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The critical properties and magnetic entropy change of quasi-two-dimensional LaCrSb3 single crystals have
been systematically investigated. The ferromagnetic transition is determined to be of a second order. Critical
exponents β = 0.298(7) with a critical temperature Tc = 132.0(2) K and γ = 1.277(9) with Tc = 132.5(3) K are
yielded by the modified Arrott plot, whereas δ = 5.28(9) is deduced by a critical isotherm analysis at T = 132 K.
The critical exponents of quasi-two-dimensional LaCrSb3 exhibit a three-dimensional critical behavior. The
magnetic interaction is found to be of a long range and the magnetic exchange distance decays as J (r) ≈ r−4.9,
which lies between the mean-field model and 3D Heisenberg model. Furthermore, the magnetic entropy change
−�SM features a maximum around Tc, i.e., −�Smax

M ∼ 3.4, 5.9, and 5.8 J kg−1 K−1 for a field change of 5 T
applied the H//a, b, and c axes, respectively. The rotating magnetic entropy change �SR

M (T, H ) between the a
and b axes (the a and c axes) reaches a maximum value of 2.55 (2.49) J kg−1 K−1 around Tc, exhibiting strong
anisotropic features. However, �SR

M (T, H ) between the b and c axes is ∼0 J kg−1 K−1 at T > Tc displaying a
nearly isotropic behavior, and is less than 0.3 J kg−1 K−1 at T < Tc showing weak anisotropy.

DOI: 10.1103/PhysRevB.105.024419

I. INTRODUCTION

Attracting researchers’ long-standing interest, layered
transition-metal materials have been extensively investigated
due to the exotic physical properties, such as the high-
temperature superconductivity in copper- and iron-based
superconductors [1–3], the high thermoelectric powder in
cobaltites [4,5], and the large magnetoresistance (MR) in
manganites [6]. Remarkably, the recent discovery of intrinsic
long-range magnetic order in two-dimensional (2D) ferro-
magnets, such as CrGeTe3, CrI3, Fe3GeTe2, MnSe2, FePS3,
and VSe2 [7–14], have not only provided potential platforms
for designing novel spin-related devices but also refreshed the
famous fundamental theory that the ferromagnetic (FM) order
in 2D systems would be destroyed by thermal fluctuation and
collapse at a finite temperature [15].

Crystallized in an orthorhombic structure with a Pbcm
space group (no. 57), LaCrSb3 possesses a quasi-2D crystal
structure consisting of infinite LaSb and CrSb2 layers stacked
along the a axis (inset of Fig. 1) [16–19]. A surprising prop-
erty of this system is the presence of a coexistence of localized
and itinerant spins in a pure d-electron compound with an
antiferromagnetic (AFM) Néel temperature (TN = 98 K) less
than the FM Curie temperature (TC = 132 K), and the AFM
transition is suppressed with a rather small magnetic field
μ0H ∼ 0.025 T, leading to a surprisingly rich phase diagram
[16,20]. Furthermore, the recent investigations on the anoma-
lous Hall conductivity (AHC) of LnCrSb3 (Ln = La, Ce, and
Nd) suggest the existence of a strong Berry curvature, which
is induced by abundant momentum-space crossings and nar-
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row energy-gap openings, providing an intriguing system for
investigations on nontrivial band topologies [21]. To achieve
the modulation of the promising topological properties by
magnetization, the clarification of the magnetic interactions of
LaCrSb3 is of essential importance. In particular, the critical
behavior of LaCrSb3, which could provide insight into the
nature of spin dimensionality, correlation length, magnetic
interactions, and the spatial decay of correlation function at
criticality [22–25], is still absent and deserves a detailed in-
vestigation.

In the present work, we studied the critical behavior as
well as the magnetic entropy change of LaCrSb3 single crys-
tal. Self-consistent critical exponents are acquired by various
methods. A 3D critical behavior is unveiled. The reliability of
the critical exponents are checked by scaling analyses. The
magnetic interaction is of a long range and the magnetic-
exchange distance is found to decay as J (r) = r−4.9, which
lies between the 3D Heisenberg model and the mean-field
model. The magnetic entropy changes exhibit strong magnetic
anisotropy along the a axis and a nearly isotropic behavior
in the bc plane. The rescaled −�SM (T, H ) curves can well
fall into a universal curve, confirming its nature of a second
order. The systematical investigation on the critical exponents,
the magnetic interaction, and the anisotropy of the interesting
compound LaCrSb3 could help us in further fully understand-
ing the discovered nontrivial properties, such as AHC.

