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Simulation of ring-exchange models with projected entangled pair states
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Algorithms to simulate ring-exchange models on a square lattice using projected entangled pair states (PEPSs)
are developed. We generalize the imaginary time evolution (ITE) method to optimize PEPS wave functions
for the models with ring-exchange interactions. We compare the effects of different approximations of the
environment. To understand the numerical instability during optimization, we introduce the “singularity” of a
PEPS and develop a regulation procedure that can effectively reduce the singularity of a PEPS. We benchmark
our method with the toric code model and obtain extremely accurate ground-state energies and topological
entanglement entropy. We also benchmark our method with the two-dimensional cyclic ring-exchange model,
and find that the ground state has a strong vector chiral order. The algorithms can be a powerful tool to investigate
the models with ring interactions. The methods developed in this work, e.g., the regularization process to reduce
the singularity, can also be applied to other models.
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I. INTRODUCTION

Recently, models with ring-exchange interactions have at-
tracted growing attention. Ring-exchange interactions were
first introduced as higher-order perturbation terms of the Hub-
bard model near half filling [1–10]. It has been shown that the
ring-exchange interactions may play important roles in many
materials [10–13]. The ring-exchange terms can stabilize the
uncondensed boson liquid [14–18], which helps to reveal the
physics of strange metal in the high-Tc superconductors [19].
The J-Q model, which includes the ring-exchange interac-
tions, has been used [20,21] to demonstrate the deconfined
quantum critical point [22]. The ring-exchange interactions
are also crucial in the lattice-gauge models [23–25] to exhibit
topological phase transitions. Recently, the ring-exchange in-
teractions have been realized experimentally in the cold atom
systems [26,27].

The ring-exchange models have been studied by vari-
ous numerical methods, including the exact diagonalization
(ED) [9,15,28,29], the quantum Monte Carlo (QMC) [30],
and the density-matrix renormalization group (DMRG) [31]
methods. However, these methods all have some limitations.
For example, the ED method can only treat rather small
systems, whereas the QMC may suffer from the sign prob-
lems in the fermionic and frustrated systems [21,32]. The
DMRG method can only treat the quasi-one-dimensional
systems [15,28,33].

The recent developed tensor network states (TNS) meth-
ods [34–38], including the projected entangled states (PEPS)
method, are very promising to study the two-dimensional
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many-particle systems, which has been successfully applied
to various models, such as the J1-J2 model [39], kagome
Heisenberg model [40], and the t-J model [41,42]. The stud-
ies of the ring-exchange models via infinite PEPS (iPEPS)
[43–45] have been performed by using the gradient opti-
mization method [46–48]. However, the gradient optimization
starting from a random finite PEPS may suffer from local
minima.

The imaginary time evolution method (ITE) may be more
efficient and may effectively avoid the local minima. The
results of ITE can be used as the starting wave func-
tions for further gradient optimization [46–48]. However, the
ring-exchange models on a square lattice involve four-site in-
teractions, which are significantly more complicated than the
bond-interaction models for the PEPS. So far, no effective ITE
algorithm has been developed for the general ring-exchange
models [49] because of the complication of the four-site in-
teractions. In this work, we develop an efficient ITE update
algorithm to optimize the PEPS for the ring-exchange models.
Combined with the stochastic gradient optimization methods
[48], it provides a powerful tool to study the ring-exchange
models.

This paper is organized as follows: In Sec. II, we introduce
the algorithms to optimize the PEPS for the ring-exchange
models. After introducing a general algorithm of ITE for
the ring-exchange model, we discuss the approximations of
the environment in Sec. II A. In Sec. II B we discuss how to
control the “singularity” of the PEPS, to enhance the numer-
ical stability during the ITE. In Sec. III, we benchmark the
algorithms on the toric code model, in which we calculate
the ground-state energies and the topological entanglement
entropy of the model. In Sec. IV, we apply the algorithms
to study the cyclic ring-exchange model. We summarize in
Sec. V.
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II. METHOD

We consider a general Hamiltonian with ring-exchange
interactions on the square lattices,

H =
∑

i

H1,i +
∑
i, j

H2,i, j +
∑

p

H�,p, (1)

where H1,i, H2,i, j denote the one-site and two-site interaction
terms, respectively. H�,p, which acts on plaquettes p, denotes
the ring-exchange interaction terms.

We solve the ground state of the above Hamiltonian using
the PEPS method [36]. A PEPS on an L1 × L2 square lattice
can be written as

|�〉 =
L1,L2∏

i=1, j=1

[
T [i, j]

li j ri j ui j di j si j
δri j li, j+1δdi j ui+1, j

] L1,L2⊗
i=1, j=1

|si j〉, (2)

where Einstein’s sum rule is assumed. In this equation,
T [i, j]

li j ri j ui j di j si j
is a rank-five complex tensor at site (i, j) which has

four auxiliary indices li j, ri j, ui j, di j and a physical index si j .
Each auxiliary index is summed from 1 to the bond dimension
D, and each physical index is summed from 1 to the physical
dimension d .

