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Exact solutions of Kondo problems in higher-order fermions
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The conformal field theory (CFT) approach to Kondo problems, originally developed by Affleck and
Ludwig (AL), has greatly advanced the fundamental knowledge of Kondo physics. The CFT approach to
Kondo impurities is based on a necessary approximation, i.e., the linearization of the low-lying excitations in a
narrow energy window about the Fermi surface. This treatment works well in normal metal baths but encounters
fundamental difficulties in systems with Fermi points and high-order dispersion relations. Prominent examples
of such systems are the recently proposed topological semimetals with emergent higher-order fermions. Here, we
develop a new CFT technique that yields exact solutions to the Kondo problems in higher-order fermion systems.
Our approach does not require any linearization of the low-lying excitations, and more importantly, it rigorously
bosonizes the entire energy spectrum of the higher-order fermions. Therefore it provides a more solid theoretical
base for evaluating the thermodynamic quantities at finite temperatures. Our work significantly broadens the
scope of CFT techniques and brings about unprecedented applications beyond the reach of conventional methods.
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I. INTRODUCTION

The Kondo effect [1], which treats a quantum magnetic im-
purity in normal metals, invoked fundamental developments
in condensed matter physics. Among these progresses, the
conformal field theory (CFT) approach developed by Affleck
and Ludwig (AL) unveiled the physical nature of the Kondo
problem, and demonstrated the elegant connections between
conformal symmetry and the Kondo fixed point [2–9]. In
their original approach, AL mapped the multichannel Kondo
problem to an exactly solvable CFT in the complex plane. In
order to establish the mapping, they linearized the low-lying
excitations in a narrow energy window −�vF < ε < +�vF

about the Fermi surface, with vF being the Fermi velocity
and � being an artificially introduced cutoff, and ignored
the higher-energy excitations, as a necessary approximation
[Fig. 1(a)]. Although this treatment works well for normal
metals with well-defined Fermi surfaces, it will encounter
difficulties in more exotic thermals baths, including the
pseudogapped systems [10] and those with Fermi points, such
as topological semimetals.

On the other hand, past years have witnessed increas-
ing interests in the Kondo problem in topological materials
with emergent particles, including graphene, Weyl and Dirac
semimetals. In particular, most recently, even more exotic
Weyl and Dirac semimetals which exhibit effective fermions
with higher-order dispersion relations have been proposed.
These higher-order dispersion relations take a form that is
linear in one direction, but quadratic or cubic in the or-
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thogonal plane [11–25]. Such materials are named quadratic
and cubic Weyl/Dirac semimetals respectively [12,17,22],
with their corresponding emergent fermions referred to
as quadratic and cubic Weyl/Dirac fermions respectively
[11,12,15], and they are classified as Weyl/Dirac according to
their twofold/fourfold band degeneracies at their band cross-
ings [12,13,15]. For example, in three dimensions, the cubic
Weyl/Dirac semimetals display the dispersion relation, in its
simplest form,

εμ( �p) = a1μ p3 + a2μ px, (1)

where μ is the band index, a1μ and a2μ are disper-
sion coefficients, p ≡ | �p| = (p2

x + p2
y + p2

z )
1
2 . A number of

materials for the quadratic and cubic Weyl/Dirac semimetals
have been recently proposed and extensively studied. Exam-
ples of quadratic Weyl/Dirac semimetals include HgCr2Se4,
SiSr2, band-inverted α-Sn and PdSb2 [11,14,16], and
examples of cubic Weyl/Dirac semimetals include LiOSO3

and quasi-one-dimensional molybdenum monochalcogenide
compounds AI(MoXVI)3, where AI = Na, K, Rb, In, or Tl,
XVI = S, Se, or Te [17,19,22,23]. Moreover, various novel
quantum phenomena are predicted to take place in these
semimetals, such as charge density wave, non-Fermi liquid,
and topological superconductivity [12,18,19,22–24,26–35]. It
is therefore timely and of theoretical importance to study
Kondo problems in these higher-order fermion (KHOF) sys-
tems, in particular, using analytically exact methods.

In ideal KHOF systems, the Fermi energy is located at the
Dirac point (DP), with higher-order dispersions along certain
directions in momentum space. In these cases, the afore-
mentioned linearization approximation in AL’s original CFT
approach becomes inapplicable. On one hand, it generates
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FIG. 1. (a) AL’s original approach applied to normal metals, in
which an artificial cutoff ±�vF about the Fermi surface has to
be introduced. Only low-lying excitations satisfying −�vF < ε <

+�vF , which are approximated to be linear, are mapped into the
complex plane denoted by (d), although the impurity also couples to
the higher-energy regimes of the bath. (b) shows how AL’s original
approach becomes inapplicable to KHOF systems, which have their
Fermi points located exactly at their Dirac points. AL’s cutoff be-
comes infinitesimally narrow and their linearization approximation
produces a flat band; no degrees of freedom in the KHOF model
can be mapped into the complex plane. (c) denotes our FEMCFT
approach applied to KHOF systems. No energy cutoffs and lineariza-
tion approximations are required, and the full energy spectrum is
mapped into the complex plane, establishing an exact CFT solution
to KHOF models.

an artificial flat bands along certain directions, as shown by
Fig. 1(b). Clearly, the flat band is not sufficient to capture the
realistic low-energy excitations of the higher-order fermions.
On the other hand, in contrast to the Kondo problems in
normal metals with a single band, anisotropic multibands with
touching nodes must be taken into account. These unique
features of the KHOF systems pose severe challenges for the
conventional CFT approach. Does there exist any alternative
CFT scheme that overcome these difficulties?

In this work, we propose a full-energy mapping CFT
(FEMCFT) method. This method solves all the above prob-
lems, and produces exact solutions to Kondo problems in
a large class of exotic semimetals, in particular, the KHOF
models. In contrast with the conventional CFT scheme that
only establishes conformal invariance for the linearized low-
lying excitations within some artificially introduced energy
cutoff � near the Fermi surface, our approach is able to map
the full energy spectrum of the KHOF model into a form
that observes conformal invariance. Consequently, instead of
artificially introducing a cutoff �, and only mapping the
low-energy degrees of freedom of the bath bounded by �

to the complex plane, we can map the full energy spectrum
into the complex plane without introducing any artificial cut-

offs in the spectrum, as shown by Figs. 1(c) and 1(d). As a
result, our approach is free from the flat band issue shown
in Fig. 1(b). An additional advantage of our method is that,
by rigorously taking into account the entire energy spectrum
of the bath, we can make more accurate predictions about the
low-energy fixed point and the thermodynamic quantities at fi-
nite temperatures, compared to conventional CFT techniques.

We emphasize that our FEMCFT approach is analyti-
cally exact for ideal isotropic KHOF systems. It also works
well for highly realistic anisotropic KHOF materials, after
systematically treating the anisotropic effects as corrections
to the isotropic parts. Our work therefore rigorously solves
the KHOF and related models for higher-order topological
semimetals, and significantly advances the scope of CFT
approaches to many-body resonances, bringing about new
applications in previously inaccessible systems.

The remaining part of the manuscript is organized as
follows. In Sec. II, we define the general Hamiltonian for
the KHOF systems, which describes a multichannel Kondo
impurity in higher-order Weyl/Dirac systems. In Sec. III, we
present our FEMCFT approach in the isotropic limit, which
establishes an exact mapping of an ideal isotropic KHOF
system to a 2D CFT in the complex plane. The calculations
of thermodynamic quantities are discussed in Sec. IV. In
Sec. V, we tackle realistic anisotropic KHOF systems, and
demonstrate our method with an explicit example, namely, the
Kondo problem in the anisotropic cubic Weyl/Dirac fermion
system in three dimensions, whose dispersion is given by (1),
which has attracted great interests recently.

II. GENERAL HAMILTONIAN FOR KHOF SYSTEMS

For the sake of generality, we consider a KHOF system in
n spatial dimensions, whose Hamiltonian is given by

H = H0 + HI , (2)

where H0 is the bath Hamiltonian and HI is the interaction
Hamiltonian. H0 is given by

H0 =
∫

dn �p c†
α,i,μ( �p)cα,i,μ( �p)εμ( �p), (3)

where �p = (p1, . . . , pn), c†
α,i,μ( �p), and cα,i,μ( �p) are conduc-

tion electron creation and annihilation operators, respectively,
with α ∈ {↑,↓} labeling the up/down spin index, i ∈
{1, 2, . . . , k} labeling the channel index, and μ ∈ {+,−}
labeling the band index. Summation over repeated indices is
implied.

We consider a general higher-order dispersion εμ( �p) of
the form

εμ( �p) = a1μ pn + a2μ p1, (4)

where p ≡ | �p|. The constants a1μ and a2μ satisfy a1+ = −a1−,
a2+ = −a2−. The dispersion (4) is of particular interest, be-
cause for n = 3, it reduces to a cubic fermion system in
three dimensions (1). For n = 2, it produces a quadratic band
crossing point, which also has attracted great interests in the
past decade [36–38]. Moreover, for n � 3, it describes even
higher-order emergent fermions which can be realized in arti-
ficial electric circuits with auxiliary dimensions [39].
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HI describes the exchange interaction between an impurity
spin and the bath electrons:

HI = λi �S
(2π )n

·
∑
μ,ν

∫
dn �p dn �p′c†

α,i,μ( �p)
�σαβ

2
cβ,i,ν ( �p′), (5)

where �S is the spin of the magnetic impurity, λi is the Kondo
coupling constant for the i-th channel. Equations (2)–(5) con-
stitute the most general KHOF model in n dimensions. Our
focus is to look for exact CFT solutions to Eqs. (2)–(5).

