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Bilinear-biquadratic spin-1 model in the Haldane and dimerized phases
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We study the low-lying spectrum of the bilinear-biquadratic Heisenberg model in the dimerized and Haldane
phases using a tensor renormalization method. At the critical point θ = −π/4, the finite-size spectrum predicted
by the Wess-Zumino-Witten (WZW) model can only partly be confirmed. We find a singlet-singlet gap which
does not fit into the WZW systematics. The results obtained are compared to Bethe ansatz, exact diagonalization,
and density-matrix renormalization group calculations for specific parameters.
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I. INTRODUCTION

The isotropic bilinear-biquadratic (BLBQ) Heisenberg
model plays a fundamental role in the theory of magnetism
and, more generally, for the understanding of strongly inter-
acting many-body systems. For spin-1 systems in one spatial
dimension the model is given by the Hamiltonian

H =
N∑

i=1

cos θ (�Si ⊗ �Si+1) + sin θ (�Si ⊗ �Si+1)2. (1)

The Si
λ are spin-1 matrix representations of SU(2) and N de-

notes the system size. The model depends on the parameter θ ,
which governs the ratio between the bilinear and biquadratic
terms. In the present contribution we concentrate on periodic
one-dimensional (1D) systems with nearest-neighbor interac-
tions only.

The 1D BLBQ model shows a rich phase structure with
various disordered phases. The 1D phase diagram differs
from that expected for higher dimensions [1] and is shown
schematically in Fig. 1 as a function of the parameter θ . One
finds three exotic phases: the massless trimerized phase, the
Haldane phase, and the dimerized phase. In fact, in one dimen-
sion, due to Coleman’s theorem [2], the only ordered phase is
ferromagnetic since its order parameter Sz is conserved.

This phase structure should be reflected in the excitation
spectrum of low-lying states, with gaps closing at the critical
points θ = ±π/4, which separate the disordered phases from
each other. Here we will study the spectrum on both sides of
the critical point at θ = −π/4, specifically from θ = −π/2
to θ = 0. The spectrum in the whole region should be gapped
except at the critical point. The gaps are expected to be small
and are not easily determined precisely.

Previously, the ground state of the model was studied using
a variational method in Ref. [3]. For the excitation spectrum
there are rather old exact diagonalization results [1], which

encompass the Haldane and dimerized phases. Furthermore,
there is a systematic study of the excitation spectrum of the
BLBQ model in the Haldane phase in Ref. [4] using tensor
renormalization methods with relatively small tensor sizes as
well as various studies at isolated points in the Haldane phase
(θ = 0 [5,6] and AKLT point (Affleck-Lieb-Kennedy-Tasaki)
θ = arctan 1

3 [7]). Moreover, there are Bethe ansatz results for
θ = −π/2 [8,9] and for the critical point θ = −π/4 [10–13].

We use the higher-order tensor renormalization group
method (HOTRG) [14] to determine the low-lying spectrum.
Our variant of this method implements U(1) symmetry of the
tensors explicitly. Tensor renormalization is able to obtain
spectra for relatively large systems, and in a recent paper [15]
we studied the XXZ chain in a longitudinal homogeneous
field and showed by comparison to Bethe ansatz results that
the method accurately determines the spectrum and the phase
diagram.

The low-lying spectrum is calculated from the transfer ma-
trix, which is obtained from the coarse-grained tensors. The
renormalized tensor at each coarse-graining step corresponds
to a certain system size. Therefore one obtains the complete
finite size dependence of the spectrum required for the de-
termination of the scaling dimensions in a single run of the
tensor renormalization procedure. It is our goal to obtain the
low-lying spectrum as precisely as possible from our numerics
and then compare it to various other analytical and numerical
results.

II. THE CRITICAL POINT θ = −π/4

We start with an investigation of the gapless spectrum at
the critical point θ = −π/4. At the critical point the spin-1
BLBQ model (1) may be mapped to a Wess-Zumino-Witten
(WZW) model with symmetry group SU(2) and topological
index k = 2 [16,17]. This model is characterized by a central
charge c = 3/2, and the scaling dimensions of the primary
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FIG. 1. Phase diagram of the spin-1 bilinear-biquadratic (BLBQ)
Heisenberg model as a function of θ . There are four quantum phases:
the ferromagnetic phase, the critical (trimerized) phase, the Haldane
phase, and the dimerized phase.

fields x0 = 0, x1/2 = 3/8, and x1 = 1. The index corresponds
to the spin of the primary field with x j = 2 j( j + 1)/(2 + k)
and j � k/2 [18].

Since the WZW model is conformally symmetric, the
ground-state energy should scale with system size N as
[19,20]

E0

N
= e0 − πcvs

6N2
+ O[N−2(ln N )−3], (2)

with e0 the ground-state energy per site of the infinite system
and the spin-wave velocity vs. We have indicated logarithmic
corrections due to the marginal operator with scaling dimen-
sion x j > 1 [21]. These corrections are included in the fits to
our numerical data.

