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Hyperscaling analysis of a disorder-induced ferromagnetic quantum critical
point in Ni1−xRhx with x = 0.375
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Here, we report on a hyperscaling analysis of the thermodynamic measurements as a function of temperature
and magnetic field for Ni1−xRhx with x = 0.375 where a ferromagnetic quantum critical point has been recently
identified [Phys. Rev. Lett. 124, 117203 (2020)]. The obtained critical exponents agree well with the theory
proposed by Belitz, Kirkpatrick, and Vojta for a disorder tuned quantum critical point in the preasymptotic
region.
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I. INTRODUCTION

A magnetic quantum critical point (QCP) occurs when a
second-order phase transition is suppressed to absolute zero
by applying a nonthermal control parameter, such as pres-
sure, magnetic field, strain, or chemical substitution [1]. A
good deal of strange phenomena have been discovered in the
vicinity of the QCP. These phenomena are often accompanied
by a breakdown of Fermi-liquid (FL) theory, and in some
cases, unconventional superconductivity [2,3]. It is still un-
clear whether the quantum fluctuation of the order parameter,
the only relevant energy scale close to the QCP, intricately
connects the quantum criticality and unconventional super-
conductivity [3–7]. Nevertheless, exploring new QCPs could
potentially pave the way for deeper insight in understanding
of the non-Fermi-liquid physics and shed light on the relation
between the quantum fluctuations and unconventional super-
conductivity.

Successful tuning of a magnetic system towards the QCP
has proven rarer in ferromagnets than in antiferromagnets,
most probably due to the existence of multiple dynamical
exponents in the former [8]. Although QCPs have been re-
vealed in the ferromagnets Zr1−xNbxZn2, SrCo2(Ge1−xPx )2,
YbNi4(P1−xAsx )2, and CeRh6Ge4 [9–12], a decisive route
to reach the ferromagnetic (FM) QCP remains ambiguous.
A recent theory proposed by Belitz, Kirkpatrick, and Vojta
(BKV) suggests one may restore the FM QCP by introduc-
ing an appropriate amount of quenched disorder [13–16].
To look for model systems to test the BKV theory, one
shall start from one with a simple crystal structure to avoid
structure complexity. In addition, an f -electron FM sys-
tem is less appropriate compared to the d-electron ones, as
the disorder also adjusts the competition between magnetic
Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions and
the nonmagnetic Kondo effect in f -electron magnets [17,18].
Ni has a simple face-centered-cubic structure and is a
three-dimensional d-electron ferromagnet with a Curie tem-
perature TC ≈ 627 K [19,20]. The ordering temperature can be

suppressed by alloying Ni with nonmagnetic or paramagnetic
transition metals Ni1−xAx [21–24]. Low-temperature quantum
critical behavior has been extensively studied near the crit-
ical concentration xc in Ni1−xPdx [25], Ni1−xVx [26], and
Ni1−xRhx [27]. The former two alloys did not exhibit QCPs,
but showed randomness in magnetic interactions caused by
disorder: Superparamagnetism was suggested to be responsi-
ble for the constant thermal expansion coefficient as T → 0
in Ni1−xPdx [28], and additional disorder-induced fluctuations
gave rise to a nonanalytic contribution to the free energy,
forming the so-called Griffiths rare regions, in Ni1−xVx [26].
Our previous work on Ni1−xRhx presented thermodynamic
evidence for a disorder-induced FM QCP in the vicinity of
xc = 0.375 [see Fig. 1(a)] [27]. To the best of our knowledge,
Ni1−xRhx is the only Ni1−xAx alloy that exhibits a FM QCP.
Moreover, it shows the first occurrence of a FM QCP with di-
rect dilution of the d-electron magnetic site, leading Ni1−xRhx

to hold a unique position among quantum critical materials.
Close to a QCP, universal relations among thermodynamic

properties appear. That is, a set of critical exponents and the
scaling functions are universal up to a certain symmetry and
spatial dimensionality [29]. Here, we report a hyperscaling
analysis of the low-temperature magnetization and specific
heat data for Ni1−xRhx with x = 0.375, bearing all the fea-
tures of a FM QCP [27]. The obtained scaling exponents
are in line with the theoretical prediction for a FM fixed
point in the asymptotic limit of high disorder [15,16]. This
work reinforces the role of quenched disorder in tuning the
FM transition continuously to absolute zero, as suggested by
the BKV theory, providing a promising route to enlarge the
portfolio of FM quantum critical materials, in addition to
antiferromagnetic counterparts.