III. FEMCFT APPROACH IN THE ISOTROPIC LIMIT

In this section, we outline our FEMCFT approach for an
ideal isotropic KHOF system, i.e. the case where a2μ = 0 in
(4), so that

εμ(p) = a1μ pn. (6)

More details of the derivations in this section can be found
in Appendix B. We shall treat the anisotropic case a2μ �= 0 in
Sec. V.

We expand cα,i,μ( �p) as a linear combination of the spher-
ical harmonics, which form a complete set of orthonormal
functions on the (n − 1)− sphere Sn−1:

cα,i,μ( �p) = 1

p
n−1

2

∑
l1,...,ln−1

Yl1,...,ln−1

× (θ1, . . . , θn−1)cl1,...,ln−1,α,i,μ(p). (7)

Here, Yl1,...,ln−1 (θ1, . . . , θn−1) are the spherical harmonics in
n dimensions, see Appendix A and Ref. [40] for detailed
derivations of their important properties relevant for this
work. θ1, . . . , θn−1 are the n − 1 angular coordinates of Sn−1,
with 0 � θ1 < 2π , 0 � θ j � π for j = 2, . . . , n − 1. The in-
tegers |l1| � l2 � · · · � ln−1 denote different partial waves,
and are the analogues of the quantum numbers m, l in the
three-dimensional spherical harmonics Y m

l (θ, φ): in three
dimensions, n = 3, l1 ≡ m, l2 ≡ l , θ1 ≡ φ is the azimuthal
angle, and θ2 ≡ θ is the polar angle. H0 and HI can be written
in terms of cl1,...,ln−1,α,i,μ(p) as

HI = λi �S
�

(
n
2

)
2nπ

n
2

∑
μ,ν

∫
d pd p′ p

n−1
2 p′ n−1

2

× c†
0,...,0,α,i,μ(p)�σαβc0,...,0,β,i,ν (p′),

(8)

H0 =
∫

d p c†
0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)εμ(p). (9)

Next we perform a change of variables on the fields
cl1,...,ln−1,α,i,μ(p) from p to ε, by defining

cl1,...,ln−1,α,i,μ(εμ) ≡
∣∣∣∣dεμ(p)

d p

∣∣∣∣
− 1

2

cl1,...,ln−1,α,i,μ(p). (10)

In this way, the cl1,...,ln−1,α,i,μ(εμ) fields also satisfy the proper
fermionic anti-commutation relations. With the definition


0,...,0,α,i(ε) ≡
{

c0,...,0,α,i,+(ε) if ε � 0
c0,...,0,α,i,−(ε) if ε < 0 , (11)

we combine the fields from the + and - bands into one
single composite fermionic field 
0,...,0,α,i(ε). In terms of

0,...,0,α,i(ε), H0 and HI become

H0 =
∫ ∞

−∞
dε 


†
0,...,0,α,i(ε)
0,...,0,α,i(ε)ε, (12)

HI = λi �S
an�( n

2 )2nπ
n
2

∫ ∞

−∞
dε

∫ ∞

−∞
dε′

× 

†
0,...,0,α,i(ε)�σαβ
0,...,0,β,i(ε

′), (13)

where a ≡ |a1μ|. Notice that we have combined the + and
− bands into a single band, and eliminated the band index
μ ∈ {+,−} from our model.

We then define the left and right moving fields, respec-
tively, as

�←αi(r) ≡
∫ ∞

−∞
dε e−iεr
0,...,0,α,i(ε),

�→αi(r) ≡
∫ ∞

−∞
dε e+iεr
0,...,0,α,i(ε). (14)

Also, by introducing the imaginary time τ ≡ it , we define the
complex plane C, to which we map our KHOF model, by

C = {z ≡ τ + ir}. (15)

The horizontal axis of C is the imaginary time τ , and the verti-
cal axis of C is r introduced in (14). We then view �←/→αi(r)
in the Heisenberg picture, so that they now have time de-
pendence and are fields on C. �←αi(τ, r) and �→αi(τ, r) are
related to each other by

�→αi(τ, r) = �←αi(τ,−r), (16)

so �→αi(τ, r) can be eliminated in terms of �←αi(τ, r). H0

and HI can be written in terms as �←αi(τ, r) as

H0 = 1

2π

∫ ∞

−∞
dr

(
�

†
←αi(τ, r)i

∂

∂r
�←αi(τ, r)

)
, (17)

HI = λi �S
an�

(
n
2

)
2nπ

n
2

· �
†
←αi(τ, 0)�σαβ�←βi(τ, 0). (18)

The n-dimensional KHOF model is thus mapped into the
complex plane C defined in (15), with H0 and HI taking
the forms of (17) and (18), respectively. These are in similar
forms as the Hamiltonians mapped from single band normal
metals. In particular, we see from (18) that the Kondo ex-
change coupling remains short-ranged in the new fermionic
degrees of freedom; the impurity spin �S only couples to the
new fermionic field �←αi(τ, r) at r = 0. This means that HI

is only confined to the boundary r = 0, with H = H0 in the
bulk r �= 0, and the problem is suitable for further analysis by
techniques in 2D boundary CFT.

We note that our FEMCFT approach is analytically
exact; we have not introduced any artificial cutoff � in the
momentum or energy. Our integrals

∫ ∞
0 d p and

∫ ∞
−∞ dε are

over the entire spectrum. Also, we have transformed the two-
band KHOF system into an effective one-band system. This
further facilitates the analysis of KHOF systems using CFT
techniques.
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IV. THERMODYNAMIC QUANTITIES

After mapping KHOF systems into the form (17) + (18)
on the complex plane via our FEMCFT approach, we can
proceed to determine the thermodynamic quantities at T > 0.
This is carried out via AL’s standard CFT techniques, which
we briefly summarize here. More details on their approach
can be found in Refs. [2–9]. The underlying geometry of
the T > 0 physics is the infinite cylinder with circumference
β = 1/T . The system is further mapped from the complex
plane onto the infinite cylinder via a conformal map. The
complete list of boundary operators for the system with a
particular boundary condition can be then obtained by ap-
plying “double fusion” to the free system (i.e., the system
with trivial boundary condition). From the list of boundary
operators, we can determine the leading irrelevant operator
with coupling constant λ̃, whose Green’s functions allow us
to compute the thermodynamic quantities of interest. The
circumference of the cylinder β = 1/T enters the calculation
of the thermodynamic quantities as a finite size of the system,
giving rise to their T -dependences. For example, the resis-
tivity ρ is found as ρ = ρU {1 − αλ̃2T 2 + . . . } in the Fermi
liquid case and ρ = ρU

1−S(1)

2 {1 + αλ̃T
2

2+k + . . . } in the non-
Fermi liquid case. Here, k is the number of channels, S(1) =
cos{π (2s+1)/(2+k)}

cos{π/(2+k)} with s being the impurity spin, ρU is the
unitary limit resistivity, i.e., the greatest resistivity possibly
achievable, and α is a dimensionless constant, with α = 4

√
π

in the special case k = 2. These results are in excellent agree-
ments with results obtained from numerical renormalization
group (NRG) analysis.

We remark that, although our T > 0 thermodynamic quan-
tities take the same form as AL’s, they are valid over greater
ranges of temperatures compared to AL’s. This is because
AL’s original approach to Kondo problems in normal metals
requires the introduction of a narrow cutoff � about the Fermi
surface. Thus, in their calculated thermodynamic quantities,
AL can only consider temperatures T satisfying T 
 �vF ,
and ignore terms of order T/�vF . In comparison, we did not
introduce any artificial cutoffs in the spectrum. As a result,
our calculated thermodynamic quantities are more accurate
and are valid over greater ranges of temperatures, without
the restriction of T 
 �vF . Moreover, conventional CFT
approaches are not applicable at all in KHOF systems with
coinciding Fermi energies and DPs. Our theory fills this re-
search gap, and enables an exact CFT analysis for these novel
phases with emergent higher-order fermions.

V. REALISTIC CASES WITH ANISOTROPY

Realistic topological semimetals with higher-order
fermions are always anisotropic. In this section, we therefore
present a general framework to treat this anisotropy, followed
by an explicit application of our framework to a concrete
example, namely the anisotropic cubic fermion model in
three dimensions, realized by setting n = 3 and a2μ �= 0
in (4). More details of the derivations can be found in
Appendix C.