The ground state |�GS〉 of Hamiltonian H in the form of
PEPS can be optimized by using the ITE algorithm [50],

|�GS〉 = lim
τ→∞ e−Hτ |�0〉

= lim
N→∞

(
n∏

i=1

e−�τHi

1∏
i=n

e−�τHi

)N

|�0〉, (3)

where |�0〉 is a randomly chosen initial PEPS. The ITE is
divided into small time steps, i.e., �τ � 1, which can be well
approximated by the products of a series of local operators Hi

using the Trotter expansion [51].
The key ingredient of the ITE algorithm is to efficiently

approximate the (n + 1)th step wave function |�n+1〉 =
e−�τHi |�n〉 by a PEPS, which we call a local update process.
We regard the sites, where the operator e−�τHi acts on, as
the system (which includes four sites on a plaquette for the
ring-exchange interaction model), and the rest of the lattice as
the environment. During the local update process, the environ-
ment tensors are fixed, while the system tensors are updated
to obtain a best approximation of ‖|�n+1〉 − e−�τHi |�n〉‖.
Generally we have to make some approximations to the en-
vironment to simplify the calculations. The quality of the
approximated environment often plays a critical role in de-
termining the system tensors during the ITE [52].

For the bond-interaction models, a simple update (SU)
scheme has been developed [53] for the local update process,
in which the environment tensor for each virtual bond of the
system is assumed to be irrelevant and can be approximated
by a real diagonal matrix. Generally, the SU scheme involves
four steps, as illustrated in Fig. 1: (i) to absorb environment
tensors into the system [Fig. 1(b)]; (ii) to contract the system
tensors with the time evolution operator e−�τHi [Fig. 1(c)];
(iii) the contracted system tensor is approximated by a new
PEPS [Fig. 1(d)]; and (iv) the environment tensors are split
from the new system tensors [Fig. 1(d)].

FIG. 1. Schematic illustration of a simple update method for the
time evolution |�n+1〉 = e−�τHi |�n〉.

However, we cannot naively apply the SU to the ring-
exchange models for two reasons: First, the third step in the
above algorithm is the crucial part of the SU. For the bond-
interaction models, which only involve two-site interactions,
this can be done by singular value decomposition (SVD) [53]
or higher-order singular value decomposition (HOSVD) [38].
However, for a ring-exchange interaction H�,i, there is no
simple technique to decompose the tensor in Fig. 1(c) into
a ring tensor network in Fig. 1(d). Second, the SU oversim-
plifies the environment, which causes serious accuracy and
numerical stability problems for the ring-exchange models.

Therefore, we have to use an alternative way to perform the
local update process by direct minimizing the error function
[52,54],

Err(|�n+1〉) = ‖|�n+1〉 − e−�τHi |�n〉‖, (4)

where |�n+1〉 is the new PEPS to approximate the TNS after
time-evolution e−�τHi , and ‖ · ‖ is the two-norm of a state.
The error function Err is a quadratic function for each tensor
in the system, which can be minimized by iteratively solving
the equation ∂T ∗Err(|�n+1〉) = 0, i.e.,

T · AT = BT , (5)

where,

AT = ∂T ∂T ∗ 〈�n+1|�n+1〉, (6)

BT = ∂T ∗ 〈�n+1|e−�τHi |�n〉, (7)

for each tensor T of |�n+1〉 in the system part. The tensor net-
works that correspond to AT , BT are shown in Figs. 2(a)–2(b).
In practice, we solved the equation for each tensor with other
tensors kept fixed, and repeated the process for 20 sweeps.

A. Calculation of AT and BT : Approximation of the environment

To calculate tensor AT and BT , one has to contract the
environment shown in Fig. 2(c). The environment tensor
should be Hermitian and positive semidefinite to ensure the
error functions in Eq. (4) bounded from below [52]. The
exact contraction of the environment tensor networks certainly
satisfies the conditions, which unfortunately cannot be done
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FIG. 2. The tensor networks of (a) AT and (b) BT for the system
tensor T defined in Eqs. (6) and (7), respectively, and (c) the envi-
ronment tensor networks for AT and (b) BT .

because the computational cost grows exponentially with the
size of the networks. The approximations to the environment
have been discussed comprehensively in Ref. [52] for bond-
interaction models. Here, we discuss the approximation of the
environment for the ring-exchange models.

1. Simple environment

If we neglect the entanglement between sites 1–8 con-
nected to the system tensors in Fig. 3(a), the approximated the
environment is just the direct products of Hermitian positive
semidefinite matrices on each site in (bra and ket) pairs [see
Fig. 3(c)]. This is the simplest approximation of the environ-
ment, known as the simple environment [53,55]. Obviously
the simple environment is automatically Hermitian and posi-
tive semidefinite according to its structure.

For an open boundary system, we can obtain the simple
environment as follows: We first approximate the tensors at
the boundary by the direct products of Hermitian positive
semidefinite tensors by setting Dc = 1 within the row. We
then contract the boundary tensors to the next row, and again
approximate the obtained row of tensors as direct products,
as shown Fig. 3(b). We repeat this procedure until all envi-
ronment tensors have been contracted, resulting in the simple
environment shown in Fig. 3(c).

