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Intrinsic suppression of the topological thermal Hall effect in an exactly solvable quantum magnet
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In contrast to electron (fermion) systems, topological phases of charge neutral bosons have been poorly
understood despite recent extensive research on insulating magnets. The most important unresolved issue is
how the inevitable interbosonic interactions influence the topological properties. It has been proposed that the
quantum magnet SrCu2(BO3)2 with an exact ground state serves as an ideal platform for this investigation,
as the system is expected to be a magnetic analog of a Chern insulator with electrons replaced by bosonic
magnetic excitations (triplons). Here, in order to examine topologically protected triplon chiral edge modes
in SrCu2(BO3)2, we measured and calculated the thermal Hall conductivity κxy. Our calculations show that
the sign of κxy is negative, which is opposite to the previous calculations, and its magnitude is 2π times
smaller. No discernible κxy was observed, and its values are at most 20–30% of our calculations if present.
This implies that even relatively weak interparticle interactions seriously influence the topological transport
properties at finite temperatures. These findings demonstrate that, in contrast to fermionic cases, the picture of
noninteracting topological quasiparticles cannot be naively applied to bosonic systems, calling special attention
to the interpretation of the topological bosonic excitations reported for various insulating magnets.
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I. INTRODUCTION

The discoveries of electronic topological materials having
gapped bulk excitations and topologically protected gapless
edge states have led to a quest for similar effects in sys-
tems with quasiparticles obeying different quantum statistics.
In the past few years, quantum insulating magnets with
Dzyaloshinskii-Moriya (DM) interaction have attracted re-
newed interest because they have raised the prospect of
harboring topologically protected edge states of bosonic spin
excitations [1–3] (for recent developments, see, e.g., Ref. [4]
and the references cited therein). As these excitations are
charge neutral, they do not respond to an electromagnetic field
but can carry heat and potentially exhibit the thermal Hall
effect [5,6] without resorting to the Lorentz force. Recently,
finite thermal Hall conductivity κxy has been experimen-
tally resolved in several insulating magnets on geometrically
frustrated lattices [7–13], which has been interpreted as the
predicted topological thermal Hall effect of bosonic spin
excitations. These topological excitations have gained great
interest as they have the potential to realize dissipationless
spintronic or magnonic devices [14].

However, the validity of the conclusion concerning the
topological chiral edge current of bosonic particles should
be scrutinized because several important issues remain un-
resolved. For instance, it has been shown theoretically that
in frustrated ferromagnets, finite cubic interactions among
bosons may yield nonperturbative damping of magnon modes
even at T = 0 [15]. This can dramatically alter the existing

picture based on stable bosonic quasiparticles with topo-
logically nontrivial properties, in contrast to the fermionic
counterpart where particle-number conservation forbids such
cubic interactions from appearing. In addition, quantitative
comparison of the observed thermal Hall effect with theory
is difficult and often impossible in most frustrated quantum
magnets, because their ground states and low-energy exci-
tations are not fully understood. Furthermore, recent studies
on insulating magnets such as kagome antiferromagnets with
weak lattice-spin coupling revealed the presence of a non-
negligible contribution of the thermal Hall effect of phononic
origin [13,16–18], which makes it difficult to single out the
topological part. In fact, the thermal Hall conductivity κxy

observed in the frustrated pyrochlore ferromagnet Lu2V2O7,
which contains a two-dimensional (2D) kagome lattice, is
much larger than that expected from the DM interaction deter-
mined by density functional theory [19,20], indicating that the
observed κxy may not be solely of topological origin. Given
these facts, it is safe to say that the topological chiral edge
current of bosonic spin excitations, including its presence, re-
mains largely unexplored. To investigate the elusive nontrivial
bosonic topology, knowledge of the thermal Hall effect of
topological bosons in magnetic systems with exactly solvable
ground states, in which precise comparison between theory
and experiments is possible, is crucially important.

A candidate material that appears to be most suitable
for such an investigation is SrCu2(BO3)2 [21], a frustrated
layered quantum spin system. Each layer of this material
consists of a 2D network of orthogonal dimers of spin-1/2
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FIG. 1. Basic properties of SrCu2(BO3)2. (a) Shastry-Sutherland
lattice and DM interactions in SrCu2(BO3)2. The thick red and blue
lines represent the two species of dimers (A and B) of spin-1/2 Cu2+

ions. The black arrows (i → j) indicate the order of the spins Si

and S j in the DM interactions Di j ·(Si × S j ) on the bond (i, j). The
intradimer DM interaction has only an in-plane component (red and
blue arrows). For interdimer interactions, all three components are
allowed by symmetry. (b) and (c) Triplon bands of SrCu2(BO3)2 at
zero (b) and small magnetic field (c). The triplon bands at zero field
form a Dirac cone with three bands (two dispersive bands and one flat
band) touching at the M point. A small magnetic field opens the band
gap, yielding the two separated bands with nontrivial Chern numbers
±2 as well as a trivial one.