For anisotropic KHOF systems, HI remains the same as
before, since the dispersion relation does not enter the ex-
pression of HI . However, H0 can no longer be reduced to the

FIG. 2. The couplings between the impurity and the different
partial waves in the three-dimensional KHOF system with dispersion
Eq. (22) is illustrated by a hierarchical one-dimensional chain. Only
the m = 0 partial waves are relevant, which is a property universal
for all Hermitian systems. The impurity only couples directly to the
l = 0, m = 0 partial wave, which further couples to higher-order
l components via the nearest “hoppings.” The hopping coefficient
decays with l . Clearly, the anisotropy is manifested by the higher-
order corrections to the isotropic component. By integrating out the
l �= 0 components, the impurity is effectively coupled to the renor-
malized l = 0 m = 0 component, where the anisotropic effects have
been absorbed as corrections to the isotropic part.

simple form (9), due to the lack of spherical symmetry. In
general, we can express H0 into a matrix form in the partial
wave basis, i.e.,

H0 =
∫

d pC†
α,i,μ(p)Aμ(p)Cα,i,μ(p), (19)

where Cα,i,μ(p) is a column vector whose Lth element
is given by cL,α,i,μ(p), where for brevity we have used
the multiindex notation L ≡ (l1, . . . , ln−1). C†

α,i,μ(p) is the
Hermitian conjugate of Cα,i,μ(p) and Aμ(p) is a matrix whose
(L, L′)th element, AL,L′,μ(p), describes the coupling between
the L and L′th partial waves. We remark that for all Hermitian
systems, the only partial waves that couple to the impurity
are those with l1 = 0. Thus the multiindex L only includes
(l1 = 0, l2, . . . , ln−1). In particular, in three dimensions, L
only includes (m = 0, l ) → l , i.e., the multiindex L reduces
to the single index l: L = l .

We separate H0 in (19) into two terms

H0 = H00 + �0, (20)

where the term H00 consists of only the L = (0, . . . , 0) partial
waves, thus describing the “isotropic part” of H0. �0 consists
of all the remaining partial waves with L �= (0, . . . , 0), and
captures the “anisotropic part” of H0, as well as its couplings
to H00, as shown by left picture of Fig. 2.

Due to anisotropy, partial waves with different quantum
numbers are coupled to each other, forming a hierarchical
structure depicted in the left picture of Fig. 2 (in general, dif-
ferent models can give rise to different coupling hierarchical
structures. The left picture of Fig. 2 shows the case for the
cubic fermion model in three dimensions (22), which suffices
to illustrate our framework). As shown in Fig. 2, the impurity
firstly couples to the isotropic sector, which further couples
to the higher components. Owing to the hierarchical nature
of the couplings, we can integrate out the anisotropic part
by down-folding the Hamiltonian matrix in Eq. (19) to the
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isotropic subspace. It can be shown that in the static limit,
the anisotropic effects of �0 can be casted into an additional
renormalization term ε�μ(p), which serves as a modification
to the isotropic part of the dispersion relation εμ(p).

To further enable a CFT analysis, we approximate the value
of ε�μ(p) by evaluating it at the Fermi wave number, pF . This
fully captures the low-energy Kondo physics, since only the
excitations near the Fermi point are important at low temper-
atures. It should be noted that, although this approximation
is in the same spirit as AL’s linearization approximation
near the Fermi surface, it is made only to the anisotropic
part of the dispersion. Our method still admits an exact treat-
ment of the isotropic part by mapping the entire spectrum
into a two-dimensional CFT. Therefore it is free from the flat
band issue illustrated in Fig. 1(b) and overcomes the major
difficulty present in conventional CFT techniques.

The above procedures generate an renormalized bath cou-
pled to the impurity, as indicated by the right picture of Fig. 2.
The renormalized bath enjoys the effective dispersion rela-
tion ε̃μ(p) ≡ εμ(p) + ε�μ(pF ), which contains the isotropic
part of the dispersion, as well as the corrections from the
anisotropy. Correspondingly, the bath is now effectively de-
scribed by

H0 = H00 + �0 ≈
∫

d p c†
0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)ε̃μ(p).

(21)

The above steps constitute a general framework that takes into
account the anisotropy in the CFT analysis.

We now apply our approach to a concrete example, namely,
the cubic fermion system in three dimensions. This is realized
by setting n = 3 and turning on a2μ in (4), namely,

ε( �p) = a1μ p3 + a2μ p1, (22)

which is linear in the p1 direction but cubic in the orthogo-
nal plane, a typical low-energy dispersion of cubic fermion
materials.

This model admits a simple coupling hierarchical structure
as shown in Fig. 2. Here, the impurity is coupled only to
the isotropic component, which is further connected to the
higher-order partial waves via nearest-neighbour hoppings.
Moreover, it can be shown that the hopping strength decays
as l increases. As a result, Aμ(p) in (19) can be casted into the
simple tridiagonal form

Aμ(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1μ p3 a2μ p√
3

a2μ p√
3

a1μ p3 2a2μ p√
15

2a2μ p√
15

a1μ p3 3a2μ p√
35

3a2μ p√
35

a1μ p3 4a2μ p√
63

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

We then integrate out the higher-order partial waves by
down-folding the matrix Aμ(p) to the isotropic subspace. In-
terestingly, because each entry of Aμ(p) is proportional to p,
the renormalization ε�μ

(p) is also found to be proportional to
p, and thus vanishes at the DP with pF = 0. This essentially

indicates that the contributions from different high-order par-
tial waves display a “destructive interference,” in the sense
that they completely cancel with each other at the DP. This is
an interesting feature of cubic Dirac fermions, which greatly
simplifies the treatment of anisotropy.

The effective dispersion relation is eventually obtained as

ε̃μ(p) = a1μ p3, (24)

which is clearly of the form (6) in three dimensions. As a
result, all subsequent derivations following Eq. (6) hold, and
our FEMCFT approach for isotropic KHOF systems applies.
H0 and HI will be mapped to the forms of (17) and (18),
respectively. Correspondingly, the impurity ground state and
the thermodynamic quantities can be readily obtained using
the previously discussed methods.

VI. CONCLUSION

In conclusion, we have developed a full-energy map-
ping conformal field theory (FEMCFT) approach to tackle
Kondo problems in higher-order fermion and related sys-
tems. Our FEMCFT approach is capable of solving these
models exactly, which are inaccessible by using conventional
CFT approaches. Moreover, the FEMCFT approach is able
to make more accurate predictions about the thermodynamic
quantities over greater ranges of temperatures. We applied our
FEMCFT approach to a specific KHOF system, namely the
cubic Weyl/Dirac fermion system in three dimensions. The
high efficiency of our approach to realistic KHOF systems is
clearly justified.

The FEMCFT approach significantly broadens the scope
of existing CFT methods in the study of Kondo problems. We
anticipate developments of novel CFT techniques for treating
Kondo problems in more complicated systems, such as those
displaying pseudogaps, as possible future directions of re-
search. Such advancements would undoubtedly further fortify
the connections between the mathematically elegant CFTs
and the physically intriguing fixed points in strong-correlated
problems, such as novel quantum criticalities and many-body
resonances in strong-coupling limits.
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APPENDIX A: SPHERICAL HARMONICS IN HIGHER
DIMENSIONS

We review the properties of the n-dimensional spherical
harmonics used in the main section. Some of this material can
also be found in Ref. [40].

The n-dimensional spherical harmonics are the eigen-
functions of �Sn−1 , the Laplace-Beltrami operator on the
sphere Sn−1, which is the angular part of the n-dimensional
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Laplacian operator. The Laplace-Beltrami operator can be
defined recursively:

�S j =
(

1

sin j−1 θ j

)
∂

∂θ j

(
sin j−1 θ j

∂

∂θ j

)
+ �S j−1

sin2 θ j
(A1)

for 2 � j � n − 1 and

�S1 = ∂2

∂θ 2
1

, (A2)

where θ1, . . . , θn−1 are the n − 1 angular coordinates in
the n-dimensional spherical coordinates, with 0 � θ1 < 2π ,
0 � θ2, . . . , θn−1 � π . An n-dimensional spherical harmonic
Y (θ1, . . . , θn−1) of polynomial degree ln−1, where ln−1 is a
non-negative integer, has eigenvalue −ln−1(ln−1 + n − 2):

�Sn−1 Y (θ1, . . . , θn−1)

= −ln−1(ln−1 + n − 2)Y (θ1, . . . , θn−1). (A3)

This equation can be solved by separation of variables. By
writing

Y (θ1, . . . , θn−1) = Y ′(θ1, . . . , θn−2)�n−1(θn−1), (A4)

where Y ′(θ1, . . . , θn−2) is a spherical harmonic of degree ln−2

on Sn−2, and �n−1(θn−1) is a function that only depends on
θn−1, to be further determined. Because Y ′(θ1, . . . , θn−2) is a
factor of Y (θ1, . . . , θn−1), its polynomial degree must not be
larger than that of Y (θ1, . . . , θn−1), thus ln−2 � ln−1. We can
now write (A3) as

sin4−n θn−1

�n−1

∂

∂θn−1

(
sinn−2 θn−1

∂�n−1

∂θn−1

)

+ ln−1(ln−1 + n − 2)(sin2 θn−1) + 1

Y ′ �Sn−2Y ′ = 0. (A5)

The first two terms only depend on θn−1, and the third term
only depend on θ1, . . . , θn−2. Since Y ′(θ1, . . . , θn−2) is a
spherical harmonic of degree ln−2 on Sn−2, we have

�Sn−2 Y ′(θ1, . . . , θn−2)

= −ln−2(ln−2 + n − 3)Y ′(θ1, . . . , θn−2), (A6)

so the third term in (A5) must equal to −ln−2(ln−2 +
n − 3). As a result, the first two terms of (A5) must equal to
+ln−2(ln−2 + n − 3):

0 = sin4−n θn−1
∂

∂θn−1

(
sinn−2 θn−1

∂�n−1

∂θn−1

)
+ �n−1

× {ln−1(ln−1 + n − 2)(sin2 θn−1) − ln−2(ln−2 + n − 3)}.
(A7)

Now define

b

a

P̄
c

(θ ) ≡
√

(2c + b − 1)(a + b + c − 2)!