With the simple environment approximation, tensors AT

and BT can be easily calculated. The time complexity to
compute AT and BT and solve Eq. (5) is O(D6), compared
with O(D5) for bond-interaction models, where D is the bond
dimension of the PEPS. This computation cost is relatively
low. The update scheme with the simple environment approx-
imation is also called a generalized SU method in Ref. [55].
The (generalized) SU methods works quite well for many
bond-interactions models, if the correlations in the PEPS are
not very strong. For more complicated ring-exchange models,
due to the over-simplification of the environment, the SU
method can have poor accuracy, which will be discussed in
Sec. IV.

2. Cluster environment

To improve the accuracy of the ITE, we need a better ap-
proximation to the environment than the simple environment.

FIG. 3. (a) The exact environment of a 2 × 2 ring tensors in
a square PEPS. (b) The simple environment approximation during
contraction of environment. (c) The final simple environment as a
product state of the tensors on the eight sites connected to the system.

One can directly contract the environment via the boundary-
MPO (bMPO) methods [52,56]. However, if a truncation
to the bond dimension, Dc is used, the obtained environ-
ment is not guaranteed to be positive semidefinite. One way
to restore the positive semidefiniteness of the environment
is to diagonalize the environment tensors and remove all
negative eigenvalues [52]. This procedure works fine for
bond-interaction models. However, for the ring-exchange
model, the final environment tensor is a D8 × D8 matrix,
which is extremely expensive to diagonalize for large D.

Instead, we adopt the cluster environment approximation
[55]. We contract the tensors via the boundary MPO method
with Dc = 1, as in the simple environment approximation,
except for the tensors which are directly connected with the
systems tensors (see Fig. 4). To see that the cluster envi-
ronment is positive semidefinite, we may decompose each
simple environment tensor E , which is Hermitian and posi-
tive semidefinite by construction, into QQ†, as illustrated by
Figs. 4(b) and 4(c). By doing so, the cluster environment
becomes the contraction of a tensor network with its own
conjugate, which is guaranteed to be Hermitian and positive
semidefinite. With the cluster environment approximation, the
time complexity to compute AT and BT and solve Eq. (5)
is O(D12), where D is the bond dimension of original PEPS
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FIG. 4. (a) Exact environment of a 2 × 2 ring tensor in a square
PEPS. (b) The cluster environment. (c) The equivalent cluster envi-
ronment that is obviously Hermitian and positive semidefinite.

wave function, which is higher than the simple environment
approximation. The time complexity is also higher than that
of cluster update for bond interaction, which is O(D10) [52].

B. Reduce the singularity of a projected entangled state

After we obtain the (simple or cluster) environment,
we may apply time-evolution operators with ring-exchange
terms. However, we find that, during the ITE, there is a strong
numerical instability after some time steps. In previous works
[52,56,57], this numerical instability was attributed to the un-
fixed gauge freedom of PEPS. Some gauge-fixing methods are
proposed to avoid the problem. However the relation between
the gauge freedom and the numerical instability remains un-
clear, and there was no standard to choose the best gauge.

To understand the numerical instability during ITE, we
define the “singularity” of a PEPS, and we show that the
numerical instability is due to the rapid growth of the “sin-
gularity” of the PEPS.

Let |�〉 be the PEPS defined in Eq. (2), and the singularity
of |�〉 is defined as

sing(|�〉) =
∏

i ‖Ti‖
〈�|�〉 , (8)

where Ti is the ith tensor of the tensor network and ‖ · ‖ is
the two-norm of a tensor. The singularity of � characterize
the reciprocal of the norm of 〈�|�〉, when each tensor Ti is
normalized to ‖Ti‖ = 1. When the norm of a tensor network
approaches zero, the singularity diverges. There are some
special PEPS, e.g., PEPS in canonical form [58], and the iso-
metric tensor network state [59] naturally has low singularity.

In practice, we find that the singularity of the tensor net-
works grows rapidly during the ITE if untreated, and the
update process becomes numerically unstable [60]. To solve

SVD

absorb 1/2contraction

regularization

U VC

FIG. 5. The regularization procedure for a bond in the tensor
network.

this issue, we note that a PEPS has some gauge freedom, e.g.,
one may insert a pair of invertible gauge matrices I = GG−1

in each virtual bond, and the norm of 〈�|�〉 is invariant.
However, by absorbing the G and G−1 matrices to the tensors,
‖Ti‖ may change, and as a consequence the singularity of
the PEPS may vary. Therefore, it is possible to reduce the
singularity by choosing proper gauges of the PEPS.

Here, we propose a regularization procedure to reduce the
singularity of a PEPS. For each bond of the PEPS, we first
contract the two tensors connected by the bond, resulting in a
tensor C, and we then make a SVD, C = U�V . The tensors
of the two sites are updated as U�1/2 and �1/2V , respectively.
This process is illustrated in Fig. 5. As proved in Theorem 2
in the Appendix, these regularization operations minimize the
singularity of the bond tensors, when all other tensors remain
fixed. We sweep all the bonds in the PEPS with this procedure
for a few iterations until the singularity of the tensor network
converges.