Cu2+ ions [see Fig. 1(a)]. The magnetic properties are well
described by the 2D Heisenberg model with antiferromagnetic
(AFM) nearest-neighbor (intradimer) and AFM next-nearest-
neighbor (interdimer) exchange couplings, J and J ′, known as
the Shastry-Sutherland model [22]. It has been shown that for
J ′/J � 0.675, an unentangled product of dimer singlets is the
exact ground state [23], and SrCu2(BO3)2 with J ′/J ≈ 0.63 is
believed to be in this phase [24].

The first excited state, separated from the ground state by
a finite spin gap of ∼3 meV, is a bosonic S = 1 quasiparticle
dubbed a triplon, which corresponds to exciting one of the
dimer singlets to a triplet [25]. Without any additional inter-
actions, the three triplon bands are triply degenerate and have
very tiny dispersion of the order of (J ′/J )6 ∼ 6 × 10−2 [26].
Note that this extremely small band width is attributed not
to the smallness of the interdimer interaction J ′ but to the
unique orthogonal-dimer structure [see Fig. 1(a)], and the
triplons in SrCu2(BO3)2 are essentially strongly interacting
as is exemplified by, e.g., its magnetic bound states and the
unique magnetization process [24,27].

Below a structural transition temperature Ts ∼ 395 K, the
dimer plane is slightly buckled. As a result, DM interactions
are allowed by symmetry both on each dimer and between
neighboring dimers [28,29], as illustrated in Fig. 1(a). The
known experimental values are J = 3.08 meV and D′

⊥ =
−0.097 meV [30]. In the presence of the small but finite DM
interactions, the triply degenerate and dispersionless triplon
band is modified, resulting in three subbands with weak dis-
persion (of the order of the DM interactions) as observed in
inelastic neutron scattering [30–32] and electron spin reso-
nance (ESR) experiments [33].

It has been proposed theoretically that the perpendicular
component D′

⊥ of the interdimer DM interactions endows
the triplon bands with a topological character [30,34–36] and
turns the system into a magnetic analog of the Chern insula-
tors. Without the external magnetic field perpendicular to the
dimer plane, the triplons form a Dirac cone with three bands
touching at a single point (the M point) as seen in Fig. 1(b).
A small magnetic field opens a band gap at the Dirac point,
leading to two topological bands with the Chern numbers
±2 [Fig. 1(c)]. As a result, the stable triplons moving under
the momentum-space Berry flux, which is determined by the
triplon band structure, are expected to show the thermal Hall
effect. As will be discussed later, the geometrically suppressed
kinetic energy of triplons in SrCu2(BO3)2 prevents their spon-
taneous decay at T = 0 [15,37] that may potentially invalidate
the picture based on topologically nontrivial quasiparticles.
Therefore this system seems to provide a unique playground
to study the topological properties of bosonic quasiparticles.

Here, we report the results of high-resolution thermal
Hall conductivity κxy measurements on the exactly solvable
quantum magnet SrCu2(BO3)2. In contrast to the theoretical
predictions, we observed no discernible κxy within our exper-
imental resolution. The strong suppression of κxy implies that
topological transport phenomena are strongly influenced by
the interparticle interactions in bosonic systems.

II. METHODS

Single crystals of SrCu2(BO3)2 were grown by a traveling-
solvent floating-zone method. The crystal was polished into a
platelike shape of roughly 1.5 × 0.46 × 0.025 mm for thermal
transport measurements. Four gold wires were attached by
silver paste to serve heat links to a 1-k� chip as a heater
and three Cernox (CX1070) thermometers as seen in the
inset to Fig. 2. One end of the crystal was glued to a LiF
heat bath using nonmetallic grease. Thermal and thermal Hall
conductivities were measured simultaneously by a standard
steady-state method by applying temperature gradient j and
magnetic field H along the crystallographic a and c axis,
respectively. To exclude the contribution from misalignment
of the contacts, antisymmetric components of the measured
∇yT were numerically calculated and used to obtain κxy(H ).

III. RESULTS

Figure 2 depicts the temperature dependence of longitudi-
nal thermal conductivity κxx in zero field. As the temperature
is lowered, κxx decreases gradually and then increases below
10 K forming a peak at around 4 K. The magnitude of κxx at
the peak in the present crystal, which reflects the quality of
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FIG. 2. Temperature dependence of thermal conductivity κxx of
SrCu2(BO3)2 at zero field. The inset shows the experimental setup
for thermal and thermal Hall conductivity measurements.

the crystal, is close to the highest value reported so far [38],
indicating the high quality of our crystal.