2(c − a)!

× sin
2−b

2 (θ )P
−(a+ b−2

2 )

c+ b−2
2

(cos θ ), (A8)

where Pm
l (x) is the associated Legendre function of the first

kind. In our case, m and l are generalized to take on integer or
half-integer values. By noting that Pm

l (x) solves the Legendre

equation:

(1 − x2)
d2

dx2
Pm

l (x) − 2x
d

dx
Pm

l (x)

+
{

l (l + 1) − m2

1 − x2

}
Pm

l (x) = 0, (A9)

the solution to Eq. (A7) is

�n−1 = n−1

ln−2

P̄
ln−1

(θn−1). (A10)

Equation (A6) is in the same form as (A3) and can be
solved recursively by repeating the procedure up to now,
yielding Y ′(θ1, . . . , θn−2) = Y ′′(θ1, . . . , θn−3)�n−2(θn−2) and
�n−2(θn−2) = n−2P̄ln−3

ln−2
(θn−2). Eventually we obtain �2(θ2) =

2P̄l1
l2 (θ2), and the equation

�S1 �1(θ1) = −l2
1 �1(θ1), (A11)

where �S1 is given by (A2). Its solution is

�1(θ1) = eil1θ1 . (A12)

Thus we arrive at

Yl1,...,ln−1 (θ1, . . . , θn−1) = A
n−1∏
j=1

� j (θ j )

= Aeil1θ1

n−1∏
j=2

j

l j−1

P̄
l j

(θ j ), (A13)

where |l1| � l2 � · · · � ln−1. The integers l1, l2, . . . ln−1 are
analogues of the quantum numbers m, l in the 3-dimensional
spherical harmonics Y m

l (θ, φ). Indeed, |l1| � l2 is due to the
same reason as |m| � l in the 3D case. In particular, in 3D,
n = 3, l1 ≡ m, l2 ≡ l, θ1 ≡ φ is the azimuthal angle, and θ2 ≡
θ is the polar angle. Also, A is a normalization constant to
be determined. Before determining A, let us show that the
n-dimensional spherical harmonics satisfy the orthonormality
condition:∫

Y ∗
l1,...,ln−1

(θ1, . . . , θn−1)Yl ′1,...,l
′
n−1

(θ1, . . . , θn−1)d�n−1

= δl1l ′1δl2l ′2 . . . δln−1l ′n−1
. (A14)

The normality condition in (A14) can help us in determining
the normalization constant A. Consider the integral∫

Y ∗
l1,...,ln−1

(θ1, . . . , θn−1)Yl ′1,...,l
′
n−1

(θ1, . . . , θn−1)d�n−1

= |A|2
∫

e−il1θ1 eil ′1θ1

n−1∏
j=2

j

l j−1

P̄
l j

(θ j ) j

l ′j−1

P̄
l ′j

(θ j ) d�n−1. (A15)

The θ1 integral is∫ 2π

0
e−i(l1−l ′1 )θ1 dθ1 = 2πδl1l ′1 . (A16)

The θ j integral, for 2 � j � n − 1, is

∫ π

0
j

l j−1

P̄
l j

(θ j ) j

l ′j−1

P̄
l ′j

(θ j ) sin j−1 θ j dθ j . (A17)
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We first tackle the case in which we have at least one l j �=
l ′

j . Let j be the smallest integer for which l j �= l ′
j occurs. If

j = 1, then by (A16), (A15) integrates to 0. If 2 � j � n − 1,
because j is the smallest integer such that l j �= l ′

j occurs, we
have l j−1 = l ′

j−1. We consider (A17) in the special case l j−1 =
l ′

j−1, which is shown in Ref. [40] to equal to∫ π

0
j

l j−1

P̄
l j

(θ j ) j

l j−1

P̄
l ′j

(θ j ) sin j−1 θ j dθ j = δl j l ′j . (A18)

Thus (A17) again integrates to 0, and orthogonality in (A14) is
proven. Next, by imposing normality in (A14), we determine
the normalization constant A. Consider the special case where

l j = l ′
j for all 1 � j � n − 1. By (A16) and (A18), (A15)

integrates to |A|22π . We want this to normalize to 1, so

A = 1√
2π

. (A19)

Thus the n-dimensional spherical harmonics take the form

Yl1,...,ln−1 (θ1, . . . , θn−1) = 1√
2π

eil1θ1

n−1∏
j=2

j

l j−1

P̄
l j

(θ j ), (A20)

and satisfy the orthonormality condition (A14).
Next we prove another useful identity

∑
l1,...,
ln−1

Yl1,...,ln−1 (θ1, . . . , θn−1)Y ∗
l1,...,ln−1

(θ ′
1, . . . , θ

′
n−1) = 1

sinn−2 θn−1 sinn−3 θn−2 . . . sin θ2
δ(θ1 − θ ′

1) . . . δ(θn−1 − θ ′
n−1). (A21)

This is a result of the completeness property of the spherical harmonics. By completeness, we can express any function
V (θ1, . . . , θn−1) on Sn−1 as a linear combination of Yl1,...,ln−1 (θ1, . . . , θn−1):

V (θ1, . . . , θn−1) =
∑
l1,...,
ln−1

Vl1,...,ln−1Yl1,...,ln−1 (θ1, . . . , θn−1). (A22)

Using the orthonormality condition (A14), we can determine the coefficients Vl1,...,ln−1 by

Vl1,...,ln−1 =
∫

Y ∗
l1,...,ln−1

(θ1, . . . , θn−1)V (θ1, . . . , θn−1)d�n−1. (A23)

Substitute (A23) into (A22), and also by noting that

d�n−1 = sinn−2 θn−1 sinn−3 θn−2 . . . sin θ2dθ1dθ2 . . . dθn−1, (A24)

we get

V (θ1, . . . , θn−1) =
∑
l1,...,
ln−1

(∫
Y ∗

l1,...,ln−1
(θ ′

1, . . . , θ
′
n−1)V (θ ′

1, . . . , θ
′
n−1)d�′

n−1

)

Yl1,...,ln−1 (θ1, . . . , θn−1) =
∫ ⎧⎪⎪⎨

⎪⎪⎩
∑
l1,...,
ln−1

Y ∗
l1,...,ln−1

(θ ′
1, . . . , θ

′
n−1)Yl1,...,ln−1 (θ1, . . . , θn−1)

⎫⎪⎪⎬
⎪⎪⎭

× V (θ ′
1, . . . , θ

′
n−1) sinn−2 θ ′

n−1 sinn−3 θ ′
n−2 . . . sin θ ′

2dθ ′
1 . . . θ ′

n−1. (A25)

In order for this equation to hold, we must require the expres-
sion in the braces to equal to the expression on the right hand
side of (A21), thus proving (A21).

Lastly, we shall prove

∫
Yl1,...,ln−1 (θ1, . . . , θn−1)d�n−1 =

(
2π

n
2

�
(

n
2

)) 1
2

δl10δl20 . . . δln−10.

(A26)

From (A20), we know that

Y0,...,0(θ1, . . . , θn−1) =
(

�
(

n
2

)
2π

n
2

) 1
2

(A27)

is a constant, where � is the Gamma function. By the
orthonormality condition (A14), it is the only n-dimensional

spherical harmonic Yl1,...,ln−1 (θ1, . . . , θn−1) that is a
constant. Thus∫

Y0,...,0(θ1, . . . , θn−1) d�n−1

= Y0,...,0(θ1, . . . , θn−1)
∫

d�n−1 =
(

�
(

n
2

)
2π

n
2

) 1
2 2π

n
2

�( n
2 )

=
(

2π
n
2

�
(

n
2

)) 1
2

. (A28)

Next, consider the integral∫
Y0,...,0(θ1, . . . , θn−1)Yl1,...,ln−1 (θ1, . . . , θn−1)d�n−1, (A29)

024416-7



SONG, MA, WANG, AND WANG PHYSICAL REVIEW B 105, 024416 (2022)

where Yl1,...,ln−1 (θ1, . . . , θn−1) has at least one l j �= 0. By the
orthogonality condition (A14), this integral equals 0. Thus
we have

0 =
∫

Y0,...,0(θ1, . . . , θn−1)Yl1,...,ln−1 (θ1, . . . , θn−1)d�n−1

= Y0,...,0(θ1, . . . , θn−1)

{∫
Yl1,...,ln−1 (θ1, . . . , θn−1)d�n−1

}
.

(A30)

Since Y0,...,0(θ1, . . . , θn−1) is a nonzero constant, the integral
in the braces must equal to 0, completing the proof of (A26).

APPENDIX B: ADDITIONAL DETAILS ON THE
DERIVATIONS OF THE FULL-ENERGY MAPPING CFT

APPROACH IN THE ISOTROPIC LIMIT

In this section, we provide some additional details on the
derivations of the full-energy mapping CFT (FEMCFT) ap-
proach in the isotropic limit.

