presence of two
critical lines, both with central charge c = 1/2, which cross at
a multicritical point. As discussed in Sec. II, at large |J4| the
critical line corresponds to the Ising transition from the DR to
the PM phase. Thus, the dashed line in Fig. 3 can be associated
with the spontaneous breaking of lattice translational symme-
try. In contrast, the solid line represents the Ising transition
at which the spin-rotation R symmetry is broken. By this
reasoning we expect that in the region below the multicritical
point both symmetries are broken, leading to a coexistence
of the FM and DR phases. We will confirm this picture by
computing the order parameters in Sec. IV B. In the following
we proceed with characterizing the multicritical point.

The finite-size estimates of cL indicate that the central
charge is larger at the crossing of the two Ising transition
lines. We locate the multicritical point (Bmc, Jmc

4 ) precisely by
finding the maximum value of 
SL(B, J4) in the J4-B plane.
The same procedure was used in Ref. [60] to determine the
tricritical point of the Blume-Capel model. In Table II we
present the finite-size estimates of the multicritical couplings
obtained by this procedure, together with the estimates of the
central charge cL. We clearly see that the universality class of
the multicritical point is described by a CFT with c = 1.
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0 1 2 3 4
-J

4

0

0.5

1

1.5

2

B

PM

FM DR 

FM
+D

R

FIG. 3. Phase diagram of the two-leg ladder as a function of the
negative of the four-spin interaction J4 and transverse field B, show-
ing the ferromagnetic (FM), dimerized-rung (DR), and paramagnetic
(PM) phases. The circles are the numerical finite-size estimates of
the critical points for system size L = 28. The solid and dashed
lines correspond to Ising transitions. The square at B = 0, J4 = −3/2
corresponds to a classical transition point and the star, at the crossing
of the critical lines, to a multicritical point. Below the multicritical
point there is a region of coexistence of FM and DR order parameters.

Phenomenologically, the central charge can be understood
in terms of two independent Majorana fermions which be-
come massless at the Ising transitions represented by the lines
in Fig. 3. Since these transitions break different symmetries,
there is no direct coupling between the order parameters of
these two Ising CFTs. At the multicritical point, the two
species of massless Majorana fermions can be combined to
define a complex fermion, which can then be bosonized [62].
Thus, this point belong to the Gaussian universality class, and
the effective field theory with c = 1 can be written in terms of
a single massless boson. This theory allows for local operators
whose scaling dimension varies continuously as a function of
a Luttinger parameter K = K (Bmc, Jmc

4 ). The effective field
theory for the multicritical point is discussed in more detail in
the Appendix.

To strengthen the case for the crossing of two Ising tran-
sitions, we determine the scaling dimension Xε of the energy
operator using the fitting procedure summarized by Eqs. (15)
and (16). In Fig. 4(a) we present a representative example of
the difference d2(L, x) as a function of x for J4 = −1 and

TABLE II. Finite-size estimates of Bmc and Jmc
4 , and cL for the

multicritical point.

L Jmc
4 Bmc cL

8 1.9381 0.5925 1.1451
12 1.9395 0.5753 1.0701
16 1.9446 0.5877 1.0504
20 1.9450 0.5863 1.0214
24 1.9452 0.5879 1.0132
28 1.9456 0.5875 1.0109

10 15 20 25 30

x

0.4065

0.408

0.4095

d 2(x
) L=40

L=60

p
2
=0.99

p
2
=0.95

J
4
= -1

(a)

10 15 20 25 30

x

0.776

0.78

0.784

d 2(x
) L=40

L=60

p
2
=0.92

p
2
=0.98

J
4
= -1.9456   B=0.5875

(b)

FIG. 4. Results for d2(L, x) versus x for the two-leg ladder model
with PBC. (a) Data for J4 = −1 and two values of L (see legend).
(b) Same as (a), but for the multicritical point. The symbols are the
numerical data and the solid lines connect the fitted points using
Eq. (16) with c = 1/2 in (a) and c = 1 in (b). The arrows indicate
the values of p2 ≡ Xε obtained through the fit. We discarded the first
four points of d2 in the fit procedure.

two system sizes: L = 40 and L = 60. We performed similar
fits along the entire critical lines and obtained the exponent
p2 = Xε ≈ 1. These results are consistent with the fact the
universality class of critical behavior of these critical lines
is the same as the quantum Ising chain, where c = 1/2 and
Xε = 1.