We first discuss the behaviors of the thermal Hall
effect predicted theoretically. The solid and dashed curves
in Figs. 3(a) and 3(b) represent the field dependence of κxy

calculated for T = 7, 8.5, and 10 K by the formula equa-
tion (B1) [39], which assumes stable noninteracting triplon
excitations subject to the Berry curvature (see Appendixes A
and B for more information). We note that the topological
thermal Hall effect is absent at zero temperature and appears
only at finite temperatures where the triplon bands with non-
trivial Chern numbers are thermally populated. Its magnitude
depends not only on the Berry curvature F (m)

xy (K) of the topo-
logical bands but also on how these bands are occupied by
thermally excited triplons [5,6]. Finite κxy, which is negative
in sign, appears at weak magnetic fields. At around μ0H ≈

0.7 T, the absolute value of κxy shows a maximum and then
decreases with H . Above a threshold field of μ0Hth ≈ 1.5 T,
which is set by the out-of-plane component D′

⊥, the Chern
number changes from ±2 to zero (see Appendix A 2), and
the triplon bands lose their topological character, resulting
in a rapid decrease in κxy. Unlike the Hall conductance in
fermionic band insulators, where the topological bands are oc-
cupied homogeneously in k space at T = 0, the thermal Hall
conductivity is not quantized in the present bosonic system;
being the integral of the local Berry curvature and the thermal
occupation factor [see Eq. (B1)], its value depends crucially
on the detailed structure of the quasiparticle bands and is not
at all universal. This is why the values of κxy are very different
in magnitude depending on the systems [7,11]. In fact, even
after the Chern number vanishes, small but finite κxy survives
due to the nonvanishing (local) Berry curvature.

In stark contrast to the theoretical predictions [34], how-
ever, no discernible thermal Hall signal is detected within
our experimental resolution, as shown by the red circles in
Fig. 3(a) and the green hexagons and the blue squares in
Fig. 3(b). The observed κxy at T = 7, 8.5, and 10 K is at most
20–30% of the theoretical values, if present. We also checked
that this substantial discrepancy between the theoretical and
experimental values is not accidental [40].

Prior to our results, it has also been reported [41] that κxy

is smaller than the theoretical prediction. However, due to the
large error bars of the measurements, there have been no con-
clusive data for the magnitude of κxy so far. Here, our ability to
control the temperature very precisely, δT ∼ 50 μK (δT/T ∼
10−5; see Appendix C), enables us to achieve high-precision
measurements of κxy, whose resolution is significantly im-
proved from the previous report.

IV. DISCUSSION

The present results lead us to conclude that the thermal
Hall effect of topological origin predicted theoretically [34]
is absent in SrCu2(BO3)2. In this section, we examine sev-
eral possible reasons for this large discrepancy between the
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FIG. 3. Field dependence of thermal Hall conductivity κxy of SrCu2(BO3)2. (a) and (b) The observed κxy at 7, 8.5, and 10 K (red, green, and
blue symbols), and the calculated κxy at 7, 8.5, and 10 K (solid and dashed curves). No discernible κxy was detected within our experimental
resolution. The error bars in the 7-K data represent a standard statistical error (see Appendix C for details). The error bars for the 8.5- and 10-K
data were estimated from the largest error bar of the 7-K data.
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FIG. 4. Three-dimensional structure of SrCu2(BO3)2 and
symmetry-allowed interlayer DM interactions (a), and its top
view (b). Due to the buckling in the ab plane, the interlayer DM
interactions can be different for A-B [left panel of (b); dy,z] and B-A
[right panel of (b); d ′

y,z] pairs.

theoretical prediction based on the picture of stable noninter-
acting quasiparticles and the experimental results.

A. Domain formation

We begin by considering a few extrinsic sources of the
strong suppression of κxy. First of all, the sample is expected to
contain structural domains with different patterns of buckling
in the ab plane. The buckling is crucial for the nonzero thermal
Hall response as it induces the in-plane component D′

‖ of the
DM interactions [29] which is necessary for the finite Berry
curvature [see Eq. (A5)]. However, the absence of the thermal
Hall effect cannot be attributed to the domain formation for
the following reason. To be specific, we assume that the A
(B) dimers are shifted upward (downward) from the basal
planes. Then, in a system where the directions of the shift are
reversed, all the in-plane components of the DM interactions
(i.e., D, D′

s, and D′
‖) are flipped. However, since both the

triplon dispersion (A4) and the Berry curvature (A5) depend
only on D′

‖
2 [42], κxy from different domains have the same

sign and do not cancel each other.