To demonstrate the effectiveness of the method, we op-
timize the ground state of a cyclic ring-exchange model
introduced in Sec. IV on a 4 × 4 square lattice. For conve-
nience, the bond dimension of the PEPS is taken to be D = 2.
We adopt the cluster environment approximation. During the
ITE, we compared the energies and the singularities with
and without the regularization process at each time step. The
results are shown in Fig. 6. As we see, without the regu-
larization procedure, the singularity of the PEPS grows very
rapidly with time steps. As a consequence, after 340 steps, the
evolution becomes numerically unstable. In contrast, with the

FIG. 6. (a) Singularities and (b) energies of the PEPS during the
ITE optimization with and without regularization of the singularity.
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FIG. 7. (a) Toric-code model on a square lattice with OBC,
where spins locate on vertices. Pz are the blue plaquettes and Px are
the red plaquettes. (b) The original Kitaev’s toric code model, where
spins locate on edges. (c), (d) The corresponding toric-code models
with CBC.

regularization procedure, the singularity remains at low level
during the ITE, and the energy can be steadily optimized.

C. Gradient optimization

Because of the drastic approximation to the environment
(even for the cluster environment) during the ITE, the result-
ing ground state may not be accurate enough. It has been
demonstrated that the gradient optimization after ITE can
significantly improve the ground-state energies for the bond-
interaction models, where the energy and the gradients are
calculated via a Monte Carlo sampling technique with relative
low time complexity [48,61,62]. These techniques can also
be applied to the ring-exchange models in a similar manner.
We perform the gradient optimization after the ITE, and we
show in the following sections that, for some ring-exchange
models, the gradient optimization can significantly improve
the ground-state energies.

III. APPLICATION TO TORIC-CODE MODEL

We first apply our method to the toric-code model [25].
The toric-code model is a paradigm model with ring-exchange
interactions that can be exactly solved on square lattices. Gen-
erally, the Hamiltonian of the toric code model is defined as

H = −
∑
p∈Px

∏
i∈p

σ x
i −

∑
p′∈Pz

∏
i∈p′

σ z
i , (9)

where Px and Pz are alternative plaquettes of the lattice, as
shown in Fig. 7, in which Figs. 7(a) and 7(c) correspond to
the open boundary condition (OBC) and cylindrical boundary
condition (CBC), respectively. We included the appropriate
boundary terms such that our model is equivalent to Kitaev’s

TABLE I. The exact ground energies of the toric-code model of
various sizes with both OBC and CBC. The relative errors of the
numerical results are less than 10−14.

Boundary System Theoretical Relative
condition size energy simulation error

OBC 4 × 4 −17
6 × 6 −37
8 × 8 −65

10 × 10 −101 <10−14

CBC 4 × 4 −16
6 × 6 −36
8 × 8 −64

10 × 10 −100

original model with smooth boundary conditions, as shown in
Figs. 7(b) and 7(d).

The physical properties, e.g., the topological degeneracy,
of the toric-code model are closely related to the bound-
ary conditions. The ground state of the toric-code model
with OBC is nondegenerate, and has twofold degeneracy on
a cylinder [63]. More specifically, the ground state of the
toric-code model on a cylinder has a gapped Z2 topological
order, which has nontrivial low-energy excitations [25]. The
topological entanglement entropy (TEE) in the ground-state
manifold (GSM), which is used to character the topological
order, is therefore ln 2 on a cylinder [63].

It has been shown that the ground state of toric-code
model can be exactly expressed by PEPS with bond dimension
D = 2 [64]. Therefore toric-code model serves as a good
benchmark for our method. In this section, we benchmark
our method by calculating the ground-state wave functions of
the toric-code model on square lattices and investigating its
topological properties.

We first obtain the ground-state wave functions of the toric
model using PEPS of bond dimension D = 2, on square lat-
tices of various sizes. Both OBC and CBC are studied, with
the smooth boundary conditions [65]. We use ITE with simple
environment approximation to optimize the ground state, and
the imaginary time step is set to �τ = 0.02. The ground-state
energies converge very fast with the time steps. The exact
ground-state energies and relative errors of our numerical
results to the exact results of various lattice sizes are listed
in Table I for both OBC and CBC. It is interesting to see that
one can obtain the ground-state energies with nearly machine
accuracy for the toric-code model using only a simple envi-
ronment.

We then calculate the TEE [66] of the ground states of the
toric-code model with CBC to characterize their topological
order. We divide the cylinder into left (L) and right (R) parts,
as shown in Fig. 8. Let |sR〉 be the basis of the Hilbert space
of the part R, the reduced density matrix of |�〉 of part L is
ρL = ∑

sR
〈sR|�〉〈�|sR〉. The αth order Rényi entropy of a

state |�〉 between the two parts is defined as

Hα = 1

1 − α
ln Tr

(
ρα
L
)
. (10)
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FIG. 8. (a) The L × 20 cylindrical lattice, as well as the PEPS,
are divided into L, R parts. (b) Linear fit of H2-L data for toric-
code model with CBC, where the topological entanglement entropy
is ln 2.003

Generally, the Rényi entropy is proportional to the size of the
boundary (L) between the two parts, i.e., when L → ∞, it has
the form

Hα = −γ + aL + · · · , (11)

where the ellipses represent terms that vanish in the limit of
L → ∞. The constant γ , which is independent of the size
of the system, is the TEE [67]. Note that the Rényi entropy
is ambiguous in a degenerate GSM, and the TEE should be
calculated on its minimal entanglement state (MES) [63].