II. EXPERIMENTAL DETAILS

Single crystals of LaCrSb3 were prepared by a self-flux
method. The ingots of the La (99.9%), powders of Cr (99.9%),
and powders of Sb (99.9%) were mixed in an atomic ratio
of 1 : 2 : 20. The mixtures were placed in a high quality
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FIG. 1. (a) Left: Temperature dependence of magnetization
curves under H = 1 kOe applied along three different axes. Right:
plots of 1/(χ − χc ) vs T under a 1 kOe field applied along three
different axes. The linear lines display the fitting by the Curie-Weiss
law. Inset: Crystal structure of LaCrSb3. (b) M(H ) curves along three
different axes at T = 2 K.

alumina crucible and subsequently sealed in a quartz tube.
The tube was heated to 1373 K over 10 h and then cooled
at a rate of 3 K/h to 923 K, at which point the Sb flux
was spun off using a centrifuge. The resulting crystals were
rectangular planes with a thin face parallel to the a axis and
the longest side parallel to the c axis, and the typical sizes
are a : b : c = 0.2 : 0.9 : 1.5 mm. The magnetic properties
were taken with a commercial superconducting quantum in-
terference device (SQUID) magnetometer (MPMS, Quantum
Design).

III. RESULTS AND DISCUSSION

A. Magnetic properties

The field-cooled magnetization as a function of tempera-
ture M(T ) under H = 1 kOe along the a, b, and c axis is
presented in the left axis of Fig. 1(a). Obviously, the mag-
netization M(T ) along different crystalline directions exhibits
an anisotropic behavior, consistent with the low dimensional
character of LaCrSb3. A FM transition is detected at Tc ∼
132 K, and the b (a) axis is the easy (hard) magnetization
direction. As the field applied along c axis H‖c, a decrease
in magnetization is found below T ∗ = 98 K, implying a pos-
sible AFM ground state and complex anisotropic magnetic

TABLE I. Weiss temperatures, effective moments, saturated mo-
ments, and the Rhodes-Wohlfarth ratio of LaCrSb3.

Axis θ (K) μeff (μB) μs (μB) RWR

H‖a 134.8 3.71 0.9 3.2
H‖b 144.3 3.62 1.17 2.4
H‖c 145.2 3.57 1.17 2.3

structure, which should be associated with a spin reorientation
[16]. The temperature dependence of magnetic susceptibility
χ = M/H for T > 170 K can be well characterized by the
Curie-Weiss law [Fig. 1(a)], χ = χc + C/(T − θ ), where χc

is a temperature-independent term, θ is the Weiss temperature,
and C denotes the Curie-Weiss constant. The Weiss temper-
atures yielded by the Curie-Weiss fitting are θa = 134.8 K,
θb = 144.3 K, and θc = 145.2 K for H‖a, H‖b, and H‖c,
respectively, with the positive values demonstrating the ferro-
magnetic interaction between Cr ions. The effective moments
μeff = 3.71, 3.62, and 3.57μB/f.u., acquired by fitting the
H‖a, H‖b, and H‖c data, respectively. The values of μeff are
comparable with the theoretically expected values for Cr3+

of 3.87μB. The field-dependent magnetization M(H ) at T =
2 K is shown in Fig. 1(b). At H = 50 kOe the saturated
magnetization of H‖a, H‖b, and H‖c are μs = 0.90, 1.17,
and 1.17μB/f.u., respectively. When the field is along the
easy-magnetization axis (b axis), the saturation appears im-
mediately almost as a steplike function to μb = 1.17μB/f.u.
A bump in the magnetization of H‖c axis is found under H ∼
3 kOe, which should be related to the downturn of Mc ob-
served in Fig. 1(a). The c axis magnetization μc then saturates
to approximately the same value as μb, implying the possible
antiferromagnetic ground state is suppressed and driven to FM
with a field of about H = 4 kOe. The magnetization along the
a axis exhibits differently from the previous two, and contin-
ues to increase almost linearly up to the maximum measured
field of 50 kOe. Within the bc plane, the magnetization is
found to be isotropic at H > 4 kOe, but along the a axis the
magnetization is unique.

