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Mechanism of antisymmetric spin polarization in centrosymmetric multiple-Q magnets
based on effective chiral bilinear and biquadratic spin cross products
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We investigate how to engineer an antisymmetric spin-split band structure under spin density waves with finite
ordering wave vectors in centrosymmetric systems without the relativistic spin-orbit coupling. On the basis
of a perturbative analysis for the spin-charge coupled model in centrosymmetric itinerant magnets, we show
that nonzero chiral-type bilinear and biquadratic spin cross products in momentum space under the magnetic
orderings are related to an antisymmetric spin polarization in the electronic band structure. We apply the derived
formula to the single-Q cycloidal spiral and double-Q noncoplanar states including the meron-antimeron and
skyrmion crystals. Our results present a clue to realize a giant antisymmetric spin splitting driven by magnetic
phase transitions in the centrosymmetric lattice structures without the spin-orbit coupling.
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I. INTRODUCTION

Symmetry is an important factor to determine physical
properties of solids. Among them, spatial inversion sym-
metry has drawn considerable interest in condensed matter
physics, since its breaking gives rise to fascinating physi-
cal phenomena, such as a spontaneous electric polarization
and nonreciprocal transport [1–5]. The breaking of spatial
inversion symmetry also leads to an antisymmetric spin po-
larization in terms of the wave vectors in electronic band
structures, which has been often found in the noncentrosym-
metric crystals with the strong relativistic spin-orbit coupling
[6–8], such as polar crystals with the Rashba-type spin-orbit
coupling [9–12], chiral crystals with the Weyl-type spin-orbit
coupling [13,14], and other noncentrosymmetric crystals with
the Ising-type spin-orbit coupling [15–18]. The antisymmetric
spin polarization becomes a source of spin-related parity-
violating physical phenomena [19–22], such as the spin Hall
effect [23–27] and the Edelstein effect [28–32].

The above parity-violating phenomena also occur under
the centrosymmetric crystal structures once the spatial inver-
sion symmetry is broken by a spontaneous phase transition
through the electron correlation [19,33,34]. Especially, mag-
netic phase transitions to the noncollinear and noncoplanar
magnetic ordered states actualize the antisymmetric spin-orbit
interaction even without the relativistic spin-orbit coupling.
One of the examples is the inverse Dzyaloshinskii-Moriya
mechanism where the spin vector chirality in noncollinear
magnets produces the electric polarization [33,35–39]. An-
other example is the emergence of the electric polarization
and the nonreciprocal transport owing to nonzero spin scalar
chirality in noncoplanar magnets [40–44]. Besides, the origin
of the antisymmetric spin polarization under the noncollinear
and noncoplanar spin configurations has been microscop-
ically studied based on augmented multipoles [45,46],
which is compatible with magnetic point group symmetry
[47–50].

Designing and engineering the antisymmetric spin-split
band structure under the noncollinear and noncoplanar spin
textures stimulate a further exploration of functional materials
with a giant spin splitting even in the absence of the relativistic
spin-orbit coupling in the centrosymmetric lattice structures.
It has an advantage of opening up the option of candidate
materials so as to include light-element materials and 3d tran-
sition metal oxides in addition to conventional heavy-element
ones with the strong spin-orbit coupling. Such an extension of
candidate materials will be useful for a future realization of
high-efficient electronics and spintronics devices.

From the energetic point of view, there are various mech-
anisms to stabilize noncollinear and noncoplanar magnetic
orderings that break the spatial inversion symmetry, such as
a spiral state and a skyrmion crystal, in the centrosymmetric
lattice structures: the frustrated exchange interactions in insu-
lating magnets [51–59], the staggered Dzyaloshinskii-Moriya
interaction [60,61] and the multiple-spin interactions and
magnetic anisotropy in itinerant magnets [62–69]. Consider-
ing that the skyrmion crystal and other various noncoplanar
magnetic states are described by a superposition of the
multiple-Q spiral waves, one can expect a possibility of re-
alizing the giant antisymmetric spin splitting without relying
on the relativistic spin-orbit coupling in centrosymmetric
multiple-Q spiral magnets. However, the relationship between
electronic band structures and multiple-Q spiral spin textures
has not been fully understood yet.