We also estimate Xε at the multicritical point where c = 1.

It is important to mention here that, for large system sizes,
it is necessary to use more states per block in the DMRG
procedure. For this reason, at the multicritical point we use
m = 1000 states per block. In Fig. 4(b) we show the dif-
ference d2(L, x) at the multicritical point. Note that in this
case the subleading corrections exhibit oscillations. Simi-
lar oscillations are routinely observed in the Rényi entropy
of critical systems described by c � 1 CFTs and present-
ing tendency of antiferromagnetic order, for instance the
spin-1/2 XXZ chain [57]. In that case, the gapless bosonic
mode of the c = 1 CFT arises naturally from the U (1) symme-
try of the model. By contrast, in our model the U (1) symmetry
of the low-energy fixed point is emergent and requires fine

024430-5



XAVIER, PEREIRA, NUNES, AND PLASCAK PHYSICAL REVIEW B 105, 024430 (2022)

tuning to the multicritical point. In our present case, it seems
that the origin of the oscillations comes from the dimerization,
which also alternate the spins in the lattice in analogy to the
antiferromagnetic order. To remove the effect of the oscilla-
tions and make the analysis easier, we fit the numerical data
using Eq. (16) considering only x even. Our results indicate
that Xε ≈ 1 at the multicritical point.

B. Order parameters

We close this section by presenting results for the order pa-
rameter associated with the DR and FM phases. For practical
purposes, instead of using Eq. (6), we consider the parameter
defined locally on a four-site plaquette

Di = 1
2

∣∣〈σ z
1,i+1σ

z
2,i+1 − σ z

1,iσ
z
2,i

〉∣∣. (18)

Clearly, in the translationally invariant GSs for the FM and
PM phases we have Di = 0 for any plaquette. Inside the DR
phase, however, we must be careful because Di = 0 for any
finite system with PBC. In order to investigate the symmetry
breaking by considering finite systems, we add a small per-
turbation that selects one of the two DR GSs which become
exactly degenerate in the thermodynamic limit. A simple way
to lift this degeneracy is to consider a system with semi-open
boundary conditions (SOBC), consisting of an open ladder
with L odd to which we add the following term that connects
the two edges:

HDR
BC = −(

σ z
1,1σ

z
1,L + σ z

2,1σ
z
2,L

)
. (19)

Similarly, we can view this SOBC as the ladder with
PBC in which we suppress the four-spin interaction of the
Lth plaquette. We then consider the order parameter at
the center of the ladder, D(L+1)/2, far from the perturbation
at the boundary.

To illustrate the behavior of the DR order parameter, we
first present in Fig. 5(a) the result for D(L+1)/2 as a function
of J4 for B = 1 and different values of system size L. Note
that, according to the phase diagram in Fig. 3, as we vary J4 at
fixed B = 1, we cut across three different phases. As expected,
D(L+1)/2 is nonzero only in the DR phase. The finite size
scaling analysis in Fig. 5(b) confirms that D(L+1)/2 approaches
a finite value at large values |J4|, providing unambiguous
evidence of the DR GS.

We can also locate the transition corresponding to the
dashed line in Fig. 3 by analyzing the DR order parameter.
For a fixed value of B, we can estimate the critical point Jc

4
as the inflection point of D(L+1)/2 as a function of J4. We find
that the estimates of the critical points obtained within this
procedure (not shown) are in good agreement with the results
from the MVEED.

Finally, we investigate the FM order parameter defined as
M(L+1)/2 = 〈σ z

1,(L+1)/2〉. Similarly to the DR order parameter,
M(L+1)/2 vanishes identically for any finite system with PBC.
We must then add a local perturbation that breaks the Z2 spin-
rotation symmetry. We consider a weak boundary longitudinal
field that scales with system size:

HFM
BC = − 1

L2

(
σ z

1,1 + σ z
2,1

)
. (20)
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FIG. 5. Order parameters for the phases of the two-leg ladder
with a particular boundary condition, see Eq. (19). (a) DR order
parameter as a function of J4 for B = 1 and different system sizes
L. (b) Finite size scaling of the DR order parameter for J4 = −3
and B = 1. (c) D(L+1)/2 and M(L+1)/2 versus J4 for B = 0.25 and
two values of L. The blue arrows in the horizontal axis indicate
the positions of the two critical points for B = 0.25 according to
the phase diagram in Fig. 3. The lines in (b) and (c) connect the
numerical data.