The obtained magnetic parameters of LaCrSb3 are suma-
rized in Table I. Then we can evaluate the Rhodes-Wohlfarth
ratio (RWR), which is equal to Pc/Ps, where Pc is related to
the effective moment, Pc(Pc + 2) = μ2

eff, and Ps denotes the
saturated moment (μs) measured in the high field and low
temperature ordered state [26,27]. RWR equals 1 in a local-
ized system and becomes larger in an itinerant system. Here
we calculated that RWR equals 3.2, 2.4, and 2.3 with H‖a,
H‖b, and H‖c, respectively, suggesting an itinerant charac-
terization and/or strong spin fluctuations in the ground state,
which is consistent with previous reports [16,28]. Based on
the Stoner criterion [29], UD(εF ) > 1, where U and D(εF ) are
Coulomb repulsion and the density of state (DOS) at the Fermi
level, respectively, itinerant ferromagnetism can be affected
by tuning U and/or D(εF ). Diverse ferromagnetic transition
temperatures in LaCrSb3 were observed at Tc = 125 K [19],
Tc = 142 K [30], and Tc = 132 K [16], with the difference
possibly due to diverse subtle disorders arising from the sam-
ple growth procedures [16].
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FIG. 2. (a) The field dependence of isothermals M(H ) measured
under H‖b from T = 118 to 144 K. (b) The Arrott plots of M2 vs
H/M for H‖b.

B. Critical behavior

The critical behavior of a system with a second-order phase
transition provides insight into the origin of the the spin
dimensionality, magnetic interactions, the correlation length,
and the spatial decay of the correlation function at criticality
[22–25]. According to the phase transition theory by Landau,
the Gibbs free energy G of a paramagnetic (PM)–FM transi-
tion can be calculated as the following equation:

G(T, M ) = G0 + a

2
M2 + b

4
M4 − MH, (1)

where a and b are temperature-dependent coefficients, and
the equilibrium magnetization M denotes the order parameter.
With equilibrium ∂G/∂M = 0 (i.e., energy minimization), the
magnetic equation of state is expressed as

H/M = a + bM2. (2)

Thus, the plots of M2 vs H/M (the Arrott plot) should appear
as parallel straight lines for different temperatures above and
below Tc in the high field region [31]. To provide further
insight into the nature of the FM transition in LaCrSb3, the
isothermal magnetization M(H ) along H‖b around Tc is mea-
sured and representative M(H ) curves from T = 118 to 144 K
with a temperature interval of 1 K are presented in Fig. 2(a).
The curves of the Arrott plot are not parallel at the high-field
region [Fig. 2(b)], recommending that the mean-field theory is
not suitable for LaCrSb3. According to the Banerjee criterion

[32], the positive slopes of M2 vs H/M curves in the vicinity
of the PM-FM transition suggest a second-order phase transi-
tion in LaCrSb3.

To acquire the critical parameters, we exploit the modified
Arrott plot. For a second-order transition, its critical behavior
can be described in detail by a series of interrelated critical ex-
ponents. In the vicinity of a second-order phase transition, the
divergence of the correlation length ξ = ξ0|(T − Tc)/Tc|−ν

results in universal scaling laws for the spontaneous mag-
netization Ms and the inverse initial magnetic susceptibility
χ−1

0 . The mathematical definitions of the exponents can be
expressed as [33,34]

Ms(T ) ∝ |ε|β, ε < 0, T < Tc, (3)

M ∝ H1/δ, ε = 0, T = Tc, (4)

χ−1
0 (T ) ∝ |ε|γ , ε > 0, T > Tc, (5)

where ε = (T − Tc)/Tc is the reduced temperature and param-
eters β (associated with Ms), δ (associated with magnetization
at Tc), and γ (associated with χ−1