1. Derivations of Eqs. (7) and (8) of the main text

First we note that cα,i,μ( �p) in the Hamiltonians (2) and (4)
of the main text are fermionic fields, so they satisfy the usual
anticommutation relation

{c†
α,i,μ( �p), cβ, j,ν ( �p′)} = δαβδi jδμνδ

(n)( �p − �p′) (B1)

in n dimensions. We then expand cα,i,μ( �p) as a linear combi-
nation of the n-dimensional spherical harmonics, which form
a complete set of orthonormal functions on the (n − 1)-sphere
Sn−1. The expansion is given by Eq. (6) of the main text:

cα,i,μ( �p) = 1

p
n−1

2

∑
l1,...,ln−1

Yl1,...,ln−1

× (θ1, . . . , θn−1)cl1,...,ln−1,α,i,μ(p), (B2)

where Yl1,...,ln−1 (θ1, . . . , θn−1) are the spherical harmonics in
n dimensions discussed in the previous section. Note that
the coefficients in the expansion (B2) are only functions of
p ≡ | �p|, and do not depend on any of the angular coordinates
θ1, . . . , θn−1. Also, a factor of 1/p

n−1
2 has been factored out

from each coefficient in the expansion, so that the remaining
part of the coefficient, the fields cl1,...,ln−1,α,i,μ(p), satisfy the
proper fermionic anticommutation relation{

c†
l1,...,ln−1,α,i,μ(p), cl ′1,...,l

′
n−1,β, j,ν (p′)

}
= δl1l ′1 . . . δln−1l ′n−1

δαβδi jδμνδ(p − p′). (B3)

Also, one can show that cl1,...,ln−1,α,i,μ(p) are related to
cα,i,μ( �p) by

cl1,...,ln−1,α,i,μ(p)

= p
n−1

2

∫
d�n−1Y

∗
l1,...,ln−1

(θ1, . . . , θn−1)cα,i,μ( �p), (B4)

We shall write the Hamiltonian in terms of these new
fermionic fields cl1,...,ln−1,α,i,μ(p). By substituting (B2) into

HI given by Eq. (4) of the main text, and by using dn �p =
pn−1d pd�n−1 and (A26), HI can be written into the form of
Eq. (7) of the main text:

HI = λ�S
�( n

2 )2nπ
n
2

·
∑
μ,ν

∫
d pd p′ p

n−1
2 p′ n−1

2

× c†
0,...,0,α,i,μ(p)�σαβc0,...,0,β,i,ν (p′). (B5)

This shows that the only partial waves that couple to the
impurity �S are those with (l1, . . . , ln−1) = (0, . . . , 0).

Similarly, substitute (B2) into H0 given in Eq. (2) of the
main text, and use the orthonormality condition (A14), we get

H0 =
∑
l1,...,
ln−1

∫
d p c†

l1,...,ln−1,α,i,μ(p)cl1,...,ln−1,α,i,μ(p)εμ(p). (B6)

Equation (B5) shows that the only partial waves that cou-
ple to the impurity �S in HI are those with (l1, . . . , ln−1) =
(0, . . . , 0), and Eq. (B6) shows that in the bath, there is only
coupling among partial waves of the same quantum numbers.
Thus no partial waves with {l1, . . . , ln−1} �= {0, . . . , 0} will
couple to the impurity, either directly or indirectly. As a result,
we only need to consider partial waves with {l1, . . . , ln−1} =
{0, . . . , 0} in H0. Thus H0 reduces to Eq. (8) of the main text:

H0 =
∫

d p c†
0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)εμ(p). (B7)

2. Derivations of the anticommutation relations
for the c(ε) and the � fields

In this section, we show that the field cl1,...,ln−1,α,i,μ(εμ)
defined in Eq. (9) of the main text and the field 
0,...,0,α,i(ε)
defined in Eq. (10) of the main text are fermionic fields satis-
fying the proper anticommutation relations. Due to the delta
function identity

δ(εμ − ε′
μ) = δ(p − p′)∣∣ dεμ(p)

d p

∣∣
p=p′

∣∣ , (B8)

the field cl1,...,ln−1,α,i,μ(εμ) obeys the anticommutation relation

{c†
l1,...,ln−1,α,i,μ(εμ), cl ′1,...,l

′
n−1,β, j,ν (ε′

ν )}
= δl1l ′1 . . . δln−1l ′n−1

δαβδi jδμνδ(εμ − ε′
ν ). (B9)

As a result, the composite field 
0,...,0,α,i(ε) satisfies the anti-
commutation relation

{
†
0,...,0,α,i(ε),
0,...,0,β, j (ε

′)} = δαβδi jδ(ε − ε′) (B10)

as well.

3. Writing the Hamiltonian in terms of the composite field �

In this section, we show the detailed derivations of
Eqs. (11) and (12) of the main text, i.e., how to write
the Hamiltonian in terms of the composite fermion field

0,...,0,α,i(ε). We tackle Eq. (11) of the main text first. By
substituting Eq. (9) of the main text into Eq. (8) of the main
text [i.e., Eq. (B7) in this Appendix] and using Eq. (5) of the
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main text (WLOG assume a1+ is positive), we get

H0 =
∫ ∞

0
dε c†

0,...,0,α,i,+(ε)c0,...,0,α,i,+(ε)ε

+
∫ 0

−∞
dε c†

0,...,0,α,i,−(ε)c0,...,0,α,i,−(ε)ε, (B11)

where we have relabelled the dummy variables ε+ → ε and
ε− → ε in the first term and in the second term respectively.
Then by using the definition of 
0,...,0,α,i(ε) given by Eq. (10)

of the main text, H0 becomes

H0 =
∫ ∞

−∞
dε 


†
0,...,0,α,i(ε)
0,...,0,α,i(ε)ε, (B12)

which is Eq. (11) of the main text.
As for HI , by substituting Eq. (9) of the main text into

Eq. (7) of the main text [i.e., Eq. (B5) in this Appendix],
we get

HI = λ�S
�( n

2 )2nπ
n
2

∑
μ,ν

∫
dεμ

∫
dε′

ν p
n−1

2 p′ n−1
2

∣∣∣∣dεμ(p)

d p

∣∣∣∣
− 1

2
∣∣∣∣dε′

ν (p′)
d p′

∣∣∣∣
− 1

2

c†
0,...,0,α,i,μ(εμ)�σαβc0,...,0,β,i,ν (ε′

ν ), (B13)

where ∫
dεμ ≡

{∫ ∞
0 dε+ if μ = +∫ 0
−∞ dε− if μ = − ,

∫
dε′

ν ≡
{∫ ∞

0 dε′
+ if ν = +∫ 0

−∞ dε′
− if ν = − . (B14)

Using Eq. (5) of the main text, | dεμ(p)
d p |− 1

2 and p
n−1

2 cancel off each other, and similarly | dε′
ν (p′ )
d p′ |− 1

2 and p′ n−1
2 cancel off each other.

We get

HI = λ�S
an�( n

2 )2nπ
n
2

∑
μ,ν

∫
dεμ

∫
dε′

νc†
0,...,0,α,i,μ(εμ)�σαβc0,...,0,β,i,ν (ε′

ν ), (B15)

where a ≡ |a1μ| = |a1ν |. Writing out the sum over μ and ν explicitly and relabelling the dummy variables ε+ → ε and ε− → ε,
we get

HI = λ�S
an�( n

2 )2nπ
n
2

{∫ ∞

0
dε

∫ ∞

0
dε′c†

0,...,0,α,i,+(ε)�σαβc0,...,0,β,i,+(ε′)

+
∫ ∞

0
dε

∫ 0

−∞
dε′c†

0,...,0,α,i,+(ε)�σαβc0,...,0,β,i,−(ε′) +
∫ 0

−∞
dε

∫ ∞

0
dε′c†

0,...,0,α,i,−(ε)�σαβc0,...,0,β,i,+(ε′)

+
∫ 0

−∞
dε

∫ 0

−∞
dε′c†

0,...,0,α,i,−(ε)�σαβc0,...,0,β,i,−(ε′)
}

= λ�S
an�( n

2 )2nπ
n
2

∫ ∞

−∞
dε

∫ ∞

−∞
dε′
†

0,...,0,α,i(ε)�σαβ
0,...,0,β,i(ε
′), (B16)

which is Eq. (12) of the main text.

4. Derivation of Eqs. (16) and (17) of the main text

We first derive Eq. (17) of the main text. Let τ be the
imaginary time τ ≡ it and define the complex plane C to
which we map our KHOF model as Eq. (14) of the main text,

C = {z ≡ τ + ir}. (B17)

View the �←/→αi(r) fields defined in Eq. (13) of the main
text in the Heisenberg picture, so that they now have time-
dependence, and thus live on C. Using Eq. (13) of the main
text, we can see that HI given by Eq. (12) of the main text can
be written in the form of Eq. (17) of the main text.