To obtain the TEE, we study toric-code model on the
L × 20 rectangular lattices with CBC, which is periodic in
the first dimension. The lattices are divided into the L and
R parts, both have the size of L × 10 as shown in Fig. 8(a).
We calculate the second-order Rényi entropy between the two
parts of the ground states in the whole GSM. We then obtain
the minimal Rényi entropy in the GSM. More details can be
found in Appendix B.

The numerically calculated Rényi entropies of the MES are
listed in Table II, for L = 4–10, which are in excellent agree-
ment with exact results. The Rényi entropy shows excellent
linearity with L, as shown in Fig. 8(b), and the fitted TEE
for the toric-code model with CBC is ln 2.003, which is in
excellent agreement the theoretical result ln 2.

IV. APPLICATION TO CYCLIC RING-EXCHANGE MODEL

In this section, we investigate the ground state of the cyclic
ring-exchange model [2–10] using the PEPS method devel-
oped in this work. The cyclic ring-exchange model on a square
lattice can be written as

H =
∑
(i jkl )

[(
Si · S j + 1

4

)(
Sk · Sl + 1

4

)
+

(
Si · Sl + 1

4

)

TABLE II. The minimal Rényi entropy of the toric-code model
on L × 20 cylinders.

System Boundary Theoretical Simulation value
size length H2 for MES of H2 for MES

4 × 20 4 ln 2 ln(2 + 2.8 × 10−11)
6 × 20 6 ln 4 ln(4 − 1.5 × 10−5)
8 × 20 8 ln 8 ln(8 + 1.6 × 10−5)
10 × 20 10 ln 16 ln 16.032

FIG. 9. (a) Comparing the ground-state energies of a cyclic
ring-exchange model on the 4 × 4 lattice obtained by the simple
environment and cluster environment (bond dimensions D = 2–8)
to that by the exact environment (D = 2–4). The exact ground-state
energy (ED) is also shown. (b) The ground-state energy of the cyclic
ring-exchange model on the 10 × 10 lattice during ITE, with simple
(SE) and cluster environment (CE). The bond dimensions are taken
as D = 2–8.

×
(

Sk · S j + 1

4

)
−

(
Si · Sk − 1

4

)(
S j · Sl − 1

4

)
− 1

16

]

=
∑
(i jkl )

[
1

4
Pi jkl + H.c. − 1

16

]
, (12)

where (i jkl ) denotes a 2 × 2 plaquette with four sites i, j, k, l
in the clockwise order. Here, i = (ix, iy) are the site index of
the spin. The operator P(i jkl ) performs a cyclic permutation of
spins on i, j, k, l sites. The cyclic ring-exchange interactions
arise naturally as higher-order terms in the magnetic effective
model of half filled Hubbard model in the strong interaction
limit [1], which plays an important role in many materials
[10–13].

The cyclic ring-exchange model on a quasi-1D ladder lat-
tice with width L = 4 has been investigated using the DMRG
method [6]. The results indicate that the ground state of the
model has a strong vector chiral order. Here we investigate
the cyclic exchange model on the genuine two-dimensional
(2D) lattices.

We calculate the ground states of the cyclic ring-exchange
model on a L × L square lattice with L = 4–12 via PEPS. The
maximum bond dimension D = 8 is used. During the calcula-
tions, we first perform ITE optimization imaginary time step
�τ = 0.02 and until the energy (computed by MC sampling
method [48]) is converged. We start from bond dimension
D = 2, and gradually increase D. We use the optimized PEPS
of D as the starting PEPS of D + 1.

In Fig. 9(a), we compare the energy after ITE on a 4 ×
4 lattice with simple environment and cluster environment
(bond dimensions D = 2–8), to those with exact environment
(D = 2–4). As we see, for this system, the cluster environment
works very well, which gives very accurate results compared
with those with exact environment, whereas the energies of
the simple environment are much higher after ITE. We note
that, for this small system, starting from the PEPS obtained by
ITE with simple environment, one can still obtain the correct
ground-state energy by sufficiently long gradient optimiza-
tion. In contrast, it takes much fewer gradient steps for the
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FIG. 10. (a) Comparing the ground-state energy of the cyclic
ring-exchange model on the 10 × 10 lattice, obtained by the gradient
optimization (GM) to ITE for bond dimensions D = 2–8. (b) The
finite size scaling of the ground-state energies per site on the whole
lattice and the inner sublattice, obtained by GM with bond dimension
D = 8.

energy to converge, starting from the states obtained by cluster
environment. Furthermore, one would expect that, for larger
systems and more complicate models, ITE with simple envi-
ronment followed by a gradient optimization method might
fail converge to the correct ground state due to local minima.

The ground-state energies as functions of imaginary time
steps on a 10 × 10 lattice are shown in Fig. 9(b) for differ-
ent bond dimensions D. As a comparison, we also show the
results obtained by simple environment for D = 2. We see
that the energy can be optimized steadily using the cluster
environment but not with the simple environment.