B. Effects of interlayer couplings

The interactions among the Shastry-Sutherland layers may
affect the thermal Hall conductivity (B1) calculated for the
purely two-dimensional system. In the actual SrCu2(BO3)2

compound, there are several kinds of interlayer interactions
that might modify the 2D physics. First of all, there are ex-
change couplings of the following form on the shortest bonds
connecting the adjacent layers [24]:

J⊥(SA,1 + SA,2)·(SB,1 + SB,2) = J⊥TA·TB, (1)

(a)

(b)

FIG. 5. Thermal Hall conductivity κ3D
xy (T, Hz ) (solid curves) and

its 2D limit κxy(T, Hz ) (dashed curves) for different temperatures.
The interlayer DM interactions are assumed to be (a) dz = 0.2D′

⊥ or
(b) dz = 0.5D′

⊥. At μ0H = 1.47 T (dashed line), a band-touching
transition occurs, and the triplon bands lose their topological
character.

where the A and B dimers are on the upper and lower layers,
respectively, or vice versa. As this interaction vanishes when
at least one of A and B is occupied by a singlet, it does not
help a singlet triplon to hop between adjacent layers [43]. This
conclusion remains the same even when many triplons exist.
If we note that the J⊥ interaction itself does not change the
positions of triplons, we see that the interlayer interaction J⊥
does not contribute to any kind of triplon motion at all.

On top of the usual exchange couplings, the crystal symme-
try allows several DM interactions between layers as shown
in Fig. 4. It is also suggested [44] that the interlayer DM
interactions allowed by symmetry can change the topologi-
cal properties of an isolated plane. We calculated the triplon
spectrum and the thermal Hall conductivity in the presence of
such interlayer DM interactions:

κ3D
xy (T, Hz ) = 1

π

∫ Hz+ 2|dz |
gzμB

Hz− 2|dz |
gzμB

κxy(T, h)√( 2dz

gzμB

)2 − (h − Hz )2
dh (2)

(see Appendix B 2 for the derivation). In deriving the above
formula, we have assumed, for simplicity, that the z compo-
nents of the eight interlayer DM interactions have a common
absolute value dz. We plot κ3D

xy (T, Hz ) calculated by Eq. (2) in
Fig. 5 for two different values of the interlayer DM interaction
dz. No precise information is available on the values of the
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FIG. 6. Energy levels at the � point which are to be compared with the ESR spectrum in, e.g., Ref. [33]: for (a) dz = 0, (b) dz = 0.2D′
⊥,

and (c) dz = 0.5D′
⊥. At the level crossing at μ0H = 1.47 T (a), the triplon bands lose their topological properties. The six levels for dz = 0 are

further split by interlayer DM interactions dz.

interlayer DM interactions in SrCu2(BO3)2 for now; we can
obtain a crude estimate of dz by comparing the theoretical
spectrum with the ESR results [33]. We plot in Fig. 6 the
spectrum of the 12 bands at the � point and find that the values
of the interlayer DM interactions dz which are compatible with
the ESR results [33] do not reduce κxy substantially.

C. Magnetophonon coupling

A magnetophonon coupling, which has been pointed out by
a resonant scattering observed in the longitudinal thermal con-
ductivity measurements [38], can be an origin of the triplon
damping. However, because the magnetophonon coupling is
most active around 20 K, such a coupling is unlikely to be an
origin of the strong suppression of the thermal Hall conductiv-
ity at lower temperatures (e.g., 7–10 K). Indeed, a correlated
decay process of the triplon excitations which is responsible
for the triplon damping at T � 10 K [32] cannot be explained
solely by acoustic phonons.

D. Triplon-triplon interaction

Having excluded the extrinsic sources of the suppression,
one may ask about the stability of triplon quasiparticles
against additional interactions which have not been included
in the previous analyses [30,34]. The realization of topologi-
cal magnon bands in other spin systems has been proposed for
the frustrated kagome ferromagnets, such as Lu2V2O7 [7,8]
and Cu[1,3-benzenedicarboxylate (bdc)] [3]. It has been
shown theoretically that in these systems the DM interactions

not only provide the quasiparticles with nontrivial topolog-
ical characters, but also generate anharmonic (e.g., cubic)
interactions among them leading to their damping [15]. To
be specific, we here consider the anharmonic cubic coupling
of the form b†b†b [with b† (b) being the bosonic creation
(annihilation) operator for triplons or magnons], which has
been discussed as an origin of the magnon damping [37].
Such a cubic interaction leads to the decay of a single bosonic
quasiparticle (with energy εk) into two, satisfying the con-
servation of energy and momentum: εk = εq + εk−q. For this
constraint to be satisfied in the decay process, an overlap
between the two-particle continuum and a single-particle band
is required, as illustrated in Fig. 7(a). In the above kagome
ferromagnets with such an overlap, cubic interactions induced
by DM interactions in fact lead to strong decay of topological
magnons even at T = 0, as pointed out in Ref. [15].