0 ) are critical exponents.
Several universal classes of models are exploited to estab-
lish the modified Arrott plots, and the 2D Ising model (β =
0.125, γ = 1.75), the 3D Ising model (β = 0.325, γ = 1.24),
3D Heisenberg model (β = 0.365, γ = 1.386), and tricriti-
cal mean-field model (β = 0.25, γ = 1.0) are displayed in
Figs. 3(a)–3(d). In order to discover which model is the best,
normalized slopes (NSs), defined as SN = S(T )/S(Tc) [where
S(T ) denotes the slope of M1/β vs (H/M )1/γ ], are presented
in Fig. 4. Because the modified Arrott plot should consist
of various parallel straight lines, all values of NS should be
equal to 1.0 in an ideal model. Apparently, the critical behav-
ior of LaCrSb3 does not belong to any universal classes. A
self-consistent iterative method was exploited to generate the
modified Arrott plot [35–37]. The inset of Fig. 4 displays the
high field region of the acquired modified Arrott plot of M1/β

vs (H/M )1/γ around Tc for LaCrSb3. This gives Ms(T ) and
χ−1

0 (T ) as the intercepts on the M1/β axis and (H/M )1/γ axis,
respectively.

Figure 5(a) presents the temperature dependence
of the final Ms and χ−1

0 . The critical exponents
β = 0.298(7) with Tc = 132.0(2) K, and γ = 1.277(9)
with Tc = 132.5(3) K are acquired by fitting Eqs. (3)
and (5). Additionally, in the Kouvel-Fisher (KF) relation
[38], i.e., Ms(T )/[dMs(T )/dT ] = (T − Tc)/β and
χ−1

0 (T )/[dχ−1
0 (T )/dT ] = (T − Tc)/γ , linear fittings to the

plots of Ms(T )/[dMs(T )/dT ] and χ−1
0 (T )/[dχ−1

0 (T )/dT ] vs
T in Fig. 5(b) generate β = 0.294(8) with Tc = 132.0(5) K,
and γ = 1.276(9) with Tc = 132.4(5) K. The third exponent
δ can be calculated from the Widom scaling relation [39],

δ = 1 + γ /β. (6)

Using β and γ yielded by the modified Arrott plot and the
Kouvel-Fisher plot, δ = 5.29(13) and 5.34(15) are calculated,
respectively, which are close to the direct fits of Eq. (4) at
132 K [δ = 5.28(9)] [inset of Fig. 5(a)], demonstrating self-
consistence and reliability of the achieved exponents.

Furthermore, the critical analyses for the H‖c have been
also performed. No visible differences between H‖ b and H‖c
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FIG. 3. The isotherms plotted as M1/β vs (H/M )1/γ with a (a) 2D Ising model, (b) 3D Ising model, (c) 3D Heisenberg model, and
(d) tricritical mean-field model.

are detected in the Arrott plot and the modified Arrott plot
within the error range of the experiment, implying an almost
isotropic critical behavior between the b and c axes, which

FIG. 4. Plots of normalized slopes SN = S(T )/S(Tc ) vs T for
diverse universal theoretical models. Inset: The modified Arrott plot
of M1/β vs (H/M )1/γ .

is consistent with the following analyses on the magnetic en-
tropy change. The critical analyses consider the points around
Tc, and the AFM-like transition presents below T ∗ = 98 K at
H‖c, which will not make difference on the critical behavior
around Tc.

The scaling analysis can be exploited to check the relia-
bility of the deduced critical exponents and Tc. In the critical
asymptotic region, the magnetic equation can be written as
[39]

M(H, ε) = εβ f±(H/εβ+γ ), (7)

where f+ for T > Tc and f− for T < Tc, respectively, repre-
sents regular functions. In terms of rescaled magnetization
m = M|ε|−β and rescaled field h = H |ε|−(β+γ ), the above
equation can be reexpressed as m = f±(h), which implies that
for appropriate scaling relations and properly chosen values of
β, γ , and δ, scaled m vs h will fall into two universal branches:
one above Tc and another below Tc. This is an important cri-
terion for the critical exponents. Plots of m vs h are presented
in Fig. 5(c) with a log10-log10 scale, and all the data collapse
onto two separate branches. The scaling equation of state can
also take another form [33],