To obtain the highly accurate ground state, we further opti-
mize the PEPS via the gradient optimization method [48] after
ITE for each bond dimension D. In Fig. 10(a), we compare the
ground-state energies of different bond dimensions obtained
by the ITE to those by the gradient optimization method for
the 10 × 10 lattice. We see that the gradient optimization can
significantly improve the ground-state energy. For the 10 × 10
lattice, the ground-state energy of the model converges very
well at D = 8.

The ground-state energies in the thermodynamic limit are
calculated via finite-size scaling using the energies obtained
by the gradient optimization for bond dimension D = 8. To
see the boundary effects, we compare the energy per site
calculated on the whole L × L lattice with that calculated on
the (L − 2) × (L − 2) sublattice in the center region, and the
results are shown in Fig. 10(b). The energy per site in the
thermodynamic limit calculated on the whole lattice is E∞ =
−0.3180, determined by a second-order polynomial fitting,
which agrees very well with E∞ = −0.3177, calculated on
the inner sublattice.

To determine the possible ordering in the ground state, we
calculate spin-spin correlation function Si j = 〈Si · S j〉 − 〈Si〉 ·
〈S j〉, and dimer-dimer correlation function Dκ

i j = 〈Dκ
i Dκ

j 〉 −
〈Dκ

i 〉〈Dκ
j 〉 (κ = x/y) where Dx/y

i = Si · Si+ex/ey . Their Fourier
transformations,

Sk = 1

L4

∑
i j

eik·(i− j)Si j, (13)

Dκ
k = 1

L2(L − 1)2

∑
i j

eik·(i− j)Dκ
i j, (14)

FIG. 11. Finite-size scaling of the (a) Néel order parameters
S(π,π ); (b) stripe order parameters S(0,π ); (c) horizontal or vertical
dimer order parameters Dx/y

(π,π ); (d) vector chiral order parameters
V(π,π ).

can be used as the order parameters. Especially S(π,π ), S(0,π )

are the order parameters of the Néel order and stripe order, re-
spectively; whereas Dκ

(π,π ), (κ = x, y) are the order parameters
of the horizontal or vertical dimer orders.

Besides the Néel, stripe, and dimer order, a vector chiral
phase that breaks space-inversion symmetry is also possible
[6]. We also calculate the vector chiral-chiral correlation func-
tion,

Vmn = 〈Vm · Vn〉 − 〈Vm〉 · 〈Vn〉, (15)

where Vm = Si × S j + S j × Sk + Sk × Sl + Sl × Si is a vector
operator on plaquette m, and i, j, k, l are four vertices of the
plaquette in clockwise order. Its Fourier transformation,

Vk = 1

(L − 1)4

∑
i j

eik·(i− j)Vi j, (16)

at k = (π, π ), is the order parameter of the vector chiral order.
The finite-size scaling of the order parameters are shown

in Fig. 11. We find that the Néel order, stripe order, and
dimer order all vanish in the thermodynamic limit (L →
∞), via second-order polynomial fitting. However, the vec-
tor chiral order parameter Vπ,π = 0.545 remains large in the
thermodynamic limit. These results suggest that the cyclic
ring-exchange model has strong vector chiral order [6] in the
two-dimensional lattice.

V. CONCLUSION AND OUTLOOK

We generalize the ITE to optimize PEPS wave functions
for the ring-exchange models on two-dimensional lattices. We
compare the effects of different approximations to the envi-
ronment. We propose a scheme to reduce the singularity of the
PEPS, which can significantly improve the numeric stability
during the ITE. We benchmark our method with the toric-code
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model and obtain extremely accurate ground-state energies
and topological entanglement entropy. We also benchmark our
method with the two-dimensional cyclic ring-exchange model
and find that the ground state has a strong vector chiral order.
This method can be a powerful tool to investigate the models
with ring interactions, e.g., the Bose metal model [14–18] in
genuine 2D systems. The methods developed in this work,
e.g., the regularization process to reduce the singularity can
also be applied to other models.
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APPENDIX A: SINGULARITY OF TENSOR NETWORK

Let TN be a tensor network (e.g., a PEPS) that consists of
tensors {Ti} such that the contraction of TN, contract(TN) �=
0, the singularity of TN is defined as,

sing(TN) =
∏

i ‖Ti‖
‖contract(TN)‖ , (A1)

where ‖ · ‖ stands for the two-norm of a tensor, unless other-
wise noted. We say that the two tensor networks of the same
structure (i.e., they have the same bond connections and bond
dimensions) are equivalent if they give the same tensor after
contraction. For a given TN [contract(TN) �= 0], we would
like to find the equivalent TN with minimal singularity, which
we call the minimal singularity form of a TN.

Let B(A, B) = A B
M N K

be a tensor network

with bond dimensions M, N , K , respectively. We may treat A
and B as matrices, and the contraction of the tensor network
is just the matrix product AB. For this particularly simple kind
of tensor networks, its minimal singularity form exists and can
be rigorously obtained as follows:

Theorem 1. The minimal singularity form of B(A, B) exists.
Proof. We define the continuous function singB(A, B) :

CM×N × CN×K → R by

singB(A, B) = sing(B(A, B)) = ‖A‖‖B‖
‖AB‖ . (A2)

We need to prove that singB can reach its minimal value in the
closed subset S = {(A′, B′)|A′B′ = AB}.