It is known that such a cubic interaction b†b†b (of the
order of J ′) exists in SrCu2(BO3)2 already in the absence
of the DM interactions [45]. However, it should be stressed
that, in stark contrast to the magnons with sizable dispersions
of the order of the exchange interactions found in the above
frustrated magnets, the prerequisite overlap is absent in the
triplons in SrCu2(BO3)2. In fact, as shown in Fig. 7(b), the
triplon bandwidth (∼0.5 meV) is substantially suppressed in
comparison to the spin gap (∼3 meV) due to the unique
(i.e., orthogonal-dimer) lattice geometry of SrCu2(BO3)2, and
the two-triplon continuum is well separated from the single-
triplon band [31]. Therefore this decay process is forbidden at
T = 0, suggesting that the damping caused by the anharmonic
couplings is expected to be much smaller if present.
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FIG. 7. Damping of bosonic spin excitations and destruction of
topological properties. (a) Single-magnon band (solid curves) and
two-magnon continuum (light blue area) in an S = 1 Heisenberg
chain. The single-magnon band overlaps the two-magnon contin-
uum around the � point, yielding the nonperturbative damping of
magnons. (b) Single-triplon band (solid curves) and two-triplon con-
tinuum (light blue area) in SrCu2(BO3)2. The spin gap � ∼ 3 meV,
much larger than the triplon bandwidth of ∼0.5 meV, avoids an
overlap of the single-triplon band and two-triplon continuum, and
therefore the spontaneous decay does not occur at 0 K. (c) Schematic
illustration of the triplon edge current in the presence of interactions
between thermally populated triplons in SrCu2(BO3)2. The left panel
displays the triplon edge current in the absence of the interaction.
With increasing interaction and/or temperature, the topologically
nontrivial properties are severely affected by the interaction between
thermally excited bosons and are eventually almost destroyed, as
illustrated in the middle and right panels.

Therefore we need to consider the effects of finite tem-
peratures and the interaction among the thermally excited
triplons, which has not been taken into account seriously in
the previous calculations. One plausible origin for the strong
suppression of κxy may be triplon damping at finite tempera-
tures found in inelastic neutron scattering measurements [32].
However, the strong suppression of κxy cannot be simply
understood by the quasiparticle damping alone for the fol-
lowing reason. Although the experiments observed a strong
finite-temperature damping of the triplon excitations, the well-
defined peak associated with a single-triplon excitation still
remains below 10 K [32]. In particular, at T = 7 K, at which
the thermal Hall measurements were done, a sharp single-
triplon peak is observed, which means that a single triplon
quasiparticle is stable at low enough temperatures. Therefore,
as long as the picture based on noninteracting quasiparticles
of topological character is correct, it is unlikely that the band
broadening due to the damping has such a dramatic effect
as to wipe out the thermal Hall signal almost completely. In
this respect, the absence of κxy is surprising, implying that,
in contrast to fermionic systems in which the noninteracting
limit is well defined, topological transport phenomena in their
bosonic counterparts are substantially influenced by small but
finite particle-particle interactions.

V. SUMMARY AND OUTLOOK

In summary, we measured the thermal Hall conductivity
of the exactly solvable quantum magnet SrCu2(BO3)2 and

compared the results with the theoretical values calculated by
assuming the existence of stable noninteracting quasiparticles
(triplons). According to our calculations, the sign of κxy is
negative, and the magnitude is reduced by a factor of 2π , as
opposed to the previous theoretical predictions. The measure-
ments were performed with extremely high accuracy, and we
observed no discernible κxy, the values of which are at most
20–30% of our calculations if present. The strong suppression
of κxy cannot be simply explained by the triplon damping at
finite temperature, indicating that the interparticle interactions
dramatically alter the topological transport properties. These
arguments suggest that, in order to understand the thermal
Hall transport in SrCu2(BO3)2 even qualitatively, it is cru-
cially important to take into account the strong interactions
among a macroscopic number of thermally excited triplons
[see Fig. 7(c)], which requires further theoretical investiga-
tions. Higher-order interactions between bosonic particles,
which have never been considered in the topological context,
may be an origin for the disappearance of the topological
thermal Hall effect. The present study also calls special at-
tention to the existing interpretation of the thermal Hall effect
observed in various insulating magnets in terms of topological
bosonic excitations.
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APPENDIX A: TRIPLONS IN AN ORTHOGONAL-DIMER
SYSTEM

1. Ground state and low-lying excitations

It is well known that the basic properties of SrCu2(BO3)2

(SCBO) below a structural transition at Ts ∼ 395 K are well
described by the Shastry-Sutherland model [22] with the DM
interactions added [28,29] [see Fig. 1(a)]:

HSCBO = J
∑
n.n.

Si·S j + J ′ ∑
n.n.n.

Si·S j − μB

∑
i

HgiSi

+
∑
n.n.