In Fig. 5(c) we show the results for D(L+1)/2 and M(L+1)/2 as
a function of J4 for B = 0.25 and two different system sizes.
For this value of B we have two critical points, Jc1

4 ≈ −1.65
and Jc2

4 ≈ −2.05, which are indicated by blue arrows in the
horizontal axis of Fig. 5(c). As we observe in this figure, both
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order parameters are nonzero between the two critical points,
demonstrating that the FM and DR orders coexist in this
range. Finite size effects are more pronounced for J4 ≈ Jc1

4 .
We have performed a finite size scaling analysis similar to the
one in Fig. 5(b) and verified that limL→∞ M(L+1)/2 is nonzero
for some values of J4 above Jc1

4 and below Jc2
4 .

For B 
 1, the onset of DR order matches the classi-
cal transition point J4 = −3/2, see Fig. 3. As discussed in
Sec. II, the classical model with B = 0 has an exponentially
degenerate GS manifold which includes DR states with finite
magnetization. Our observation of a coexistence phase implies
that, slightly above the classical transition point, an arbitrarily
small transverse field lifts the exponential degeneracy and
selects four GSs that break both spin-rotation and translational
symmetries. These four GSs can be labeled by the signs of
D(L+1)/2 and M(L+1)/2 in the limit L → ∞. In addition, for
B > 0 there appears the second critical point, beyond which
the FM order parameter vanishes and the spin-rotation sym-
metry is restored, while the translational symmetry remains
broken. Using the MVEED, we have not been able to track
the transition from the coexistence phase to the DR phase all
the way down to B → 0; see the black line in Fig. 3. The nu-
merical difficulties for small B and −J4 > 3/2 are most likely
associated with the approximate degeneracy of exponentially
many states in this regime. Note from Fig. 5 that the black
critical line is smooth around 0.1 < B < 0.5. This suggests
that this line will touch the horizontal axis at −Jc

4 ≈ 2. How-
ever, when treating the classical system (B = 0), we find a
single transition at Jc

4 = −3/2 from the ferromagnetic phase
to the regime of highly degenerate ground states, containing
DR states with or without ferromagnetic order. Due to this
fact, a reentrance of the pure DR phase cannot be ruled out,
and our data are inconclusive for B < 0.1.

V. CONCLUSIONS

We investigated a transverse-field two-leg Ising ladder with
a plaquette four-spin interaction. We obtained the ground state
phase diagram by exploring the finite-size scaling entangle-
ment entropy. We found two critical lines that separate two
ordered phases (see Fig. 3): a ferromagnetic and a dimerized-
rung phase. These phases spontaneously break the symmetries
of Z2 spin rotation and translation by one site, respectively.
The universality class of both transitions is the same as the
quantum Ising chain. We confirmed this critical behavior by
calculating the central charge using the entanglement entropy.
We found that the critical lines with central charge c = 1/2
cross at a multicritical point with c = 1 (see Table II). By
analyzing the subleading corrections of the scaling Rényi
entanglement entropy, we were able to determine the scaling
dimension Xε of the energy operator. Our results support Xε =
1 along the critical lines, as expected for models with c = 1/2,

as well as at the multicritical point. By investigating the order
parameters, we found a region in parameter space where the
ferromagnetic and dimerized-rung orders coexist (see Fig. 5).
It is interesting to notice that the plaquette symmetry of the
four-spin interaction seems to be responsible for the richness
of the phase diagram presented by this model. In contrast, the
transverse-field chain in the regime of dominant linear four-
spin interaction has only an eightfold ground state degeneracy

and a first-order transition to the disordered state takes place
instead, with the multicritical point located at zero transverse
field [10].
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APPENDIX: EFFECTIVE FIELD THEORY FOR THE
MULTICRITICAL POINT