We now derive Eq. (16) of the main text. Using Eq. (13)
of the main text, H0 given by Eq. (11) of the main text can be

written as

H0 = 1

2π

∫ ∞

0
dr

(
�

†
←αi(r)i

∂

∂r
�←αi(r)

− �
†
→αi(r)i

∂

∂r
�→αi(r)

)
. (B18)

We note that 0 � r � ∞ in (B18). One can also show that
�←/→αi(r) satisfy the anticommutation relations

{�†
Xαi(r), �X ′β j (r

′)} = 2πδXX ′δαβδi jδ(r − r′). (B19)

Now Eq. (17) of the main text tells us that HI is only confined
to the horizontal axis r = 0. At r �= 0, H = H0 and we have
the Heisenberg equations of motion

i
∂

∂t
�Xαi(τ, r) = [�Xαi(τ, r), H0] (B20)
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for each X ∈ {←,→}. By substituting H0 in the form of (B18)
into the Heisenberg equation of motion (B20), and applying
the anticommutation relation (B19) and the identity [A, BC] =
{A, B}C − B{A,C} for three arbitrary operators A, B, and C,
the Heisenberg equation of motion reduces to

∂z̄�←αi(τ, r) = 0, ∂z�→αi(τ, r) = 0. (B21)

These are exactly the Cauchy-Riemann equations for holo-
morphic functions and antiholomorphic functions respec-
tively, which imply that �←αi(t, r) is a holomorphic function,
and �→αi(t, r) is an antiholomorphic function, on the up-
per half-plane C+ = {z ≡ τ + ir|r � 0} (since in (B18),
r is non-negative, �←/→αi(τ, r) live on the upper half-plane).
Equivalently, �→αi(τ, r) is a holomorphic function on the
lower complex plane C− = {z̄ ≡ τ − ir|r � 0}. Also, by the
definition of �←/→αi(r) given by Eq. (13) of the main text,
�←αi(τ, 0) = �→αi(τ, 0), i.e., the two holomorphic functions
�←αi(τ, r) on the upper complex plane and �→αi(τ, r) on the
lower complex plane agree on the horizontal τ axis r = 0.
Thus they are analytic continuations of each other to the entire
complex plane. This fact allow us to eliminate �→αi(τ, r) in
terms of �←αi(τ, r) because the former is simply the analytic
continuation of the latter into the lower complex plane:

�→αi(τ, r) = �←αi(τ,−r). (B22)

Thus (B18) becomes

H0 = 1

2π

∫ ∞

−∞
dr

(
�

†
←αi(τ, r)i

∂

∂r
�←αi(τ, r)

)
, (B23)

which is Eq. (16) of the main text.

APPENDIX C: ADDITIONAL DETAILS ON THE
APPLICATIONS OF THE FEMCFT METHOD IN

ANISOTROPIC MATERIALS

In this section, we provide additional details on the appli-
cations of our FEMCFT method to anisotropic KHOF models.
When we describe our general method, we shall keep the
dimension n of our KHOF model to be arbitrary. From time
to time, we illustrate our procedure with the cubic fermion
system in three dimensions, whose dispersion is given by
Eq. (21) of the main text. At such points, we shall let n = 3.

We have considered the FEMCFT approach in the isotropic
limit, in which the dispersion relation of our KHOF system is
isotropic. We now consider the changes that a KHOF system
with an anisotropic dispersion relation brings about. In terms
of the Hamiltonian H = H0 + HI , HI remains unchanged,
since the dispersion relation does not enter the expression of
HI . However, now in H0, we not only have to expand cα,i,μ( �p)
as a linear combination of the spherical harmonics according
to (B2), but also need to do so for εμ( �p) as well:

εμ( �p) =
∑

l1,...,ln−1

Yl1,...,ln−1 (θ1, . . . , θn−1)εl1,...,ln−1,μ(p). (C1)

Substitute (B2) and (C1) into Eq. (2) of the main text, we get

H0 =
∑

L,L′,L′′
VL,L′,L′′

∫
d p c†

L,α,i,μ(p)cL′,α,i,μ(p)εL′′,μ(p),

(C2)

where for brevity we used the multiindex notation
L ≡ (l1, . . . , ln−1), L′ ≡ (l ′

1, . . . , l ′
n−1), L′′ ≡ (l ′′

1 , . . . , l ′′
n−1).

The coupling strengths VL,L′,L′′ are given by the hopping
integral

VL,L′,L′′ =
∫

d�n−1Y
∗

L (θ1, . . . , θn−1)

× YL′ (θ1, . . . , θn−1)YL′′ (θ1, . . . , θn−1). (C3)

We note that VL,L′,L′′ depends on the dispersion relation εμ( �p)
of the system, because different εμ( �p) observes different ex-
pansions in terms of spherical harmonics (C1), resulting in
different sets of YL′′ (θ1, . . . , θn−1) appearing in (C3). As a con-
crete example, we calculate VL,L′,L′′ for the dispersion relation
given by Eq. (21) of the main text in three dimensions,

εμ( �p) = a1μ p3 + a2μ p1, (C4)

where a1μ, a2μ are real constants satisfying

a1+ = −a1− and a2+ = −a2−, (C5)

so that

ε+( �p) = −ε−( �p). (C6)

WLOG align p1 in the z-direction, so p1 = pz = p cos θ .
Thus (C4) reads

εμ( �p) = a1μ p3 + a2μ p cos θ, (C7)

whose expansion (C1) in terms of spherical harmonics in three
dimensions is

εμ( �p) = a1μ p3
√

4πY 0
0 (θ, φ) + a2μ p

√
4π/3Y 0

1 (θ, φ). (C8)

This shows that for three-dimensional systems with dispersion
relation (C4), the only nonzero spherical harmonics in the
expansion (C1) are Y 0

0 and Y 0
1 , which enter (C3) as YL′′ . Thus

the only nonzero VL,L′,L′′ are VL,L′,(00) and VL,L′,(01). They are
given by

VL,L′,(00) =
∫

d�2Y
m∗

l (θ, φ)Y m′
l ′ (θ, φ)Y 0

0 (θ, φ) = δll ′δmm′√
4π

,

(C9)

where we have used Y 0
0 (θ, φ) = 1/

√
4π and the orthogonality

condition (A14), and

VL,L′,(01) =
∫

d�2Y
m∗

l (θ, φ)Y m′
l ′ (θ, φ)Y 0

1 (θ, φ)

=
√

3(l − |m|)!(l ′ − |m|)!
4π (2l + 1)(2l ′ + 1)(l + |m|)!(l ′ + |m|)!

× (l ′ + m)!

(l ′ − m)!
{(l ′ − m)δl+1,l ′ + (l + m)δl−1,l ′ }δmm′ ,

(C10)

where we have used∫ 2π

0
dφ e−i(m−m′ )φ = 2πδmm′ (C11)

in the φ-integral, the orthogonality relation∫ π

0
Pm

l (cos θ )Pm
l ′ (cos θ ) sin θdθ = 2(l + m)!

(2l + 1)(l − m)!
δll ′

(C12)

024416-10



EXACT SOLUTIONS OF KONDO PROBLEMS IN … PHYSICAL REVIEW B 105, 024416 (2022)

and the recurrence formula

(2l + 1) cos θPm
l (cos θ )

= (l + m)Pm
l−1(cos θ ) + (l − m + 1)Pm

l+1(cos θ ) (C13)

for the associated Legendre functions of the first kind,
Pm

l (cos θ ), in the θ -integral.
The fact that the only nonzero coupling strengths VL,L′,L′′

are (C9) and (C10) gives rise to three interesting characteris-
tics in our model. (i) The only partial waves that couple to the
impurity are those with m = 0. We have showed in (8) that
the impurity only couples to the (m, l ) = (0, 0) partial wave.
Anisotropy does not change this fact, since anisotropy does
not alter HI , as previously mentioned. Now (C9) and (C10)
both have a factor of δmm′ , implying that there is no coupling
between partial waves with m �= m′. Thus the (m, l ) = (0, 0)
partial wave that couples to the impurity will only couple
to other partial waves with m = 0. We can hence ignore all
partial waves with m �= 0 from H0. We note in particular that
this a characteristic universal to all Hermitian systems in any
dimension, not only unique to our example. This is because
for Hermitian systems, ε( �p) is real, so it can be expanded in
terms of real spherical harmonics. Thus all YL′′ in the hopping
integral (C3) are real, and are independent of θ1; indeed,
from (A20), we see that real spherical harmonics have no θ1

dependence. Thus the θ1-integral in (C3) only involve Y ∗
L and

YL′ , and equals to
∫ 2π

0 dθ1e−i(l1−l ′1 )θ1 = 2πδl1l ′1 , which forbids
coupling between partial waves with different l1, which is
the analog of the quantum number m in three dimensions.
(ii) There is only nearest-neighbor hopping. This can be seen
from the factor in the braces of (C10): δl+1,l ′ and δl−1,l ′ implies
hopping can only occur between partial waves whose l and l ′
differ by 1, resulting in only nearest-neighbor hopping. (iii)
The nearest-neighbor hopping strength in (ii) decays with
increasing l . Due to (i), we are only interested in the m = 0
partial waves. Substitute m = 0 into (C10), we obtain

V(0l ),(0l ′ ),(01) =
√

3

4π (2l + 1)(2l ′ + 1)
(l ′δl+1,l ′ + lδl−1,l ′ ).