Di j ·(Si×S j ) +
∑
n.n.n.

D′
i j ·(Si×S j ), (A1)

where
∑

n.n. (
∑

n.n.n.) denotes the summation over nearest-
neighbor (next-nearest-neighbor) spin pairs (Si, S j ) and, to
ease the notation, we have included the magnetic constant
μ0 in the definition of H. In the absence of the DM inter-
actions, the exact ground state for J ′/J � 0.675 is given by
putting spin singlets on all the dimer bonds. The low-lying
excitation over the exact ground state is given by exciting one
of the dimer singlets into a triplet (a triplon). The interdimer
exchange interaction J ′ gives only an isolated triplon an ex-
tremely tiny dispersion ∼(J ′/J )6 ∼ 6 × 10−2 [26] except for
renormalizing the spin gap (or the effective dimer coupling J).
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On the other hand, the DM interactions allowed by crystallo-
graphic symmetry provide the triplons with a larger bandwidth
of the order of ∼D′. Therefore, as far as the (cubic and quar-
tic) interactions can be neglected, it would be legitimate to
consider the effective Hamiltonian in which only the hopping
of the order of the DM interactions is kept and J is replaced
with its renormalized value (i.e., the observed spin gap). The
resulting triplon Hamiltonian (the kernel of the quadratic part
of the triplon Hamiltonian, precisely) can be written in the
following suggestive form [34]:

H3-band(Kx, Ky) = JI + B(Kx, Ky)·T , (A2)

with the three matrices

Tx =
⎛
⎝0 0 0

0 0 −1
0 −1 0

⎞
⎠, Ty =

⎛
⎝ 0 0 −1

0 0 0
−1 0 0

⎞
⎠,

Tz =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠

satisfying the usual spin commutation relations and the ficti-
tious “magnetic field” B defined by

B(Kx, Ky)

= (D
′
‖ sin Ky, D

′
‖ sin Kx, gzμBH − D′

⊥(cos Kx + cos Ky)).

(A3)

Thanks to the simple form (A2), the three triplon bands are
explicitly written down as

ε (m)(Kx, Ky) = J + m|B(Kx, Ky)| (m = −1, 0, 1). (A4)

When the external field perpendicular to the dimer plane is
absent (H = 0), there are two Dirac cones with three bands
touching at (Kx, Ky) = (π, 0) and (0, π ) corresponding to the
existence of the two inequivalent dimers (A and B) in a unit
cell [Fig. 1(b)].

2. Topology of triplon bands

A small perpendicular magnetic field H opens a band gap
(∼H) at the Dirac point [Fig. 1(c)], leading to two topological
bands (top and bottom) with the Chern numbers ±2 and one
trivial one in the middle. The perpendicular component D′

⊥
of the interdimer DM interactions endows the triplon bands
with a topological character [30,34–36] and turns the system
into a magnetic analog of the Chern insulators. Specifically,
the three split triplon bands (m = −1, 0, 1) have the following
Berry curvatures in the momentum space [46]:

F (m)
xy (Kx, Ky)

= −m{D′
⊥(cos Kx + cos Ky)− gzμBH cos Kx cos Ky}

|B(Kx, Ky)|3 D
′
‖

2.

(A5)

As a result, the stable triplons moving under the K-space
Berry curvature, which is determined by the triplon band
structure, are expected to exhibit the thermal Hall effect [5,6].
The nontrivial topology of the triplon bands can be character-

FIG. 8. Change in the triplon character in the (D′
⊥, Hz ) plane.

The Chern number C (1) of the top band (that of the bottom band is
−C (1)) and the positions of Dirac cones are shown. There are two
topological “phases” with Chern number C (1) = +2 (yellow) and
C (1) = −2 (cyan) as well as one trivial region (C (1) = 0) at high fields
that are separated from each other by band-touching transitions (thick
lines) with Dirac cones (whose positions in K space are shown).

ized by the Chern numbers defined by

C(m) = 1

2π

∫
B.Z.

d2K F (m)
xy (Kx, Ky) (m = −1, 0, 1) (A6)

(where B.Z. refers to the Brillouin zone), which, for a weak
enough field, take the values C(m) = −2m [see Fig. 1(c)].

When the external field is further increased, another change
in the band structure takes place at |Hz| = |D′

z|/(2gμB) ac-
companied by a band touching with a single Dirac cone
at K = (π, π ). When |Hz| > |D′

z|/(2gμB), C(m) = 0 and the
triplon bands lose their topological characters. The change in
the topological character of the triplon bands is summarized
in Fig. 8 as a function of the field H .

APPENDIX B: THERMAL HALL EFFECT
FROM A TOPOLOGICAL TRIPLON

In the presence of finite Berry curvature, we may gener-
ically expect the Hall response in the electrical or thermal
transport [47], and the general formula for the thermal Hall
conductivity due to magnetic quasiparticles can be derived
either by semiclassical arguments or by linear response the-
ory [6].