M

H δ
= g(X )

(
ε

H1/β

)
, (8)
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FIG. 5. (a) The spontaneous magnetization Ms (left) and the inverse initial susceptibility 1/χ0 (right) as a function of the temperature with
solid fitting curves for LaCrSb3. Inset: Plots of M vs H at Tc = 132 K in log10-log10 scale with a linear fitting. (b) The Kouvel-Fisher plot of
temperature-dependent Ms(dMs/dT )−1 (left) and χ−1

0 (dχ−1
0 /dT )−1 (right). The Tc and critical exponents are deduced by linear fits (red lines).

(c) Scaling plots of M|ε|−β vs H |ε|−(β+γ ) in log10-log10 scale. (d) Renormalized plots of M(H ) curves by MH−1/δ vs εH−1/(βδ).

where g(x) is a scaling function. From Eq. (8), all the data
should collapse onto a single curve. This is indeed observed,
i.e., the plots of MH−1/δ vs εH−1/(βδ) fall into a single curve
with the Tc at the zero point of the horizontal axis. The well-
renormalized curves further demonstrate the reliability of the
generated critical exponents.

The critical exponents derived by various methods are
summarized in Table II along with the theoretically predicted
values for diverse models. The value of β for 2D magnets
should be located in a universal window 0.1 � β � 0.25
[41]. Apparently, the critical exponents of LaCrSb3 exhibit
a 3D critical behavior. The experimentally yielded critical

TABLE II. Comparison of critical exponents of LaCrSb3 with various theoretical models. The MAP, KFP, CI, and MCE denote the modified
Arrott plot, the Kouvel-Fisher plot, the critical isotherm, and the magnetocaloric effect, respectively.

Composition Reference Technique β γ δ n m

LaCrSb3 this work MAP 0.298(7) 1.277(9) 5.29(13)
this work KFP 0.294(8) 1.276(9) 5.34(15)
this work CI 5.28(9)
this work MCE 0.246(3) 2.04(3) 9.26(2) 0.670(5) 1.108(2)

Mean field [31] theory 0.5 1.0 3.0 0.667 1.333
2D Ising [40] theory 0.125 1.75 15 0.533 1.06
3D Ising [31] theory 0.325 1.24 4.82 0.569 1.207
3D Heisenberg [31] theory 0.365 1.386 4.8 0.637 1.208
Tricritical mean field [32] theory 0.25 1.0 5 0.4 1.20
3D XY [31] theory 0.345 1.316 4.81 0.606 1.208
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FIG. 6. Effective exponent γeff vs ε = (T − Tc )/Tc above Tc.

exponents β, γ , and δ are close to, but show some devi-
ation from, the theoretical values of the 3D Ising model.
The 3D features of LaCrSb3 could be associated with the
magnetocrystalline anisotropy. According to the theory by
Mermin-Wagner, magnetic order should not appear in ideal
low dimensional systems at finite temperature due to thermal
fluctuation [15,42]. When anisotropic magnetism takes place,
however, this conclusion does not necessarily take effect. In
the case of LaCrSb3, despite the crystal structure exhibits
two-dimensional features, the existence of magnetocrystalline
anisotropy could induce the stabilization of the ferromag-
netism. Nonzero values of the inverse magnetic susceptibility
are observed above the Tc [Fig. 1(a)], demonstrating ferromag-
netic correlations in the paramagnetic region, which implies
the ferromagnetic correlations could take effect even above
Tc [43–45]. To provide further insight into the critical expo-
nents above Tc, we calculated the effective exponent, γeff =
d[lnχ−1

0 (ε)]/d (lnε). As presented in Fig. 6, γeff exhibits a
tendency of decreasing almost monotonically with an increas-
ing ε, indicating a crystalline FM [46,47]. For comparison,
γeff usually exhibits a nonmonotonic temperature dependence
in disordered systems, implying the effect from the random
distribution of magnetic elements and/or the clusters should
not be dominant in LaCrSb3 [48–50].