II. EXPERIMENTAL DETAILS

Polycrystalline Ni1−xRhx samples were prepared by arc
melting high-purity Ni and Rh elements. The details of the
sample characterization have been reported in our earlier
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FIG. 1. (a) TC-x phase diagram of Ni1−xRhx . FM stands for a
ferromagnetically ordered state and PM stands for a paramagnet-
ically ordered state. The phase boundary between FM and PM is
from Ref. [27] and references therein. (b) Isothermal magnetization
M curves for the x = 0.375 sample. (c) Scaling of M as a function
of T and B. (d) Mean square deviation χrms,M as a function of critical
exponents β/νz and βδ/νz.

work [27]. Isothermal magnetization measurements were car-
ried out between the temperatures T = 1.8 and 20 K and
the magnetic fields B = 0 and 7 T using a Quantum Design
(QD) magnetic property measurement system. Samples were
field cooled at 7 T from high temperatures before performing
the measurements. The specific heat was measured between
T = 0.05 and 30 K and B = 0 and 14 T using a QD physical
property measurement system equipped with a dilution refrig-
erator option.

III. RESULTS

The magnetic isotherms of Ni1−xRhx with x = 0.375 are
shown in Fig. 1(b). M(T, B) increases less rapidly with in-
creasing T , suggesting the applicability of a scaling relation.
At a QCP below the upper critical dimension, the scaling
relation of the Gibbs free energy F (T, B) reads

F (T, B) = b−(d+z)F (bzT, bβδ/νB), (1)

where b is an arbitrary scale factor, d is the spatial dimen-
sion, z is a dynamical exponent associated with the tuning
parameter T , and βδ/ν is the scaling exponent associated
with the tuning parameter B [1]. Customarily, β describes
the concentration dependence of the order parameter m(r =
xc − x, T = B = 0) ∝ rβ , δ narrates the field dependence of
m(r = T = 0, B) ∝ B1/δ , and ν is the exponent obtained from
the scaling relation of the diverging correlation length ξ ∝
|r|−ν . For a FM system such as Ni1−xRhx, the order parameter
is the magnetization M. The field and temperature dependence
of M in the vicinity of a QCP follows:

M(T, B) = −∂F
∂B

= bβδ/ν−(d+z)M(bzT, bβδ/νB). (2)

If we choose bzT = T0 with a cutoff energy kBT0, one gets

M(T, B)

T β/νz
= �

( B

T βδ/νz

)
, (3)

indicating that M/T β/νz should be a universal function of
B/T βδ/νz. Excellent scaling over three orders of magnitude of
B/T βδ/νz with β/νz = 0.65 ± 0.05 and βδ/νz = 1.3 ± 0.1 is
shown in Fig. 1(c). Due to domain effects, the data of low
fields (B < 1 T) are omitted [30,31]. The trend of the scaling
plot is similar to those in UCo1−xFexGe and UTe2 [3,31].
In the present study the function of � is unknown, and we
therefore fit the data using a polynomial to determine the
goodness of scaling. For values of β/νz between 0.45 and
0.9 and βδ/νz between 1.05 and 1.5 with a step size of 0.05,
the determination of exponents is through the smallest root
mean square deviation χrms,M . The minimal χrms,M occurs
along the diagonal where the ratio of β/νz and βδ/νz, i.e.,
δ, is ∼2, as shown in Fig. 1(d). This result alone, however,
could not decide other critical exponents. We hence resort to a
hyperscaling analysis of the specific heat that allows a decisive
determination of d/z and βδ/νz.