In the present paper, we study a microscopic mechanism
of the spin-dependent antisymmetric band modulation in the
single-Q and multiple-Q spiral states to open another route of
noncentrosymmetric spin-orbit-coupled physics in inversion-
symmetric materials with negligibly small atomic spin-orbit
coupling. We derive effective momentum-dependent chiral-
type bilinear and biquadratic spin cross products in momen-
tum space under the magnetic orderings by performing the
perturbative expansion with respect to the exchange coupling
in the classical Kondo lattice model. The derived expressions
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indicate that the antisymmetric spin polarization appears
when the magnetic orderings with nonzero bilinear and bi-
quadratic spin cross product occur. Moreover, the expressions
provide necessary multiple-Q spin modulations to cause the
momentum-dependent antisymmetric spin polarization in the
band structure. We test the expressions to the single-Q state
on a one-dimensional chain and the double-Q states on a
two-dimensional square lattice. The examples include the
square-shaped meron-antimeron and skyrmion crystals. We
also apply the expressions to the skyrmion-hosting centrosym-
metric magnet GdRu2Si2. The present results are ubiquitously
applied to any magnetic textures with finite ordering wave
vectors in any lattice systems, which will be useful to extend
the scope of materials with a giant antisymmetric spin split-
ting in centrosymmetric magnets even without the spin-orbit
coupling.

This article is organized in the following way: In Sec. II,
we introduce the classical Kondo lattice model as one of
the fundamental models in itinerant magnets. In Sec. III, we
show a derivation of effective momentum-dependent chiral-
type bilinear and biquadratic spin cross products by using
the perturbation expansion for the Kondo lattice model in
terms of the exchange coupling between itinerant electrons
and localized spins. We discuss the antisymmetric spin-split
band structure under the single-Q and multiple-Q spiral states
on the basis of the derived formula in Sec. IV. We also discuss
the relevant materials and physical phenomena in Sec. V.
Section VI is devoted to the summary.

II. MODEL

We study a spin-charge coupled system consisting of itin-
erant electrons and localized spins with itinerant magnets in
mind. For that purpose, we adopt the classical Kondo lattice
(double exchange) model with the exchange coupling between
itinerant electron spins and localized spins, which is one of the
underlying models to exhibit a plethora of multiple-Q spiral
states [42,62,64,65,70–72]. The Hamiltonian is given by

H = −
∑
i, j,σ

ti jc
†
iσ c jσ + J

∑
i,σ,σ ′

c†
iσ σσσ ′ciσ ′ · Si, (1)

where c†
iσ and ciσ are creation and annihilation operators of

an itinerant electron at site i and spin σ , respectively, while Si

is a localized spin at site i. Here, we regard Si as the classical
spin with the magnitude of |Si| = 1. The Hamiltonian consists
of the kinetic energy term of itinerant electrons in the first
term in Eq. (1) and the exchange coupling term between
itinerant electron spins si and localized spins Si in the second
term; si = (1/2)

∑
σ,σ ′ c†

iσ σσσ ′ciσ ′ where σ = (σ x, σ y, σ z ) is
the vector of Pauli matrices. We here do not consider the
effect of the spin-orbit coupling by targeting the materials
with negligible small spin-orbit coupling, although the exten-
sion incorporating such an effect is straightforward. ti j and
J > 0 are the hopping and exchange interaction parameters,
respectively. It is noted that the sign of J is irrelevant in the
following result.

For later convenience, we present the Fourier transform of
the model in Eq. (1) as

H =
∑
k,σ

εkc†
kσ

ckσ + J√
N

∑
k,q,σ,σ ′

c†
kσ

σσσ ′ck+qσ ′ · Sq, (2)

where c†
kσ

, ckσ , and Sq are the Fourier transform of c†
iσ , ciσ ,

and Si, respectively, where N is the number of sites. εk is
the energy dispersion of the electrons. Hereafter, we implic-
itly consider the centrosymmetric lattice structure without the
sublattice degree of freedom for simplicity: εk = ε−k.