It is worthwhile to note that both the range of temperature
around the Tc and the magnetic field range chosen could take
effect on the generated exponents. While much is known on
the temperature dependence of critical exponents, the influ-
ence of magnetic field on critical exponents in ferromagnets
is not often discussed [50,51]. The modified Arrott plot pro-
cesses described above are repeated for HMax - 20 kOe < H �
HMax, and the generated critical exponents are illustrated in
Figs. 7(a) and 7(b). As the fitted range decreases to lower
fields, the β drops to the values close to 0.25, which is on the
border of 2D to 3D critical behavior, probably due to the 2D
crystalline structure and the magnetocrystalline anisotropy.
Moreover, the decrease in γ is large and systematic as the
maximum magnetic field is increased.

Then, we discuss the nature as well as the range of
interactions in LaCrSb3. On the basis of the renormalization-
group theory, the interaction decays with distance r as J (r) ∼
r−(3+σ ), where σ is associated with the range of the interaction
[52], which is short or long depending on σ > 2 or σ < 2. The

FIG. 7. Dependence of (a) β and (b) γ on the fitted maximum
magnetic field.

exponent γ is calculated as [35,52,53],

γ = 1 + 4

d

(n + 2)

(n + 8)
�σ + 8(n + 2)(n − 4)

d2(n + 8)2

×
(

1 + 2G
(

d
2

)
(7n + 20)

(n − 4)(n + 8)

)
�σ 2, (9)

where �σ = σ − d/2, G( d
2 ) = 3 − 1

4 ( d
2 )2, and n denotes the

spin dimensionality. When σ = 2, the Heisenberg model is
effective for a 3D isotropic magnet, where J (r) decays faster
than r−5. When σ = 3/2, the mean-field model is valid and
J (r) decays slower than r−4.5. In the case of LaCrSb3, it is
discovered that the magnetic exchange decays with distance as
J (r) = r−4.9, which lies between that of the mean-field mode
and the 3D Heisenberg model with a long-range interaction
[35,52,53].

In addition, the critical behavior of 2D and quasi-2D Cr-
based magnetic materials has been extensively investigated.
For instance, the magnetism of CrI3 follows the crossover
behavior of a 3D-Ising behavior with mean field type in-
teractions [54], CrSiTe3 displays a 2D-Ising ferromagnetic
behavior [55], CrGeTe3 exhibits a tricritical mean-field model
[56], and Cr1/3NbS2 shows a 3D Heisenberg-like ferromag-
netism [57]. The diverse critical behavior could come from
the inevitable different interlayer coupling and the magnetic
anisotropy [54]. Moreover, the localized or itinerant nature of
the Cr moments should also take effect on the range of the
ferromagnetic interaction [57].

C. Magnetic entropy change

The magnetic entropy change �SM (T, H ) induced by the
external field is expressed as the following equation:

�SM (T, H ) =
∫ H

0

(
∂M

∂T

)
H

dH. (10)

Figures 8(a)–8(c) present the calculated magnetic entropy
change as a function of temperature [−�SM (T )] under var-
ious fields with H‖a, H‖b, and H‖c, respectively. A peak
around Tc occurs at each curve, and the maximum value of
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FIG. 8. (a)–(c) Calculated magnetic entropy change of LaCrSb3 for the magnetic field along three different axes, respectively. (d)–(f)
Calculated rotating magnetic entropy change of LaCrSb3 between the (d) a and b axes, (e) a and c axes, and (f) b and c axes, respectively.

the −�SM reaches 3.4, 5.9, and 5.8 J kg−1 K−1 for the H‖a,
b, and c axes, respectively; and there exist small shifts of
the −�Smax

M peaks towards higher temperatures with an in-
creasing of the magnetic field, which excludes the mean-field
model [37,58,59], consistent with the above critical-behavior
analysis. For the H‖a axis, the temperature dependence of
−�SM exhibits negative values below 4 T at temperature
below Tc, which should originate from the competition be-
tween the temperature dependence of magnetic anisotropy and

the magnetization [60,61]. To provide further insight into the
anisotropy of the magnetization, we calculated the rotating
magnetic entropy change −�SR

M , which is expressed as [62]

�SR
M (T, H ) = �SM (T, Ha) − �SM (T, Hb). (11)

As displayed in Figs. 8(d) and 8(e), �SR
M (T, H ) between

the a and b axes (a and c axes) reach maximum values of
2.55 (2.49) J kg−1 K−1 around Tc, respectively, exhibiting
strong anisotropic features. However, �SR

M (T, H ) between the
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FIG. 9. (a) The field dependence of �Smax
M and RCP for H‖b.