According to Theorem 4.28 in Ref. [68], singB can
reach its minimal value in the compact subspace S′ =
{(A′, B′)|‖A′‖ � ‖A‖, ‖B′‖ � ‖B‖, A′B′ = AB}. Let the min-
imum point be (A0, B0) ∈ S′. If (A0, B0) is not the min-
imum point in S, i.e., there exists (A1, B1) ∈ S, such
that singB(A1, B1) < singB(A0, B0), which implies that
‖A1‖‖B1‖ < ‖A0‖‖B0‖. Therefore, we can always find
a proper real number λ > 0, such that (λA1,

1
λ

B1) ∈ S′,
and singB(λA1,

1
λ

B1) = singB(A1, B1) < singB(A0, B0). This
contradicts the fact that (A0, B0) is the minimum point in S′.
Therefore, (A0, B0) must be the minimum point in S. �

Lemma 1. Let A be a complex matrix of shape M × N . Let
A†A = W †�W be a diagonalization. By appropriate permuta-
tion, we can always ensure that � = diag(λ1, . . . , λn, 0, . . . ),
where λi > 0. Then we have A = VA�AW for some unitary VA,
where �A = diag(

√
λ1, . . . ,

√
λn, 0, . . . ) is a diagonal matrix

of shape M × N .
Proof. Similar to the proof of Theorem 11.4 in Ref. [69].�
Theorem 2. B(A0, B0), where A0B0 = AB, is the minimal

singularity form of B(A, B) if and only if

A†
0A0/‖A0‖2 = B0B†

0/‖B0‖2. (A3)

Proof. We first prove that Eq. (A3) is the necessary con-
dition. Suppose that B(A0, B0) has minimal singularity. For
an arbitrary infinitesimal matrix δS, let A′ = A0eδS and B′ =
e−δSB0, and the singularity of the tensor network B(A′, B′) is
not less than that of B(A0, B0), i.e.,

‖A′‖2‖B′‖2 =‖A0eδS‖2‖e−δSB0‖2

=‖A0(1 + δS)‖2‖(1 − δS)B0‖2 + O
(
δS2

)
=‖A0‖2‖B0‖2 + 2Re[Tr[(A†

0A0‖B0‖2−
B0B†

0‖A0‖2)δS]] + O(δS2)

�‖A0‖2‖B0‖2. (A4)

For the above inequality to hold for any δS, we must have

A†
0A0‖B0‖2 − B0B†

0‖A0‖2 = 0. (A5)

It thus proves that Eq. (A3) is a necessary condition for Theo-
rem 2.

Next, we prove Eq. (A3) is the sufficient condition for
Theorem 2. Let A0 and B0 satisfy Eq. (A3), then we have,

(
A0

‖A0‖
)† A0

‖A0‖ = B0

‖B0‖
(

B0

‖B0‖
)†

. (A6)

By Lemma 1, we have,

A0

‖A0‖ = VA0�A0W, (A7)(
B0

‖B0‖
)†

= VB0�B0W, (A8)

where �A0 and �B0 have identical nonzero diagonal elements,
which are arranged before zero diagonal elements. Therefore,

A0B0 = VA0�A0B0V
†

B0
, (A9)

where �A0B0 = ‖A0‖‖B0‖�A0�
T
B0

.
Let �A0B0 = diag(λ1, . . . , λn, 0, . . . ) (λi > 0). Since the

right-hand side of Eq. (A9) is the SVD of matrix A0B0, {λi}
are the singular values A0B0. Therefore,

∑
λi, which is also

known as the nuclear norm ‖A0B0‖∗, is completely deter-
mined by the matrix A0B0 = AB. Since ‖A0‖�A0 and ‖B0‖�T

B0

have proportional nonzero diagonal elements, we have

‖A0‖�A0 = mdiag
(√

λ1, . . . ,
√

λn, 0, . . .
)
, (A10)

‖B0‖�T
B0

= 1

m
diag

(√
λ1, . . . ,

√
λn, 0, . . .

)
, (A11)
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for some undetermined real number m > 0. The singularity of
B(A0, B0) is then

sing(B(A0, B0)) = ‖A0‖‖B0‖
‖A0B0‖ = ‖AB‖∗

‖AB‖ . (A12)

Therefore, for any (A0, B0) that satisfies Eq. (A3), B(A0, B0)
has the same singularity. Since we have proven that a min-
imal singularity form of B(A, B) must satisfy Eq. (A3), it
thus proves that Eq. (A3) is also a sufficient condition for
Theorem 2. �

Particularly, A0 and B0 can be chosen as follows. Let
U�V be the SVD of the matrix AB, where � is a qua-
sidiagonal singular matrix diag(λ1, . . . , λn, 0, . . . ) of shape
M × K , such that λi > 0. Let �̄A be a quasidiagonal ma-
trix diag(

√
λ1, . . . ,

√
λn, 0, . . . ) of shape M × N , and �̄B be

a quasidiagonal matrix diag(
√

λ1, . . . ,
√

λn, 0, . . . ) of shape
N × K . It is easy to check that A0 = U �̄A and B0 = �̄BV is a
solution to Eq. (A3). Therefore, B(U �̄A, �̄BV ) is a minimal
singularity form of B(A, B).