(C14)

In other words, the coupling between the adjacent (m =
0, l )th and (m = 0, l + 1)th partial waves is given by

V(0l ),(0,l+1),(01) =
√

3

4π (2l + 1)(2l + 3)
(l + 1). (C15)

By computing its derivative with respect to l , we see that the
coupling strength V(0l ),(0,l+1),(01) monotonically decreases as l
increases, for all l � 0.

The three properties (i)–(iii) discussed above are depicted
pictorially in the left picture of Fig. 2 in the main text. In
particular, property (iii) allows us to truncate the chain of
partial waves in the figure, since the coupling strength decays
as l increases.

It is instructive to express the general H0 in (C2) into a
matrix form in the partial wave basis, as shown in Eq. (18) of
the main text:

H0 =
∫

d pC†
α,i,μ(p)Aμ(p)Cα,i,μ(p), (C16)

where Aμ(p) is a matrix whose (L, L′)th element, AL,L′,μ(p),
is given by

AL,L′,μ(p) =
∑
L′′

VL,L′,L′′εL′′μ(p)

=
∫

d�n−1Y
∗

L (θ1, . . . , θn−1)

× YL′ (θ1, . . . , θn−1)εμ( �p). (C17)

Cα,i,μ(p) is a column vector whose Lth element is given by
cL,α,i,μ(p), and C†

α,i,μ(p) is its Hermitian conjugate. Recall that
property (i), which holds for all Hermitian systems, allows us
to only include partial waves with l1 = 0 in H0. Thus here,
the multiindices L and L′ only includes (l1 = 0, l2, . . . , ln−1).
In particular, in three dimensions, we have the property that
the multiindices L and L′ only includes (m = 0, l ) → l , i.e.,
in three dimensions, the multiindices L and L′ reduce to the
single indices l and l ′: L = l , L′ = l ′.

In our specific example (C4), Aμ(p) is the tridiagonal
matrix:

Aμ(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1μ p3 a2μ p√
3

a2μ p√
3

a1μ p3 2a2μ p√
15

2a2μ p√
15

a1μ p3 3a2μ p√
35

3a2μ p√
35

a1μ p3 4a2μ p√
63

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C18)

where the partitioning denoted by the horizontal and vertical
lines will be explained shortly. We have A+(p) = −A−(p) due
to (C5). In general, Aμ(p) is a ∞ × ∞ matrix, but by property
(iii), since the hopping strength decays as the row/column
number L = l increases, in practice we can truncate it to an
appropriate size for further calculations.

We next partition Aμ(p) as shown in (C18): the first block
consists of only the (1,1)th element, the second block consists
of the remaining (∞ − 1) × (∞ − 1) square matrix, which
we denote by Mμ(p), and the third and fourth parts consist
of the (∞ − 1) × 1 column vector, denoted by Nμ(p), and its
transpose, the 1 × (∞ − 1) row vector NT

μ (p), respectively.
This corresponds to separating the matrix form of H0 in (19)
into four terms:

H0 =
∫

d p

(
�(n/2)

2π
n
2

c†
0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)εμ(p)

+ C†
α,i,μ(p)Mμ(p)Cα,i,μ(p)

+ C†
α,i,μ(p)Nμ(p)c0,...,0,α,i,μ(p)

+ c†
0,...,0,α,i,μ(p)NT

μ (p)Cα,i,μ(p)

)
. (C19)

We shall now formally define the objects that appear in (C19).
First of all, define the isotropic kernel εμ(p) of the dispersion
relation εμ( �p) as

εμ(p) ≡
∫

d�n−1εμ( �p). (C20)
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εμ(p) can be seen as the “isotropic part” of the disper-
sion relation. Next, let L ≡ (ł1, . . . , ln−1) �= (0, . . . , 0) be the
multiindex obtained from L by excluding L = (0, . . . , 0).
Cα,i,μ(p) is the column vector whose Lth element is given
by cL,α,i,μ(p), i.e., Cα,i,μ(p) is obtained from Cα,i,μ(p) by ex-
cluding its first entry c0,...,0,α,i,μ(p). C†

α,i,μ(p) is the Hermitian

conjugate of Cα,i,μ(p), i.e., C†
α,i,μ(p) is the row vector ob-

tained from C†
α,i,μ(p) by excluding its first entry c†

0,...,0,α,i,μ(p).

Mμ(p) is the matrix whose (L,L′)th element ML,L′,μ(p) is
defined by

ML,L′,μ(p) ≡ AL,L′,μ(p), (C21)

i.e., Mμ(p) is the matrix obtained from Aμ(p) by removing
its first row and first column, which corresponds to L =
(0, . . . , 0) and L′ = (0, . . . , 0), respectively. In our example,
Mμ(p) is the bottom right block matrix in (C18). Nμ(p) is the
column vector whose Lth entry NL,μ(p) is given by

NL,μ(p) ≡ AL,(0,...,0),μ(p) =
∫

d�n−1Y
∗
L(θ1, . . . , θn−1)Y0,...,0(θ1, . . . , θn−1)εμ( �p)

=
(

�(n/2)

2π
n
2

) 1
2
∫

d�n−1Y
∗
L(θ1, . . . , θn−1)εμ( �p)

=
(

�(n/2)

2π
n
2

) 1
2
∫

d�n−1Y
∗
L(θ1, . . . , θn−1)

∑
L′

YL′ (θ1, . . . , θn−1)εL′,μ(p)

=
(

�(n/2)

2π
n
2

) 1
2

εL,μ(p), (C22)

where in the third equality we have used the fact that Y0,...0(θ1, . . . , θn−1) is a real constant given by (A27), in the fourth equality
we have expanded the dispersion relation εμ( �p) in terms of the spherical harmonics (C1), and in the last equality we have used
the orthogonality relation (A14). Recall that εL,μ(p) does not include ε0,...,0,μ(p). In our three-dimensional example, the only
nonzero εL,μ(p) is ε0,1,μ(p) = a2μ p

√
4π/3, according to (C8). Thus, for our example,

Nμ(p) =
(

�
(

3
2

)
2π

3
2

) 1
2

⎛
⎜⎜⎜⎜⎝

a2μ p
√

4π√
3
...

0
...

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a2μ p√
3
...

0
...

⎞
⎟⎟⎟⎠, (C23)

as can be seen from the first column of the matrix (C18), excluding its first entry. NT
μ (p) is the transpose of Nμ(p). Also in the

derivation of the first term of (C19), we have used∫
d p c†

0,...,0,α,i,μ(p)A(0,...,0),(0,...,0),μ(p)c0,...,0,α,i,μ(p)

=
∫

d p c†
0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)

∫
d�n−1Y

∗
0,...,0(θ1, . . . , θn−1)Y0,...0(θ1, . . . , θn−1)εμ( �p)

= �(n/2)

2π
n
2

∫
d p c†

0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)
∫

d�n−1εμ( �p)

= �(n/2)

2π
n
2

∫
d p c†

0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)εμ(p), (C24)

where in the last equality, we have used the definition of the kernel εμ(p) in (C20).
Let us define the first term of H0 in (C19) to be H00, and define the sum of the remaining three terms of H0 in (C19) to be �0:

H0 = H00 + �0, (C25)

H00 ≡ �(n/2)

2π
n
2

∫
d p c†

0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)εμ(p), (C26)

�0 ≡
∫

d p
(
C†

α,i,μ(p)Mμ(p)Cα,i,μ(p) + C†
α,i,μ(p)Nμ(p)c0,...,0,α,i,μ(p) + c†

0,...,0,α,i,μ(p)NT
μ (p)Cα,i,μ(p)

)
. (C27)

We make these definitions because H00 is the “isotropic part” of H0, whereas �0 is the “anisotropic part” of H0. Indeed,
H00 only includes the L = (0, . . . , 0) partial wave, and �0 contains the remaining L �= (0, . . . , 0) partial waves. For systems
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with isotropic dispersion relations, only the L = (0, . . . , 0) partial wave couples to the impurity, and we can ignore all
L �= 0 partial waves, so �0 = 0 and H0 = H00. All contributions to the Hamiltonian due to anisotropy of the system are
captured in �0.