Inset (i): Field-dependent Tr1 and Tr2; (ii) the temperature depen-
dence of n under various fields. (b) The normalized magnetic entropy
change �SM/�Smax

M as a function of the reduced temperature t . Inset:
Scaling of �SM (T ) under the obtained critical exponents.

b and c axes is ∼0 J kg−1 K−1 at T > Tc displaying a nearly
isotropic behavior, and is less than 0.3 J kg−1 K−1 at T < Tc

showing weak anisotropy [Fig. 8(f)]. Under H‖c, small cusps
at ∼90 K can be observed in Figs. 8(c) and 8(e), which should
be related to the spin reorientation transition.

The parameters of −�SM curves follow a series of power-
law dependencies on the field as the following equations [63]:

−�Smax
M ∝ Hn, (12)

RCP ∝ Hm, (13)

where −�Smax
M denotes the maximum value of the −�SM ,

RCP is the relative cooling power, which is calculated as
−�Smax

M × δFWHM (δFWHM is the full width at half maximum
of −�SM), and n and m are related to the critical exponents as
follows [64,65]:

n(Tc) = 1 + (β − 1)/(β + γ ), (14)

m = 1 + 1/δ. (15)

The left and right axes of Fig. 9(a) plot the field dependence
of −�Smax

M and RCP with H‖b, where the fitted curves by
Eqs. (12) and (13) yield n = 0.670(5) and m = 1.108(2),
respectively. The inset (ii) of Fig. 9(a) presents the plots of
n(T ) in various fields, which exhibits typical behavior of

a ferromagnetic system [66], i.e., at low temperatures, well
below Tc, n approaches 1; at high temperature, well above
Tc, n reaches 2 as a consequence of the Curie-Weiss law; at
T = Tc, n has a minimum.

According to Eqs. (6), (15), and (14), the critical exponents
can be calculated as β = 0.246(3), γ = 2.04(3), and δ =
9.26(2). The above method based on the magnetic entropy
change directly generates the critical exponents, which stays
away from the deviation caused by the multistep nonlinear
fitting in the modified Arrot plot and KF method [61,67].
For comparison, the generated critical exponents of LaCrSb3

with various methods are summarized in Table II. As we
can see, there exists a discrepancy of critical exponents via
various methodologies. The discrepancy is commonly found
in CrSbSe3 [62], Fe3−xGeTe2 [67], and VI3 [61], which could
come from the different fitting regions [61,68].

The temperature-dependent magnetic entropy change
−�SM (T, H ) of a second-order magnetic transition can be
normalized to a universal curve independent of the exter-
nal field. The magnetic entropy change is scaled as �S′

M =
�SM/�Smax

M , and the temperature is scaled into a renormal-
ized temperature t defined as [69]

t− = (Tc − T )/(Tr1 − Tc), T � Tc, (16)

t+ = (T − Tc)/(Tr2 − Tc), T > Tc, (17)

where Tr1 and Tr1, which are presented in inset (i) of Fig. 9(a),
denote two reference temperatures of the full width at half
maximum, i.e., �SM (Tr1, Tr2) = 1

2�Smax
M . The scaled �S′

M vs
scaled t curves under H‖b are displayed in Fig. 9(b). All
plots under diverse H fall into a single universal curve. For
a second-order FM transition, the scaling analysis of −�SM

can also be expressed as

−�SM ∝ Hng

(
ε

H1/(β+γ )

)
, (18)

where n, β, and γ denote critical exponents and g(x) is a
scaling function [70]. With appropriately selected critical ex-
ponents, the plots of −�SM (T )

Hn vs ε
H1/(β+γ ) should collapse onto a

single curve, which is indeed observed in the inset of Fig. 9(b).
The well-scaled −�SM (T, H ) curves verify the reliability and
validity of the acquired critical exponents.