Figure 2(a) shows the temperature dependence of the total
specific heat coefficient C/T in different fields. Upon cool-
ing, zero field C/T first decreases down to ∼10 K and then
increases slightly toward low T , manifesting quantum fluctu-
ations close to a FM QCP. As the field increases, the tendency
towards FL behavior C/T = const as T → 0 is gradually
restored. Such a recovery of FL behavior has been observed in
many antiferromagnetic and FM QCPs as the system is tuned
away from the QCP and toward a magnetically disordered
phase [1,8].

The total specific heat C can be expressed by C = Ce +
Cph, where Ce and Cph are electronic and phonon contributions
to the specific heat, respectively. At relatively high T where no
magnetic order is involved, Ce = γ0T where γ0 is the Som-
merfeld coefficient. For x < xc in Ni1−xRhx, the split of the
itinerant conduction d electron bands causes FM order based
on Stoner’s model [32]. When x → xc, quantum fluctuations
emerge and destroy the magnetic order. Both FM order and
quantum fluctuations (sometimes intertwined) renormalize Ce

at low T and must be treated with caution. First of all, we
need to properly extract Cph by focusing on a relatively high
T region where the above-mentioned contributions to Ce are
negligible, and fit the C/T data between T = 15 and 30 K
with a sum of a constant γ0 and an integral Debye term for
Cph. The obtained Cph is shown as a solid line in Fig. 2(a).
After subtracting Cph from C, the temperature dependence
of Ce/T with increasing B is shown in Fig. 2(b). The data
scatter below 0.4 K due to the fact that Ce/T only amounts to
∼15–20 mJ/mol K2, comparable with the value of exchange-
enhanced systems without quantum fluctuations [33], and the
gradual decrease of Ce/T from B = 0 to 14 T is less than 20%,
close to the resolution limit of the calorimeter. The hyperscal-
ing relation of the quantum critical part of the specific heat is
given by

Ccr(T, B) = −T
∂2F
∂T 2

= b−dCcr(b
zT, bβδ/νB). (4)

024429-2



HYPERSCALING ANALYSIS OF A DISORDER-INDUCED … PHYSICAL REVIEW B 105, 024429 (2022)

FIG. 2. (a) Temperature dependence of specific heat in different
magnetic fields of Ni1−xRhx with x = 0.375, plotted as C/T vs T in
semilogarithmic scale. The solid line represents the phonon contri-
bution to the specific heat Cph/T . (b) The electronic contribution to
the specific heat Ce/T . The solid line represents a fit of γ0 + aT d/z−1

between 0.1 and 2 K. See text for details.

We choose bzT = T0 again and Eq. (4) becomes

Ccr(T, B)

T d/z
= 


( B

T βδ/νz

)
. (5)

In order to check the T and B scaling of the specific heat,
we plot [C(T, B) − C(T, 0)]/T d/z vs B/T βδ/νz in Fig. 3(a) to
eliminate the noncritical quasiparticle contribution to Ce [30].
We vary d/z = 0.65–1 with a step size of 0.05 and βδ/νz =
0.5–2.5 with a step size of 0.1, and use a polynomial fit to
determine the combination of critical exponents which allow
the data to collapse onto a universal curve. A local minimum
in χrms,C (d/z, βδ/νz) confining βδ/νz to be 1.0–1.5 with
d/z = 0.75–0.9 is found [Fig. 3(b)].

Finally, Eq. (5) hints that the zero-field specific heat
Ccr(T, 0) = T d/z
(0), which allows an unequivocal determi-
nation of d/z. Figure 2(b) demonstrates the data between 2
and 0.1 K can be well described by Ce/T = γ0 + aT d/z−1 with
γ0 = 5.7 mJ/mol K2, a = 10 mJ/mol K1.85, and d/z = 0.85.
With this last piece of evidence, we are able to scale Ccr(T, B).
Apart from the low T scattered data due to small Ccr, scaling

FIG. 3. (a) Scaling of Ccr as a function of T and B of Ni1−xRhx

with x = 0.375. (b) χrms,C as a function of critical exponents d/z and
βδ/νz.

works over three orders of magnitude in B/T βδ/νz with βδ/νz
= 1.3 ± 0.1 [Fig. 3(a)].