III. EFFECTIVE MOMENTUM-DEPENDENT
CHIRAL-TYPE SPIN CROSS PRODUCTS

From the general symmetry aspect, the necessary con-
ditions of the antisymmetric spin-split band structure are
the breakings of spatial inversion symmetry and the product
symmetry consisting of spatial inversion and time-reversal
symmetries. These conditions are naturally satisfied in non-
centrosymmetric nonmagnetic systems with the relativistic
spin-orbit coupling, such as the Rashba metals. Meanwhile,
in the absence of the spin-orbit coupling, the spin polar-
ization occurs when time-reversal symmetry is broken. In
other words, the spin-dependent band modulation is caused
by the scattering due to the ordered localized spins with
wave vector q, i.e., 〈Sq〉 �= 0 (〈· · · 〉 represents the expectation
value), via the exchange coupling in Eq. (2). Furthermore, the
noncollinear spin configurations are necessary to induce the
antisymmetric momentum-dependent spin polarization, since
the collinear ones do not break spin rotational symmetry,
which ensures the twofold degeneracy with respect to the spin
degree of freedom [73].

In this section, we examine how the band structures are
modulated under noncollinear magnetic orderings with finite
ordering wave vectors within the perturbation calculation
by supposing that the exchange coupling J is small enough
compared to the bandwidth of itinerant electrons. We
present the momentum-dependent chiral-type bilinear spin
cross product in Sec. III A and chiral-type biquadratic spin
cross product in Sec. III B, which are obtained from the
second-order and fourth-order contributions in terms of J .
The following results in this section can be applied to any
magnetic structures in any lattice systems in one to three
spatial dimensions. We discuss the result for the specific
magnetic textures and the lattices in Sec. IV.

A. Bilinear spin cross product

To examine the antisymmetric spin-dependent modulation
in the electronic band structure under noncollinear magnetic
orderings with finite ordering wave vectors, we evaluate the
expectation value of the itinerant electron spin operator sk =
(1/2)

∑
σ,σ ′ c†

kσ
σσσ ′ckσ ′ with wave vector k. The lowest-order

contribution with respect to J is of second order, which is
derived as

sk =i
J2

N
T

∑
q

∑
ωn

G2
kGk+q(Sq × S−q), (3)

where Gk(iωn) = [iωn − (εk − μ)]−1 is the noninteracting
Green’s function with the Matsubara frequency ωn and μ is
the chemical potential. The spin dependence of the Green’s
function is omitted owing to the absence of the spin-orbit
coupling (or spin-dependent hopping) in the model in Eq. (2).
The summation of the Matsubara frequency can be taken
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(a)

(b)

FIG. 1. Feynman diagrams for (a) the second-order and
(b) fourth-order contributions to the k-resolved spin sk in the pertur-
bation expansion in terms of the spin-charge coupling J . See Eqs. (3)
and (4) for specific expressions. The vertices with wavy lines denote
the scattering of the itinerant electrons by the localized spins in
the momentum-space representation, and the solid lines with arrows
represent the bare propagators of itinerant electrons.

analytically [see Eq. (5)]. The corresponding Feynman dia-
gram is shown in Fig. 1(a).

The expression in Eq. (3) indicates that the spin cross
product, which we call the chiral-type bilinear spin cross
product, in momentum space is related to the momentum-
dependent spin polarization in the magnetic orderings with
finite ordering vector q; the spin polarization is induced along
the direction of Sq × S−q. By using the relation as εk = ε−k,
one finds that s−k = −sk is satisfied, which means that the k-
antisymmetric spin polarization appears for nonzero Sq × S−q
and there is no uniform component

∑
k sk = 0. In other words,

a nonzero antisymmetric contribution to sk appears when the
magnetic orderings with nonzero Sq × S−q occur. The mo-
mentum dependence of the spin polarization is determined by
the product of the Green’s function G2

kGk+q.
The result in Eq. (3) is reasonable from the symmetry as-

pect, since the spin cross product Sq × S−q becomes nonzero
only when spatial inversion symmetry is absent in the system.
For example, the form of Sq × S−q appears in the model
Hamiltonian as the interaction for noncentrosymmetric itiner-
ant magnets with the spin-orbit coupling [74–77]. In contrast,
the present bilinear spin cross product is induced by the
magnetic orderings, which simultaneously break spatial inver-
sion symmetry and does not require the spin-orbit coupling.
Thus, the antisymmetric spin polarization in this mechanism
only appears in the presence of the magnetic orderings; the
antisymmetric band structure emerges below the critical tem-
perature in the materials.