1. Limit of uncoupled layers

When the two-dimensional Shastry-Sutherland layers
(with the linear sizes Lx × Ly × Lz and the number of layers
Nlayer) are not coupled with each other, the general formula
given in Ref. [6] leads us to the following result [34]:

κxy(T, H ) = − k2
BT

2πhlz

∫
B.Z.

d2K
{
c(1)

2 (K; H )

− c(−1)
2 (K; H )

}
F (1)

xy (K; H ),
(B1)
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FIG. 9. (a) and (b) Comparison of experimental and theoretical thermal Hall conductivities. The magnitude of the observed κxy (symbols)
is much smaller than that of the κxy calculated by the formula given in Ref. [34] (solid and dashed curves).

with lz being the interlayer distance and the function c2(ρ)
given by

c(m)
2 (K; H ) ≡ c2[ρB(ε (m)(K; H ))],

c2(ρ) ≡ −2Li2(−ρ) − log2(ρ)

+ (ρ + 1) log2

(
ρ + 1

ρ

)
,

ρB(ε) = 1

e
ε

kBT − 1
. (B2)

All the information about the thermally excited triplons is en-
coded in the factor {c(1)

2 (K; H ) − c(−1)
2 (K; H )}. We note that,

compared with the value of κxy in the previous studies [30,34],
the one given by Eq. (B1) is opposite in sign and smaller in
magnitude by (2π )−1. While our main conclusion remains
unchanged even if we used the values calculated by the for-
mula in Ref. [34] that further suppress the ratio κ

(exp)
xy /κ (th)

xy
between the experimental and theoretical values by a factor
(2π )−1 (see Fig. 9), it is desirable to reexamine the previous
theoretical calculations.

A few remarks are in order here about the relation be-
tween the topology of the triplon bands and the thermal Hall
transport. First of all, in contrast to the electrical counter-
part in fermion systems, the thermal Hall response of the
triplon quasiparticles is not quantized to the Chern num-
ber C (m) (up to a constant of proportionality) although finite
Berry curvature F (m)

xy (Kx, Ky) suggests finite thermal Hall
transport [5,6]. Moreover, the existing formula connecting
the Berry curvature F (m)

xy (Kx, Ky) and the thermal Hall con-
ductivity is derived by assuming the existence of the stable
quasiparticles that can be treated as noninteracting. As will be
discussed later, the geometrically suppressed kinetic energy
of triplons in SrCu2(BO3)2 prevents their spontaneous decay
at T = 0 [15,37] that may potentially invalidate the picture
based on topologically nontrivial quasiparticles. Therefore
this system seems to provide a unique playground to study
the topological properties of bosonic quasiparticles.

2. Effects of interlayer interactions

As has been discussed in Sec. IV B, only the interlayer DM
interactions can crucially affect the thermal Hall conductivity.
Symmetry analyses tell us that the possible interlayer DM
interactions (on the shortest bonds connecting the upper and
lower layers) are of the following form (see Fig. 4):

d1 = (−dy,−dy, dz ), d2 = (−dy, dy,−dz ),

d3 = (dy,−dy,−dz ), d4 = (dy, dy, dz ),

d ′
1 = (−d ′

y,−d ′
y, d ′

z ), d ′
2 = (−d ′

y, d ′
y,−d ′

z ),

d ′
3 = (d ′

y,−d ′
y,−d ′

z ), d ′
4 = (d ′

y, d ′
y, d ′

z ), (B3)

with dy,z and d ′
y,z remaining undetermined solely by symme-

try. Due to the buckling in the CuBO3 (ab) planes, dy,z and
d ′

y,z are different, in general. The alternate stacking of the
Shastry-Sutherland layers in the c direction implies a period-
2 structure in the stacking direction, and the unit cell now
contains four dimers [(A1, B1) for the first layer and (A2, B2)
for the second]. Correspondingly, the single-triplon hopping
is now described by a 12×12 matrix.

For the interlayer DM interactions shown in Fig. 4 and
Eq. (B3), the interlayer part of the triplon Hamiltonian is given
by

Hinterlayer(k)

=

⎛
⎜⎜⎝

03×3 03×3 03×3 MA1B2(k)
03×3 03×3 M†

A2B1(k) 03×3

03×3 MA2B1(k) 03×3 03×3

M†
A1B2(k) 03×3 03×3 03×3

⎞
⎟⎟⎠

(B4)

and

MA1B2(k) ≡ e−i(kx+ky+kz )M⊥
AB(dz ) + e−i(kx+ky )M⊥

AB(d ′
z )

= e−i(kx+ky+kz )(dz + d ′
ze

ikz )

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠,

MA2B1(k) ≡ M⊥
AB(dz ) + eikz M⊥

AB(d ′
z )

= ei(kx+ky+kz )MA1B2(k) (B5)
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(note that the momentum k here is defined with respect to the
original lattice and is different from K).