We shall now write the partition function Z for our system. Let ψL,α,i,μ(p) be the Grassmann variable obtained from the
operator cL,α,i,μ(p) acting on a coherent state. We have

Z =
∫

D(ψ̄, ψ )e−S[ψ̄,ψ]

=
∫

D(ψ̄0, ψ0)e−S[ψ̄0,ψ0]
∫

D(ψ̄L, ψL)e−S[ψ̄L,ψL], (C28)

where S[ψ̄0, ψ0] is the part of the action that only involves the L = (0, . . . , 0) partial wave, and S[ψ̄L, ψL] is the part of the action
that involves the remaining L �= (0, . . . , 0) partial waves. As previously discussed, in our Hamiltonian H = H00 + �0 + HI , H00

and HI only includes the L = (0, . . . , 0) partial wave, so H00 and HI appears in S[ψ̄0, ψ0], whereas �0 includes the remaining
L �= (0, . . . , 0) partial waves, so �0 appears in S[ψ̄L, ψL]. We thus have

S[ψ̄0, ψ0] =
∑

α,β,i,μ

∫
dτ

{∫
d p ψ̄0,...,0,α,i,μ(p)∂τψ0,...,0,α,i,μ(p)

+
∫

d pH00(ψ̄0,...,0,α,i,μ(p), ψ0,...,0,α,i,μ(p)) +
∫

d p d p′HI (ψ̄0,...,0,α,i,μ(p), ψ0,...,0,β,i,μ(p′))
}

(C29)

and

S[ψ̄L, ψL] =
∑
α,i,μ

∫
dτd p {F̄α,i,μ(p)(∂τ + Mμ(p))Fα,i,μ(p) + F̄α,i,μ(p)Nα,i,μ(p) + N̄ T

α,i,μ(p)Fα,i,μ(p)}, (C30)

where Fα,i,μ(p) is the column vector whose Lth element is given by ψL,α,i,μ(p), F̄α,i,μ(p) is the row vector whose Lth element
is given by ψ̄L,α,i,μ(p),

Nα,i,μ(p) ≡ Nμ(p)ψ0,...,0,α,i,μ(p) (C31)

and

N̄ T
α,i,μ(p) ≡ ψ̄0,...,0,α,i,μ(p)NT

μ (p). (C32)

We then integrate out the Grassmann field F̄α,i,μ(p), Fα,i,μ(p) in (C30), after which the second factor of (C28) becomes∫
D(ψ̄L, ψL)e−S[ψ̄L,ψL] = e

∑
α,i,μ

∫
dτd p{N̄ T

α,i,μ(p)M−1
μ (p)Nα,i,μ(p)}

≡ e
∑

α,i,μ

∫
dτd p{ψ̄0,...,0,α,i,μ(p)NT

μ (p)M−1
μ (p)Nμ(p)ψ0,...,0,α,i,μ(p)}. (C33)

where we have taken the static limit, ∂τ → −iw → 0, in (C30). This is a good approximation that well captures the renormal-
ization of the isotropic part in low-energy window, as long as the system described by Mμ(p) is gapped. Notice that the factor in
Eq. (C33) now only includes the L = (0, . . . , 0) partial wave. Thus the partition function (C28) becomes

Z =
∫

D(ψ̄0, ψ0)e−(S[ψ̄0,ψ0]+S�0 ), (C34)

where

S�0 ≡ −
∑
α,i,μ

∫
dτd p

{
ψ̄0,...,0,α,i,μ(p)NT

μ (p)M−1
μ (p)Nμ(p)ψ0,...,0,α,i,μ(p)

}
. (C35)

This means that S�0 contributes an additional term of

−
∫

d p ψ̄0,...,0,α,i,μ(p)NT
μ (p)M−1

μ (p)Nμ(p)ψ0,...,0,α,i,μ(p) (C36)

to the braced integrand of S[ψ̄0, ψ0] given in (C29). In terms of the Hamiltonian, this term is

−
∫

d p c†
0,...,0,α,i,μ(p)NT

μ (p)M−1
μ (p)Nμ(p)c0,...,0,α,i,μ(p). (C37)
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Thus we can write H0 as

H0 = H00 + �0

= �(n/2)

2π
n
2

∫
d p c†

0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)εμ(p) −
∫

d p c†
0,...,0,α,i,μ(p)NT

μ (p)M−1
μ (p)Nμ(p)c0,...,0,α,i,μ(p)

≡ �(n/2)

2π
n
2

∫
d p c†

0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p){εμ(p) + ε�μ(p)}

≡
∫

d p c†
0,...,0,α,i,μ(p)c0,...,0,α,i,μ(p)ε̃μ(p), (C38)

where in the second equality we have used the definition of
H00 given in (C26), in the third equality we have made the
definition

ε�μ(p) ≡ − 2π
n
2

�(n/2)
NT

μ (p)M−1
μ (p)Nμ(p), (C39)

and in the last equality, we have made the definition

ε̃μ(p) ≡ �(n/2)

2π
n
2

(εμ(p) + ε�μ(p)). (C40)

We call ε̃μ(p) the effective dispersion relation of the system.
We note that the kernel ε satisfies the relation

ε+(p) = −ε−(p), (C41)

because

ε+(p) ≡
∫

d�n−1ε+( �p) = −
∫

d�n−1ε−( �p) ≡ −ε−(p),

(C42)

where in the first and last equalities we have used the defini-
tion of the kernel given in (C20), and in the second equality,
we have used the relation ε+( �p) = −ε−( �p). Similarly, ε�μ(p)
satisfies the relation

ε�+(p) = −ε�−(p). (C43)

To see this, notice that in the definition of ε�μ(p) given in
(C39), each of the factors NT

μ (p), M−1
μ (p), and Nμ(p) flips a

sign when μ flips a sign: indeed, the entries of NT
μ (p), Mμ(p)

and Nμ(p) are just the entries of the matrix A defined in (C17),
whose integrand contains a factor of εμ( �p), which flips a sign
as μ flips a sign. By matrix inverse properties, we also have

M−1
+ (p) = (−M−(p))−1 = −M−1

− (p), (C44)

completing the proof. Thus the effective dispersion relation
ε̃μ(p) also satisfies the relation

ε̃+(p) = −ε̃−(p), (C45)

due to (C40), (C41), and (C43).
Let us compute the effective dispersion relation ε̃μ(p) for

our example. The kernel is given by

εμ(p) =
∫

d�2 εμ( �p)

=
∫

d�2
{
a1μ(p2

x + p2
y + p2

z )
3
2 + a2μ pz

}

=
∫ 2π

0
dφ

∫ π

0
sin(θ )dθ

{
a1μ p3 + a2μ p cos(θ )

}
= 4πa1μ p3. (C46)

As for ε�μ(p) defined in (C39), since Nμ(p) in our example
only has its first entry being nonzero, as seen from (C23),
ε�μ(p) becomes

ε�μ(p) = −4π

3
a2

2μ p2
(
M−1

μ (p)
)

11
, (C47)

where (M−1
μ (p))11 denotes the (1,1)th element of M−1

μ (p).
Recall that Mμ(p) is the lower right block matrix of Aμ(p)
in (C18):

Mμ(p) =

⎛
⎜⎜⎜⎜⎝

a1μ p3 2a2μ p√
15

2a2μ p√
15

a1μ p3 3a2μ p√
35

3a2μ p√
35

a1μ p3 4a2μ p√
63

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠. (C48)

By the discussion below (C18), we may truncate Aμ(p), and
thus Mμ(p), to a desired size for actual calculations. Let
Mr

μ(p) denote the r × r truncated matrix of Mμ(p), i.e., Mr
μ(p)

is obtained from Mμ(p) by taking only its first r rows and first
r columns. Because Mr

μ(p) is a tridiagonal matrix, one can
show that (

Mr
μ(p)

)−1

11
= Gr

μ(p)

Dr
μ(p)

, (C49)

where Dr
μ(p) is the determinant of Mr

μ(p), which can be
computed from the recurrence relation

Dr
μ(p) = a1μ p3Dr−1

μ (p) − (a2μ pr)2

(2r − 1)(2r + 1)
Dr−2

μ (p),

(C50)

with D0
μ(p) = 1, D1

μ(p) = a1μ p3, and Gr
μ(p) is a polynomial

in p that satisfies the same recurrence relation

Gr
μ(p) = a1μ p3Gr−1

μ (p) − (a2μ pr)2

(2r − 1)(2r + 1)
Gr−2

μ (p),

(C51)

but with different initial terms G0
μ(p) = 0, G1

μ(p) = 1. Thus,
in our example,

ε̃μ(p) = a1μ p3 − (a2μ p)2

3

Gr
μ(p)

Dr
μ(p)

, (C52)

where r → ∞.
We view the term ε�μ(p), which captures all anisotropic

effects, as a correction to the isotropic term of the disper-
sion relation, the kernel εμ(p). We approximate ε�μ(p) by
evaluating its value at pF , before adding it to the kernel
εμ(p). pF satisfies the property that ε̃μ(pF ) = 0, i.e., pF is a
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non-negative real root of ε̃μ(p) (pF needs to be non-negative
because it is a special value of p ≡ | �p|). In general, ε̃μ(p) may
have no non-negative real root, in which case the system is
gapped and we do not consider such gapped systems. Also,
ε̃μ(p) may have more than one non-negative real root. In
such cases, we pick the non-negative real root of ε̃μ(p) that
gives rise to the greatest density of states (DOS) to be the pF

at which we evaluate ε�μ(pF ). In other words, we pick the
non-negative real root that results in the least |d ε̃μ(pF )/d p|.
If there exists more than one non-negative real root of ε̃μ(p)
that give rise to the same greatest DOS, we evaluate ε�μ(p) at
each of them - this will result in channel-multiplying.

In our example, ε̃μ(p) given by (C52) has more than one
non-negative real root, with the smallest of them giving rise

to the least |d ε̃μ(p)/d p|, thus the greatest DOS. Hence there
is only one pF at which we evaluate ε�μ(pF ), namely, this
smallest non-negative real root of ε̃μ(p). For all even values
of r, this smallest non-negative real root of ε̃μ(p) is 0. For odd
values of r, as r → ∞, the smallest non-negative real root also
approaches 0. Thus for our example, pF = 0, ε�μ(0) = 0, and
our effective dispersion relation becomes

ε̃μ(p) = a1μ p3. (C53)

Note that the effective dispersion relation (C53) is in the form
of Eq. (5) of the main text in three dimensions. As a result,
all subsequent derivations following Eq. (5) of the main text
hold, and our FEMCFT approach applies.
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