From the expression of bilinear spin cross product in
momentum space, one finds that nonzero Sq × S−q can be
obtained by noncollinear and/or noncoplanar spin textures
not the collinear ones. Moreover, Sq must have both the real
and imaginary components for nonzero Sq × S−q owing to

Sq = S∗
−q. A simple spin texture to satisfy these conditions is

a single-Q spiral one characterized by Si = (sin Q · ri, cos Q ·
ri, 0) with the position vector ri, which induces nonzero sz

k ∝
(SQ × S−Q)z, as will be discussed in Sec. IV A. We also show
that the antisymmetric spin-split band structure is caused by
the emergence of the multiple-Q spiral orderings, such as
the meron-antimeron and skyrmion crystals, as discussed in
Sec. IV B.

B. Biquadratic spin cross product

Similarly, the fourth-order contribution to sk with respect
to J is given by

sk = i
J4

N2
T

∑
q1,q2,q3,q4

∑
ωn,l

G2
kGk+q1

Gk+q1+q2
Gk+q1+q2+q3

× δq1+q2+q3+q4,lG[(Sq1
× Sq2

)(Sq3
· Sq4

)

+ (Sq3
× Sq4

)(Sq1
· Sq2

) + (Sq1
× Sq4

)(Sq2
· Sq3

)

+ (Sq2
× Sq3

)(Sq1
· Sq4

) − (Sq1
× Sq3

)(Sq2
· Sq4

)

− (Sq2
× Sq4

)(Sq1
· Sq3

)], (4)

where δ is the Kronecker delta and G is the reciprocal lat-
tice vector (l is an integer). In this case, the summation in
terms of the Matsubara frequency is calculated for a certain
temperature, and then, it is taken in the T → 0 limit. The
corresponding Feynman diagram is shown in Fig. 1(b).

Equation (4) gives the four-spin cross product. The func-
tional form of the four-spin cross product resembles the
chiral biquadratic interaction in real space described by
(Si × S j )(Si · S j ) [78–83]. In the present case, however, the
biquadratic spin cross product is defined for the Fourier
components of spins and becomes nonzero only under the
magnetic orderings. In other words, the present biquadratic
spin cross product only contributes to the momentum-
dependent polarization and does not contribute to the free
energy. Similar to the bilinear spin cross product, sk from
the biquadratic spin cross product satisfy

∑
k sk = 0. The

four-spin cross product in Eq. (4) can account for the anti-
symmetric spin polarization in the multiple-Q states that are
not explained by the bilinear spin cross product in Eq. (3), as
shown in Sec. IV C.

IV. ANTISYMMETRIC SPIN SPLITTING IN SINGLE-Q
AND MULTIPLE-Q STATES

We discuss the antisymmetric spin splitting in the band
structure in the presence of magnetic orderings. As the result
in Sec. II can be applied to any lattice structures in one to
three spatial dimensions, we here show the examples in the
one- and two-dimensional cases. First, we show the results
in the single-Q cycloidal spiral state in the one-dimensional
chain in Sec. IV A. Then, we discuss the antisymmetric spin
splittings in the two double-Q states, the meron-antimeron
and skyrmion crystals in Sec. IV B, and in the other double-Q
noncoplanar state in Sec. IV C on the two-dimensional square
lattice. Although we here discuss the magnetic orderings only
with the commensurate ordering vectors, a qualitative similar
result is obtained when the modulation vectors are incom-
mensurate, as clearly found in Eqs. (3) and (4). As shown in
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FIG. 2. (a) Cycloidal spiral state. [(b),(c)] The band structures at
(b) J = 0.1 and (c) J = 1. The color map shows the spin polarization
of the z component at each wave vector. (d) J dependence of s̃z

k =
(2/N )

∑
kx>0 sz

k and samp = √∑
i[(s

x
i )2 + (sy

i )2] for the lowest band.

each example, the antisymmetric spin polarizations are well
explained by the expressions in Eqs. (3) and (4).

A. Single-Q cycloidal spiral state

We consider the single-Q cycloidal spiral state on the
one-dimensional chain along the x direction, where we take
the lattice constant as unity. The spin configuration is given
by Si = (sin Qxi, cos Qxi, 0) with Q = π/3, whose schematic
picture is shown in Fig. 2(a). In the following, we take the
nearest-neighbor hopping t1 = 1 in εk.

Figure 2(b) shows the band structure at J = 0.1. The
color map shows the spin polarization of the z component,
where the red (blue) lines show the positive (negative) z-spin
component; momentum dependence of the spin splitting is
represented by sz

k ∝ kxσ
z. Although the antisymmetric spin

polarization in the band structure is similar to that in the
noncentrosymmetric system with the Rashba spin-orbit cou-
pling, but the origin of the antisymmetric spin polarization is
different with each other. The present antisymmetric spin po-

larization is caused by the single-Q cycloidal spiral ordering
without the spin-orbit coupling. Such a behavior remains for
large J , as shown in Fig. 2(c) in the case of J = 1.