Although no quantitative information is available now for
the values of dy,z and d ′

y,z in SrCu2(BO3)2, we can obtain a
very crude estimate by comparing the energy levels at the �

point with the ESR spectrum. Figure 6 plots the 12 energy
levels for several values of the interlayer DM interaction dz,
where one can clearly see that finite values of dz further
split the six energy levels found for dz = 0. No such split-
ting has been observed in ESR measurements (see Fig. 4(a)
of Ref. [33]), and we may conclude that the interlayer DM
interactions are, if they exist, much smaller than those within
each plane (i.e., D′

‖ and D′
⊥).

For the sake of the simplicity, let us assume dz = d ′
z, which

allows us to work with a smaller unit cell (now two species
of dimers A and B are identified) and express the interlayer
hopping matrix by the following three-dimensional matrix:

Hinterlayer(K) =
⎛
⎝ 0 2idz cos Kz 0

−2idz cos Kz 0 0
0 0 0

⎞
⎠. (B6)

Comparing this with the 2D Hamiltonian equation (A2), one
sees that the net effect of the interlayer DM interactions is just
to shift the external field in a Kz-dependent way:

H → H eff(Kz ) = H + 2dz

gzμB
cos Kzlz, (B7)

and the summation over different layers is replaced
with the Kz integral. In the above expression, we have re-
covered the interlayer distance lz for later convenience. As
we have the same three-level Hamiltonian (A2) with H →
H eff(Kz ), the Berry curvature in the (Kx, Ky) plane for a given
Kz is readily obtained just by replacing H in Eq. (A5) with
H eff(Kz ).

Now it is straightforward to write down κxy for a 3D stack
of the Shastry-Sutherland layers by trading

∑
layer in Eq. (B1)

for the summation over Kz:

κ3D
xy (T, Hz ) = − k2

BT

h̄LxLyLz

∑
m=−1,0,+1

∑
Kz

×
∑

K=(Kx,Ky )

c̃(m)
2 (K; Kz )F (m)

xy (K; Kz )

= − k2
BT

h̄LxLyLz

LxLyLz

(2π )3

∫ π/lz

−π/lz

dKz

×
∫

B.Z.
d2K

{
c̃(1)

2 (K; Kz )

− c̃(−1)
2 (K; Kz )

}
F (1)

xy (K; Kz )

= lz
2π

∫ π/lz

−π/lz

dKz κxy(T, H ; Kz ), (B8)

where

c̃(m)
2 (K; Kz ) = c(m)

2 (K; H = Heff(Kz )),

κxy(T, H ; Kz ) = κxy(T, H = Heff(Kz )). (B9)

6.63090

6.63085

6.63080

6.63075

6.63070

 T
 (

K
)

107010601050

Time (min.)

~ 50 µK

FIG. 10. Precise control of temperature during thermal Hall con-
ductivity κxy measurements.

When dz = 0, κxy(T, H ; Kz ) does not depend on Kz, and the
above κ3D

xy (T, Hz ) reduces to κxy(T, Hz ) in Eq. (B1).
In order to further simplify the expression, we trade the Kz

integral with the integral over the effective field,

hz ≡ H + 2dz

gzμB
cos Kzlz

(
H − 2|dz|

gzμB
� hz � H + 2|dz|

gzμB

)
,

to obtain the final expression (2):

κ3D
xy (T, H ) = 1

π

∫ H+ 2|dz |
gzμB

H− 2|dz |
gzμB

dhz
κxy(T, hz )√( 2dz

gzμB

)2 − (hz − H )2
. (B10)

The values obtained using this formula are shown in Fig. 5.

APPENDIX C: HIGH-RESOLUTION MEASUREMENTS
OF THERMAL HALL CONDUCTIVITY

A typical temperature noise level δT is ∼50 μK at T ∼ 7 K
(δT/T ∼ 10−5) (see Fig. 10), which enables us to achieve
high-precision measurements of κxy. In addition, we repeated
the κxy measurements more than 10 times at 0.75 and 1 T

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

xy
 (

m
W

/K
m

)

3.02.01.00.0
µ0H  (T)

 7 K
 7 K (theory)

FIG. 11. Statistical error of κxy. The error bars in Fig. 3(a) in
the main text indicate the standard statistical errors obtained from
multiple measurements (red circles).
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(see Fig. 11), where considerable κxy of ∼0.5 mW K−1 m−1 is
expected. This allows us to quantitatively compare the experi-

mental results with the theoretical calculations (black curve in
Fig. 11).
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