For a general tensor network, such as a PEPS, the existence
of a minimal singularity form can be proved in a similar
manner. However, we lack an efficient algorithm to find the
exact minimal singularity form. Therefore, we may adopt an
iteration update method to obtain a tensor network whose
singularity is minimal against perturbation on any bond, by
performing bond regulation and sweeping all bonds, as ex-
plained in Sec. II B. We have shown that this procedure can
dramatically reduce the singularity of the tensor network, and
allow steadily optimize the energy via ITE.

APPENDIX B: CALCULATION OF RÉNYI ENTROPY

In this Appendix we introduce the methods to calculate the
Rényi entropy of a tensor network state [70].

Let |�〉 be the ground state of a quantum system. If we
divide the system into two parts denoted by L and R, the state
can be written by

|�〉 =
∑
sLsR

�sLsR |sL〉|sR〉, (B1)

where sL and sR are physical indices of L and R parts,
respectively. The reduced density matrix with respect to part
L is

ρL = TrR(|�〉〈�|) =
∑

sLs′
LsR

�sLsR�∗
s′
LsR |sL〉〈s′

L|, (B2)

i.e., (ρL)sLs′
L

= ∑
sR

�sLsR�∗
s′
LsR

. For simplicity, we write

Eq. (B2) as ρL = � × �†.
The ground state of the system can be written as

�sLsR =
∑
baux

(�L)sLbaux
(�R)bauxsR , (B3)

where �L and �R are the subtensor networks of part L and
R, respectively, and baux are the auxiliary bonds that link the
two subtensor networks. In the matrix form,

� = �L × �R. (B4)

FIG. 12. Schematic illustrations of �L̄L and �RR̄.

Then the trace of the αth power of the reduced density
matrix can be obtained by

Tr
(
ρα
L
) = Tr((� × �†)α )

= Tr((�L × �R × �
†
R × �

†
L)α )

= Tr((�†
L × �L × �R × �

†
R)α ). (B5)

For simplicity of the notation, we define
�L̄L = �

†
L × �L and �RR̄ = �R × �

†
R, where

(�L̄L)b′
auxbaux = ∑

sL
(�L)∗sLb′

aux
(�L)sLbaux and (�RR̄)bauxb′

aux
=∑

sR
(�R)bauxsR (�R)∗b′

auxsR
. We may calculate �L̄L and

�RR̄ [52] as illustrated in Fig. 12, and Tr(ρα
L) =

Tr[(�L̄L × �RR̄)α], can be calculated by contracting
the tensor network shown in Fig. 13. The αth Rényi entropy
of between L and R parts of the system can be calculated
by using Eq. (10). Here, we only calculate the second-order
Rényi entropy (i.e., α = 2).

If the GSM of the system are n-fold degenerate, we first
obtain n linearly independent ground states |�1〉, . . . , |�n〉 by
independent simulations. We then perform the Gram-Schmidt
orthogonalization process to obtain the orthonormalized states
of the GSM, |e1〉, . . . , |en〉, where |ei〉 = ∑

j vi j |� j〉. The
Rényi entropy of MES is obtained by finding the minimal
value of Rényi entropy of |�(c)〉 = ∑

i ci|ei〉 in the parameter
space of c.

Let |�(c)〉 = ∑
i ci|ei〉 = ∑n

i=1 c̄i|�i〉, where c̄i =∑
j c jv ji, be an arbitrary ground state. It is easy to show

FIG. 13. Contracting the tensor network (�L̄L × �RR̄)α gives
Tr(ρα

L).
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that

Tr(ρ2
�(c) ) = Tr(�(c) × �†(c) × �(c) × �†(c))

=
∑
i jkl

c̄ic̄
†
j c̄k c̄†

l Hi jkl , (B6)

where Hi jkl = Tr(�i × �
†
j × �k × �

†
l ), which can be calcu-

lated using the method discussed in the previous paragraphs.
Making use of the symmetry Hi jkl = Hkli j and Hi jkl =

H∗
lk ji, the number of independent Hi jkl can be reduced from

n4 to 1
4 n4 + 3

4 n2. With these Hi jkl calculated, one can ob-
tain Tr(ρ2

�(c) ), and thus the second-order Rényi entropy using
Eq. (B6).

For the toric-code model with CBC, the ground states are
twofold degenerate. Any ground state can be parametrized
by |�(θ, φ)〉 = cos θ |e1〉 + eiφ sin θ |e2〉. Using the above
method, the Rényi entropies H2 in the (θ, φ) plane for differ-
ent cylinder widths are calculated and shown in Figs. 14(a)–
14(d), where the state with minimal H2 in each figure
corresponds to the MES.

FIG. 14. The second-order Rényi entropy H2 of the toric-code
model with CBC, in GSM. The MES points are marked by “×.” The
results are obtained on the (a) 4 × 20, (b) 6 × 20, (c) 8 × 20, and
(d) 10 × 20 lattices.
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