The microscopic origin of the antisymmetric spin polar-
ization is understood from the bilinear spin cross product
in Eq. (3). From the spiral spin configuration, we find the
z component of the antisymmetric spin polarization as sz

k ∝
(SQ × S−Q)z. Besides, the momentum dependence of the spin
polarization is given by the factor G2

kx
Gkx+Q. When using the

following relation by eliminating the summation with respect
to the Matsubara frequency as

T
∑
ωn

G2
kx

Gkx+Q = f (εkx+Q) − f (εkx )

(εkx − εkx+Q)2

+ 1

εkx − εkx+Q

df (εkx )

dεkx

, (5)

εkx = −2t1 cos kx, (6)

we can evaluate the kx dependence of the antisymmetric spin
polarization.

The degree of the antisymmetric spin polarization depends
on the amplitude of the order parameters and the band struc-
ture. To demonstrate that, we show the J dependence of
s̃z

k = (2/N )
∑

kx>0 sz
k for the lowest band in Fig. 2(d), where

the small (large) J regime mimics the situation with the small
(large) order parameters. s̃z

k becomes nonzero for J > 0 and
shows the maxima at J 
 0.018. The increment of s̃z

k for 0 <

J � 0.018 is owing to the enhancement of the spin moment of
conduction electrons samp = √∑

i[(s
x
i )2 + (sy

i )2]. Meanwhile,
the suppression of s̃z

k for 0.018 � J might be attributed to
the electronic band structure where the lowest band tends
to be decoupled from the other bands while increasing J
[see Figs. 2(a) and 2(b)].

It is noted that a similar antisymmetric spin polarization
occurs in the magnetic ordering with the elliptical spi-
ral Si = (ax sin Qxi, ay cos Qxi, 0) where ax �= ay. Meanwhile,
the antisymmetric spin polarization vanishes in the collinear
sinusoidal case, i.e., ax = 0 or ay = 0 due to SQ × S−Q = 0

B. Double-Q spiral states

The above analysis can be directly applied to multiple-Q
states, which consists of multiple spiral waves. We consider
two double-Q states described by superposing two single-Q
cycloidal spirals, the meron-antimeron crystal in Sec. IV B 1
and the skyrmion crystal in Sec. IV B 2, on the square lat-
tice with the nearest-neighbor hopping t1 = 1. We take the
ordering vectors Q1 = (π/3, 0) and Q2 = (0, π/3), which are
connected by fourfold rotational symmetry.

1. Meron-antimeron crystal

The meron-antimeron crystal is represented by a superposi-
tion of two cycloidal spirals. The real-space spin configuration
is given by

S̃i =
⎛
⎝

cos Q1 · ri

cos Q2 · ri

− sin Q1 · ri − sin Q2 · ri

⎞
⎠

T

,

Si = S̃i

|S̃i|
. (7)
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y
xz

(a) 2Q MAX

(b) 2Q SkX

FIG. 3. (Left panel) Real-space spin configurations of (a) the double-Q meron-antimeron crystal (2Q MAX) in Eq. (7) and (b) the double-Q
skyrmion crystal (2Q SkX) in Eq. (11). (Middle left panel) The isoenergy surfaces at J = 0.1 and μ = 3.5 in the Brillouin zone. (Middle right
and right panels) The spin polarization of the x and y components at each wave vector corresponding to the middle left panel.

The schematic spin configuration is shown in the left panel
of Fig. 3(a). Upon close looking in real space, one finds that
the spin configuration consists of a periodic array of meron
and antimeron with an opposite-sign half skyrmion number
[84–86]. The stabilization mechanism of the meron-antimeron
crystal has been widely studied in chiral insulating magnets
[87], frustrated insulating magnets [88], and polar itinerant
magnets [74,89].