To provide further insight into the important role of the
anisotropy in LaCrSb3, we calculated the magnetocrystalline
anisotropy constant Ku, which is related to the saturation
magnetization Ms and the saturation field Hs under the H‖ab
plane, i.e., 2Ku/Ms = μ0Hs, where μ0 denotes the vacuum
permeability [71]. As displayed in the left axis of Fig. 10,
the derived Ku is found to be temperature dependent, gradu-
ally decreasing with an increasing temperature. This tendency
could arise from local spin clusters fluctuating randomly
around the macroscopic magnetization vector and activated
by a nonzero thermal energy [72,73]. The magnitude of Ku

in LaCrSb3 is equal to 74.9 kJ/m3 at T = 67 K, which is
comparable with that of typical low dimensional ferromag-
nets NdCrGe3 [68], VI3 [61] and CrGeTe3 [74]. According
to a classical theory, 〈Kn〉 ∝ Mn(n+1)/2

s , where 〈Kn〉 denotes
the anisotropy expectation value for the nth power angular
function [72,73], in the case of an uniaxial anisotropy and
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FIG. 10. (a) The temperature dependence of the anisotropy con-
stant Ku (left axis) and the ratios of [Ms/Ms(67K )]n(n+1)/2 with n = 1,
2, and 4 (right axis).

a cubic anisotropy n = 2 and 4, resulting in an exponent
of 3 and 10, respectively. The temperature dependence of
[Ms/Ms(67K )]n(n+1)/2 with n = 1, 2, and 4 are displayed in the
right axis of Fig. 10. The comparison in Fig. 10 demonstrates
the anisotropy in LaCrSb3 is different from both an uniaxial
anisotropy and a cubic anisotropy, which is consistent with the
anisotropic magnetic entropy change and could be due to the
complex magnetic structure in LaCrSb3.

For the investigation and modulation of topological proper-
ties in LaCrSb3, the clarification of the magnetic interactions
and/or the magnetic structure is of great importance [75]. It
is known that the spin-orbital coupling and magnetic inter-
action play essential roles in the formation and evolution of
topological nontrivial states and in the process of anomalous
Hall effect. In PrAlGe, the intrinsic FM ordering induces the
split of bands, which makes the Weyl nodes in k space shift
to break time-reversal symmetry, generating a large anoma-
lous Hall effect [75,76]. In CeAlGe, it has been confirmed
that many magnetic incommensurate phases exists, implying
close relations between magnetism and topologically non-
trivial states [77]. Furthermore, it is proposed that a Dirac

semimetal state exists in the AFM ground state and a Weyl
semimetal state appears in the FM state in rare-earth monop-
nictides NdSb [78,79]. Thus, the comprehensive investigation
of the magnetism in LaCrSb3 is significant for understand-
ing the interplay between the magnetism and nontrivial band
topology features and offering explanations to the AHC in
LaCrSb3.

IV. CONCLUSIONS

In summary, a systematic investigation on the critical
behavior and magnetocaloric effect of LaCrSb3 around its
PM-FM phase transition are performed. Critical behavior
analysis clarifies that the ferromagnetic transition is of
second order. The critical exponents β = 0.298(7), γ =
1.277(9), and δ = 5.28(9) are generated with various meth-
ods, including the modified Arrott plot, the KF method,
the Widom scaling law, and critical isotherm analysis. The
self-consistency and reliability of obtained critical exponents
are confirmed by the scaling analysis. A 3D critical be-
havior is verified. The spin interaction in LaCrSb3 is of a
long range and the exchange interaction decays with dis-
tance as J (r) = r−4.9. Moreover, strong magnetocrystalline
anisotropy is confirmed in magnetic entropy change. The
−�Smax

M (H ) as well as the field-dependent RCP follow the
power law behavior. The scaling analysis of magnetic entropy
change −�SM (T, H ) demonstrates the accurate estimation
of critical exponents. Considering the strong magnetocrys-
talline anisotropy, the long-range magnetic interaction, and
the strong Berry coverture of LaCrSb3, further theoretic calcu-
lation and experimental investigation are of great interest and
urgently needed.
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