IV. DISCUSSIONS

In our previous work, a logarithmic divergence was applied
to describe the zero-field C/T [27], which seems inconsistent
with the power law found in Fig. 2(b). This reflects a fact that
a logarithmic divergence could be hardly distinguished from
a negative power law with a very small exponent d/z − 1,
as the former is just a d/z − 1 = 0 limit of the latter. By
analyzing the zero-field C/T data alone, one may not be
able to differentiate one from the other. In this paper, we
can unambiguously conclude the power law better describes
zero-field C(T ), through a consistent hyperscaling analysis
on temperature and field dependence of magnetization and
specific heat.

From a magnetization scaling analysis we have derived
δ = 2.0 ± 0.2. This value is small compared with the mean-
field Hertz-Millis-Moriya theory either for clean or disordered
systems (δ = 3) which is usually enhanced via critical fluctu-
ations [30,34–36]. The dynamical critical exponent z = 3.5 ±
0.2 can be deduced from d/z = 0.85 ± 0.05 if we assume
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TABLE I. Comparison between experiments and theory.

Current Hertz’s fixed point BKV’s BKV’s theory in the
result in the dirty limit theory preasymptotic region

δ 2.0 ± 0.2 3 1.5 1.8
z 3.5 ± 0.2 4 3 3.7

d = 3. Such an assumption is deemed to be reasonable as the
crystal structure of Ni1−xRhx is face centered cubic.

Our experimental results are summarized and compared
with theoretical predictions in Table I. The obtained δ and
z values are not comparable with the Hertz’s model even in
the dirty limit [1]. It is well known that Hertz’s fixed point
is unstable against the existence of dangerous irrelevant vari-
ables [8]. Upon utilizing an appropriate amount of chemical
disorder, BKV suggested one could restore the FM QCP and
the critical exponents δ = d

2 = 1.5 and z = d = 3 [15,16].
When a system is asymptotically close to the FM QCP, both
critical exponents are modified by an effective exponent λ that
depends on the distance from a QCP. BKV predicted that in
d = 3, λ = 2/3 in a large region, and hence δasym = d+λ

2 =
1.8 and zasym = d + λ = 3.7. Our results agree well with the
BKV theory in the preasymptotic region, which implies that
x = 0.375 locates very close to the FM QCP of Ni1−xRhx in
which quantum fluctuations lead to divergence (see our previ-
ous work [27]) and hyperscaling behavior of thermodynamic
properties.

The key concept in the BKV theory to reach a FM QCP
is via an appropriate amount of chemical disorder. If the
disorder effect is too strong, the QCP is avoided and spin
glassiness may appear near the boundary of the quantum
phase transition between the FM and PM states [15,16,37].
Experimentally, however, it is difficult to gauge the degree
of disorder from different sources. For example, how do we

judge that the amount of disorder in Ni1−xPdx and Ni1−xVx is
larger than that in Ni1−xRhx? Conventional crystal structure
analysis tools, such as x-ray diffraction, an electron probe
microanalyzer, and scanning electron microscopy, cannot give
a clue to this question. One may turn to utilize the probe
of magnetic properties with elemental selectivity, e.g., x-ray
magnetic circular dichroism (XMCD), to study the magnetic
homogeneity. Usually, when a FM element is alloyed with a
nonmagnetic metal A, its PM effective moment μeff derived
from a Curie-Weiss fit at high T decreases as the concentration
of A increases. Ni1−xRhx is unique among Ni1−xAx alloys as
it is the only system in which μeff remains almost constant
as x → xc [23]. This reflects a fact that magnetism in 4d
Rh atoms is largely enhanced when Rh is surrounded by Ni
atoms [38]. XMCD measurements on Ni1−xAx alloys close to
xc may reveal the magnetic behavior in the local environment
either on the Ni or A site, and show the difference of the
homogeneity of magnetic properties among different systems.
This testing method, if it works, will further justify the ap-
plicability of the BKV theory and serve as a useful guidance
when exploring new FM QCPs.
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