As the spin configuration in Eq. (7) is characterized by two
spiral waves along the different directions, the antisymmetric
spin polarization occurs for the two spin components on the
basis of the bilinear spin cross product in Eq. (3): One is
the y-spin antisymmetric polarization that arises from the Q1
spiral [(SQ1

× S−Q1
)y �= 0] and the other is the x-spin one

that arises from the Q2 spiral [(SQ2
× S−Q2

)x �= 0]. Then, one
finds that the total antisymmetric spin polarization in the band
structure is described by −kxσy + kyσx. Indeed, the functional
form of the antisymmetric spin polarization obtained by the
direct diagonalization is consistent with that by Eq. (3), as
shown in the right two figures in Fig. 3(a), where we also plot
the isoenergy surfaces at μ = 3.5 in the Brillouin zone in the
middle left panel for reference.

From the symmetry viewpoint, the functional form of
−kxσy + kyσx is the same as that induced by the Rashba-
type spin-orbit coupling under the polar point group where
the electric dipole moment is activated. This is reasonable,
since the real-space magnetic texture has the same symmetry
as the electric dipole moment along the z direction; spatial
inversion symmetry and mirror symmetry in terms of the
horizontal plane are broken. Thus, this mechanism to induce
the antisymmetric spin polarization is regarded as the inverse
antisymmetric spin polarization mechanism, which is analo-
gous to the inverse Dzyaloshinskii-Moriya mechanism [33].

2. Skyrmion crystal

We show the antisymmetric spin polarization in the double-
Q skyrmion crystal, whose spin configuration is given by

S̃i =
⎛
⎝

cos Q1 · ri

cos Q2 · ri

M̃z − sin Q1 · ri − sin Q2 · ri

⎞
⎠

T

,

Si = S̃i

|S̃i|
, (8)

where M̃z = 0.7. In contrast to the spin texture of the meron-
antimeron crystal in Fig. 3(a), the region with the positive
(negative) Sz

i extends (shrinks) owing to the introduction of
M̃z, as shown in the left panel of Fig. 3(b). As a result,
the skyrmion crystal exhibits the topological Hall effect. The
2Q skyrmion crystal appears in the ground state in itinerant
magnets [90,91] and in localized magnets [88,92].

The right three panels of Fig. 3(b) shows the isoenergy
surfaces at J = 0.1 and μ = 3.5, where the right two panels
show the spin polarization of the x- and y-spin components
at each wave vector. The behavior of the antisymmetric spin
polarization is similar to that in the meron-antimeron crystal
in Fig. 3(a). This is because the difference between the meron-
antimeron crystal and the skyrmion crystal is in the nonzero
uniform z-spin component while keeping the double-Q spiral
spin texture, which does not lead to a qualitative difference.
The same discussion holds when considering the double-Q
spin texture with large M̃z so that the spin texture has no
skyrmion number; the same antisymmetric spin polarization
in the form of −kxσy + kyσx occurs unless S̃x

i = S̃y
i = 0 in

Eq. (11).
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y
xz

(a) (b)

(c) (d)

FIG. 4. (a) Real-space spin configurations of the 2Q noncoplanar
state at b = 0.5 in Eq. (9). (b) The isoenergy surfaces at J = 0.1 and
μ = 3.5 in the Brillouin zone. [(c), (d)] The spin polarization of the
(c) y and (d) z components at each wave vector.

C. Other double-Q state

In the previous sections (Secs. IV A and IV B), we show
that the effective bilinear spin cross product under the
(multiple-Q) spiral orderings give rise to the antisymmetric
spin polarization in the band structure. In this section, we
present the situation where the magnetic orderings exhibit
the antisymmetric spin polarization in the presence of the
effective biquadratic spin cross product rather than the bilinear
one. For that purpose, we consider the following double-Q
spin configuration as

S̃i =
⎛
⎝

cos Q1 · ri

b cos Q2 · ri

− sin Q1 · ri − b cos Q2 · ri

⎞
⎠

T

,

Si = S̃i

|S̃i|
, (9)

where b is the variational parameter to represent the relative
amplitude of the second Q2 component. The spin configura-
tion in this state consists of the spiral along the Q1 direction
and the sinusoidal modulation along the Q2 direction with the
different intensities. The expression in Eq. (9) becomes equiv-
alent with that of the meron-antimeron crystal in Eq. (7) when
taking b = 1 and replacing cos Q2 · ri in the z-spin component
with sin Q2 · ri. Reflecting such a difference of the spin config-
uration from the meron-antimeron crystal, the real-space spin
texture is clearly different, as shown in Fig. 4(a). Here and
hereafter, we take b = 0.5.