The excitation gaps � jnn′ can be parameterized by the
scaling dimensions x j ,

� jnn′ = 2πvs

N
(x j + n + n′) + O[N−1(ln N )−1], (3)

with n, n′ = 0, 1, 2, . . ..
Moreover, at the critical point the BLBQ spin model may

be solved using the Bethe ansatz [10–13]. This enables the
determination of the nonuniversal quantities e0 = −2

√
2 and

vs = π
√

2. Combining these results with the central charge
and scaling dimensions of the WZW model completely deter-
mines the finite-size spectrum up to linear order in 1/N .

HOTRG numerical data are compared to finite-size Bethe
ansatz results for small systems (N � 84) [12,13] in Fig. 2.
HOTRG data for larger systems with N � 64 are shown
again in the lower panel of this figure at larger scale. From
the fit to the HOTRG data we obtain e0 = −2.828 33 and
cvs = 6.48. Both values agree rather well with the expecta-
tions e0 = −2

√
2 ≈ −2.828 43 and cvs = 3π/

√
2 ≈ 6.664.

The extrapolated Bethe ansatz data depicted in Fig. 2 pro-
vide e0 = −2.828 41 and cvs = 6.670. We attribute the small
systematic discrepancies to the finite imaginary time step
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FIG. 2. Ground-state energy per site at the critical point θ =
−π/4 as a function of 1/N2. Upper panel: HOTRG results (black
dots) are compared to Bethe ansatz data (orange dots) [12]. The fit
to the Bethe ansatz data (orange curve) includes logarithmic cor-
rections according to Eq. (2): E0/N = −2.828 41 − 3.492 92/N2 −
1.295 07/[N2(log N )3]. Lower panel: The HOTRG data in the
dashed rectangle indicated in the upper panel are plotted again
at larger scale for system sizes N � 64 (black dots). The black
line shows a fit to all HOTRG data, including logarithmic cor-
rections according to Eq. (2): E0/N = −2.828 33 − 3.410 99/N2 −
1.691 86/[N2(log N )3]. The dashed orange line indicates an extrapo-
lation of the Bethe ansatz data using the fit given above.

τ = 0.004 used for the HOTRG calculations as well as other
(numerical) approximations which are discussed in some de-
tail in Ref. [22].

HOTRG data for the gaps at the critical point are shown
in Fig. 3. They are compared to Bethe ansatz results (N <

84) [12,13], exact diagonalization data [1] for small systems
(N = 10 and N = 12), as well as density-matrix renormaliza-
tion group (DMRG) data (N = 16, N = 32 and N = 64) we
calculated with a code [23] explicitly implementing SU(2)
symmetry. Two different fits to the HOTRG data based on
Eq. (3) are presented in Table I, together with results for the
WZW model. The singlet-triplet and singlet-quintet coeffi-
cients reasonably match the expectations of the WZW model,
if we assume the scaling dimensions given in the table. Again,
there is a small systematic deviation between Bethe ansatz and
HOTRG data, which we attribute to the numerical approxima-
tions alluded to above for the ground-state energy.

Surprisingly, the calculated singlet-singlet gap does not fit
into the expected WZW model systematics. While we find
the expected linear scaling with N−1, we cannot assign a
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FIG. 3. Spectral gaps in various SU(2) symmetry sectors at the
critical point θ = −π/4 as functions of 1/N . Upper panel: HOTRG
data compared to Bethe ansatz data [12,13], exact diagonalization
[1], and DMRG results. The fits to Bethe ansatz data [12] (orange
curves) and DMRG/exact diagonalization data (green curves) in-
clude logarithmic corrections. Lower panel: The HOTRG data for
system sizes N � 64 compared to extrapolations of the fits as well as
WZW model predictions. The parameters used for the extrapolations
are for the triplet gap: 9.595 27/N - 0.406 537/(N log N); for the
singlet gap: 10.8557/N + 15.4145/(N log N); for the quintet gap:
26.4171/N - 12.0204/(N log N).

WZW model scaling dimension to this gap. The numerical
data, which include also data points from DMRG calculations,
clearly predict the singlet-singlet gap above the singlet-triplet
gap and below the singlet-quintet gap with sufficient precision
in order to reach this conclusion. To our knowledge, there are
no results from Bethe ansatz for this gap.

III. GROUND-STATE ENERGY AND SPECTRAL GAPS

Now we present results of the low-lying spectrum in the
parameter region from θ = −π/2 to θ = 0. This region in-
cludes the critical point discussed in Sec. II and covers parts
of the dimerized and Haldane phases. As SU(2) symmetry is
not broken, all states come in corresponding multiplets. For
reference, in Fig. 4 we show the energy of the S = 0 ground
state as a function of θ obtained from our HOTRG calcula-
tions and compare it to results from various other methods.

TABLE I. Coefficients C and C′ of the finite-size expansion for
the gaps � = C

N + C′
N ln N . For the WZW model the coefficients are

calculated from Eq. (3) using c = 3/2 and vs = π
√

2 with the scaling
dimensions x given in the table (t=triplet, s=singlet, q=quintet).
HOTRG Fit 1 uses (64 � N � 512, C′ = 0) and HOTRG Fit 2 uses
(8 � N � 512).