In this Appendix we analyze the effective field theory that
describes the vicinity of the multicritical point with c = 1 in
the two-leg ladder model. Since the multicritical point appears
at intermediate couplings, far from any exactly solvable point
in the phase diagram, we adopt a phenomenological approach
guided by symmetry considerations. We can cast the order
parameters of the model in terms of two Z2 symmetries: the
spin-rotation symmetry R and the symmetry of exchanging
even and odd sublattices upon translation by one site. Let
σ1(x) and σ2(x) denote the order operators in the Ising CFTs
[63] that describe the low-energy physics near the transitions
where these Z2 symmetries are spontaneously broken. The
order operators have conformal weights ( 1

16 , 1
16 ). The FM

phase corresponds to 〈σ1〉 �= 0, 〈σ2〉 = 0, whereas the DR
phase corresponds to 〈σ1〉 = 0, 〈σ2〉 �= 0. In the coexistence
phase we have 〈σ1〉 �= 0 and 〈σ2〉 �= 0.

The effective Hamiltonian density for the perturbed CFT
including all local operators allowed by symmetry is

Heff =
∑

n=1,2

[
ivn

2
(ξn∂xξn − ξ̄n∂x ξ̄n) + imnξnξ̄n

]

+ gξ1ξ̄1ξ2ξ̄2,

where ξn(x) and ξ̄n(x) are chiral Majorana fermions
with conformal weights ( 1

2 , 0) and (0, 1
2 ), respectively,

which obey {ξn(x), ξn′ (x′)} = {ξ̄n(x), ξ̄n′ (x′)} = δnn′δ(x − x′)
and {ξn(x), ξ̄n′ (x′)} = 0. The operators εn = iξnξ̄n, with con-
formal weights ( 1

2 , 1
2 ) and scaling dimension Xε = 1, can be

identified with the energy operators in the Ising CFTs. The
velocities v1 and v2 can be different since the two species of
Majorana fermions are not related by symmetry. The masses
m1 and m2 can also be different and represent the couplings
constants for the leading relevant operators in the effective
Hamiltonian. Importantly, the term σ1σ2, which would be
a strongly relevant perturbation, is not allowed because the
order parameters change sign under different Z2 symmetries.
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As a result, the leading interaction between the two Ising
models is the quartic interaction with coupling constant g.

The CFT with a single gapless Majorana fermion has
central charge c = 1/2. Thus, the critical lines in the phase
diagram in Fig. 3 are defined by the condition that one of
the masses goes through zero while the other one remains
finite. At the crossing of these lines, we have m1 = m2 = 0.
At this point the CFT of two decoupled Ising models is only
perturbed by the quartic interaction with coupling constant g.
To analyze the effects of this interaction, we define a com-
plex fermion from the linear combination of the Majorana
fermions:

ψ = ξ1 + iξ2√
2

, ψ̄ = ξ̄1 + iξ̄2√
2

.

We can then bosonize the chiral complex fermions in the
form ψ ∼ e−i

√
π (θ+φ), ψ̄ ∼ e−i

√
π (θ−φ), where φ(x) and θ (x)

are dual bosonic fields that obey [φ(x), ∂x′θ (x′)] = iδ(x − x′)
[62]. The bosonized Hamiltonian density for m1 = m2 = 0

has the form

Hmc
eff = vK

2
(∂xθ )2 + v

2K
(∂xφ)2 + λ1 cos(4

√
πφ)

+ λ2 cos(4
√

πθ ) + λ3 cos(
√

4πθ ) cos(
√

4πφ),

where v is the renormalized velocity, K is the Luttinger
parameter, and the cosine terms have coupling constants
λ1, λ2 ∼ g and λ3 ∼ v1 − v2. For g = 0 we have K = 1, cor-
responding to free fermions. The λ3 term, associated with
the velocity mismatch, has scaling dimension K + K−1 and
is irrelevant for any K �= 1. The λ1 and λ2 terms have scaling
dimensions 4K and 4/K , respectively. As a result, they are
both irrelevant for a wide range of the Luttinger parameter,
1/2 < K < 2. Dropping the irrelevant operators, we conclude
that the low-energy fixed point at the crossing of the critical
lines corresponds to a free boson, with central charge c = 1.
The scaling dimensions of local operators depend on the
value of the Luttinger parameter, which is not fixed by any
symmetries.
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