Figure 4(b) shows the isoenergy surface in the 2Q non-
coplanar state in Eq. (9) at J = 0.1 and μ = 3.5, which is
similar to that in the meron-antimeron crystal in Fig. 3(a)
except for the regions around (kx, ky) = (π, π ). As the spin
texture includes the spiral along the Q1 direction, one finds
the antisymmetric spin polarization in terms of the y-spin

component, as shown in Fig. 4(c). The origin of this anti-
symmetric spin splitting is well accounted for by the effective
bilinear spin cross product under the Q1 spiral, as discussed
in Sec. IV A. Meanwhile, no antisymmetric spin polarization
occurs in terms of the x-spin component (not shown), since
the spin oscillation with the Q2 component is described by the
collinear(sinusoidal)-type oscillation.

Notably, we find that the antisymmetric spin polarization
in terms of the z-spin component, as shown in Fig. 4(d). The
origin of this antisymmetric spin polarization is understood by
the effective biquadratic spin cross product instead of the bi-
linear one, since the quantity (Sq1

× Sq2
)z(Sq3

· Sq4
) in Eq. (4)

becomes nonzero for (q1, q2, q3, q4) = (Q1, Q2,−Q1,−Q2)
with the k-dependent form factor G2

kGk+Q1
Gk+Q2

Gk+Q1+Q2
.

The above result clearly indicates that the resultant antisym-
metric spin polarization strongly depends on the way of a
superposition of the multiple-Q spin density waves. In other
words, detecting the antisymmetric spin polarization in ex-
periments, such as spin- and angle-resolved photoemission
spectroscopy, might be useful to deduce the constituent waves
in the multiple-Q states.

V. DISCUSSION

In this section, we discuss the candidate centrosymmetric
multiple-Q magnetic materials to exhibit the antisymmetric
spin splitting in Sec. V A and present the expected physical
phenomena driven by the momentum-dependent antisymmet-
ric spin polarization in Sec. V B.

A. Relevant materials

The expressions in Eqs. (3) and (4) can be straightfor-
wardly applied to complex noncollinear and noncoplanar
spin configurations. As an example, we apply the derived
expressions to the multiple-Q states observed in the f -
electron compound GdRu2Si2 [93,94]. The crystal structure
of this compound is the centrosymmetric tetragonal crystal
structure. The Lorentz transmission electron microscopy and
spectroscopic-imaging scanning tunneling microscopy mea-
surements have clarified three double-Q states: the double-Q
spiral state, the double-Q skyrmion crystal, and the double-Q
fan state from the low magnetic-field region. The theoret-
ical model calculations have indicated the real-space spin
configurations for three double-Q states are roughly given by

S̃i =
⎛
⎝

−b cos Q2 · ri

cos Q1 · ri

az sin Q1 · ri

⎞
⎠

T

,

Si = S̃i

|S̃i|
, (10)

for the double-Q spiral state,

S̃i =
⎛
⎝

− cos Q2 · ri

cos Q1 · ri

M̃z − sin Q1 · ri − sin Q2 · ri

⎞
⎠

T

,

Si = S̃i

|S̃i|
, (11)
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for the double-Q skyrmion crystal, and

S̃i =
⎛
⎝

− cos Q2 · ri

cos Q1 · ri

M̃z

⎞
⎠

T

,

Si = S̃i

|S̃i|
, (12)

for the double-Q fan state [90]. b, az, and M̃z are appropriate
constants depending on the magnetic field. The spin config-
uration of the double-Q skyrmion crystal is similar to that in
Eq. (11); the difference is found in the helicity.

Although all the three states are characterized by the
double-Q spin configurations, the resultant antisymmetric
spin polarization is different with each other: The double-
Q spiral state exhibits the antisymmetric spin polarization
in the form of kxσx, the skyrmion crystal shows the an-
tisymmetric spin polarization in the form of kxσx + kyσy,
and the double-Q fan state shows no antisymmetric spin
polarization. The difference of the antisymmetric spin po-
larization between three magnetic states is explained by
Eq. (3), which was confirmed by the direct diagonaliza-
tion of the Hamiltonian (not shown). Thus, the spin- and
angle-resolved photoemission spectroscopy measurement is
another experimental probe to distinguish the multiple-Q
spin textures including the helicity of the skyrmion crystal
in addition to the Lorentz transmission electron microscopy
and spectroscopic-imaging scanning tunneling microscopy
measurements.