WZW HOTRG HOTRG

Fit 1 Fit 2
x C C C C′

t 3
8 10.5 9.9 10.0 −1.2

s 15.5 12.2 12.5
q 1 27.9 25.5 29.1 −17.2

In the dimerized region the next singlet state (which was
discussed for θ = −π/4 in the previous section) is degenerate
with the ground-state singlet. These two S = 0 states form the
dimer. Numerically, the energy splitting is 10−2 or smaller.
In the Haldane phase the two singlets split up, and the ex-
cited singlet is found in the calculated spectrum above several
triplet states. Unfortunately, it is rather difficult to detect this
singlet in the “sea” of triplets which exists between the lowest
triplet and the quintet for θ > −π/4 as discussed in more
detail below.

Numerical data for the lowest SU(2) triplet and quintet
gaps are shown in Fig. 5. For comparison we include data ob-
tained with other methods as annotated in the figure caption.
It is important to note that we only show the lowest triplet and
quintet. Many more closely spaced triplet states are found in
the spectral region between the lowest triplet and quintet, and
similarly, many more quintet states are found above the lowest
one. All these states correspond to different quasimomenta.
At the critical point the lowest triplet and quintet show cusps.
Whether these cusps follow � ∼ |θ − θc|, as was suggested
by Affleck [16], cannot be determined precisely from our data.

A systematic study of the low-lying spectrum of infinite-
size BLBQ systems in the Haldane phase was presented in
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FIG. 4. Ground-state energy per site as a function of θ . The
orange points are results obtained in Ref. [3] using DMRG. The
orange crosses at θ = −π/2 and θ = −π/4 are the Bethe ansatz
result from Refs. [9,10], respectively, while the value at θ = 0 is the
DMRG result from Ref. [5].
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FIG. 5. Lowest singlet-triplet and singlet-quintet gaps as func-
tions of θ . Upper panel: S = 1 triplet (large dots) and S = 2 quintet
(small dots). The orange crosses denote the Bethe ansatz result at θ =
−π/2 from Ref. [9] and DMRG results at θ = 0 from Refs. [5,6],
respectively. The solid curves are guides to the eye. Lower panel:
Comparison of our HOTRG results in the Haldane phase (full lines)
with results from Ref. [4] (dashed lines) obtained with MPS size
m = 24. The crosses indicate the results from Ref. [6] obtained with
MPS size m = 30. The result for the singlet-quintet gap obtained in
Ref. [4] at θ = 0 is about 1.72.

Ref. [4] using matrix product states (MPS) of size m = 24.
Corresponding data are shown in the lower panel of Fig. 5 and
compared to our HOTRG results. For the triplet gap both sets
of data compare rather well. Only in the vicinity of the critical
point are the results of [4] numerically imprecise as the gap
becomes negative. The high-precision result [6] for the triplet
gap at the Heisenberg point θ = 0 (obtained with an MPS size
m = 30) may serve as a benchmark for the precision of the
calculations.

The situation is more complicated for the quintet gap: here
our result at θ = 0 is about 7% larger than the data point
given in Ref. [6], but the data provided in Ref. [4] differ quite
drastically in the whole Haldane phase from our results. In
particular, we cannot confirm the jump of the quintet observed
in Ref. [4] at the critical point θ = −π/4. We find a cusp
instead as for the triplet.

From the triplet gap � and the correlation length ξ deter-
mined in Ref. [3] we calculate the spin-wave velocity vs =
ξ�, which is shown in Fig. 6. The gray curve is a guide to
the eye. At the critical point θ = −π/4 (where � = 0 and
ξ = ∞), the velocity can be obtained from finite-size scaling
of the energy per site, which is in line with the Bethe ansatz
prediction vs = π

√
2 as indicated in Sec. II.
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FIG. 6. Spin-wave velocity as a function of θ , obtained as the
product of the spectral gap � and the correlation length ξ . At θ =
−π/4 the velocity is obtained from finite-size scaling of the energy
per site, in good agreement with Bethe ansatz prediction vs = π

√
2

(red cross). The gray curve is guide to the eye.

The spin-wave velocity depends weakly on θ . We are able
to reproduce with good precision the velocity at θ = −π/2
and θ = 0, where results of other calculations are available as
annotated in the figure caption. The precision of the presented
data becomes questionable in the vicinity of the critical point
θ = −π/4. Firstly, precise extrapolation of the gap to the ther-
modynamic limit becomes very difficult in this area. Secondly,
the velocity data also depend on the precision of the results for
the correlation length obtained in Ref. [3].

IV. CONCLUSION

We studied the low-lying spectrum of the bilinear-
biquadratic Heisenberg model in the dimerized and Haldane
phases using a tensor renormalization method. The spectral
gaps were numerically calculated with high precision in a
large parameter region, and we found good agreement with
Bethe ansatz and DMRG results as well as exact diagonal-
ization wherever available. The spin-wave velocity was also
calculated.

The finite-size spectrum predicted by the WZW model at
the critical point θ = −π/4 was confirmed with regard to
triplets and quintets. However, we find a singlet-singlet gap
which does not fit into the WZW systematics. The latter result
is rather surprising and requires further investigation.
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