The appearance of the antisymmetric spin polarization is
also expected in the other centrosymmetric multiple-Q mag-
nets, such as the skyrmion-hosting triangular and kagome
magnets [86,95,96] and the hedgehog-hosting cubic magnets
[97,98]. In addition, the relation between the spin cross prod-
ucts and the antisymmetric spin polarization can be extended
to noncentrosymmetric magnets. Although there are two con-
tributions from the spin-orbit coupling and the magnetic
orderings to the antisymmetric spin polarization in noncen-
trosymmetric magnets, the latter one occurs only below the
transition temperature. Thus, the comparison of the spin-split
band structures above and below the transition temperature in
experiments would provide information about the constituent
waves in the multiple-Q states. Such information will pro-
vide a clue to understand unidentified magnetic orderings
in GdSbxTe2−x−δ [99], EuAl4 [100–102], EuGa2Al2 [103],
EuGa4 [104], and EuPtAS [105].

B. Relevant physical phenomena

The antisymmetric spin polarization means an effective
coupling between the spin and the momentum in itinerant
electrons, which is called the spin-momentum locking [106].
Although the spin-momentum locking and its related physical
phenomena have been often discussed in noncentrosymmet-
ric nonmagnetic systems with the Rashba and Dresselhaus
spin-orbit interaction as discussed in the introduction, similar
physical phenomena can be expected in the present magnetic-
order-driven antisymmetric spin polarization. One of the
example is the Edelstein effect where the uniform magnetiza-
tion Mμ is induced by applying an electric current Jν [28], i.e.,

Mμ = ∑
ν αμνJν for μ, ν = x, y, z. The tensor αμν becomes

nonzero in the presence of the antisymmetric spin polarization
kνσμ. Another example is the nonlinear Hall effect on the basis
of the Berry curvature dipole mechanism [107,108]. In a sim-
ilar way, other physical phenomena induced by the inversion
symmetry breaking are found in the multiple-Q states with
nonzero Sq × S−q and (Sq1

× Sq2
)(Sq3

· Sq4
).

VI. SUMMARY

To summarize, we have investigated the antisymmetric
spin polarization in the band structure induced by the single-Q
and multiple-Q spiral orderings. By performing the pertur-
bation calculation with respect to the spin-charge coupling
in the classical Kondo lattice model, we find that effective
chiral-type bilinear and biquadratic spin cross products in mo-
mentum space are related to the antisymmetric spin-split band
structure in the absence of the relativistic spin-orbit coupling.
The obtained expressions indicate that the antisymmetric spin
polarization occurs in the spin component perpendicular to
the spiral plane and the momentum dependence is deter-
mined by the product of the Green’s function of itinerant
electrons. We demonstrate the presence of the antisymmetric
spin splittings in the single-Q state on the one-dimensional
chain and the three double-Q states, the meron-antimeron
crystal, the skyrmion crystal, and the noncoplanar state, on
the two-dimensional square lattice. We show that a way of
superposing the multiple spin density waves leads to a qual-
itatively different antisymmetric spin polarization. We also
discuss the relevant materials and physical phenomena under
the antisymmetric spin polarization induced by the magnetic
phase transitions.

The results open up a possibility of engineering the giant
antisymmetric spin splitting without relying on the relativis-
tic spin-orbit coupling [45,46]. The obtained expressions in
Eqs. (3) and (4) are applied to various itinerant electron
systems irrespective of the lattice and magnetic structures.
As the resultant antisymmetric spin polarization is qualita-
tively similar to that by the noncentrosymmetric nonmagnetic
system with the spin-orbit coupling, the emergence of the
Edelstein effect and the nonreciprocal transport is expected, as
discussed in Sec. V B. Thus, the present results will provide a
way of bottom-up design approach to realize parity-violating
physical phenomena on the basis of the spiral magnetic
textures.

A close relation between the real-space spin texture and
momentum-space spin polarization might provide a deep un-
derstanding of the multiple-Q magnetism. For example, it
is possible to obtain information about a way of superpos-
ing the spin density waves by detecting the spin-dependent
electronic band structure based on spin- and angle-resolved
photoemission spectroscopy. Such an indirect identification of
the magnetic textures through electric probes like the spectro-
scopic imaging scanning tunneling microscopy measurement
and the noncolinear magnetoresistance has been performed
in magnetic materials with complicated magnetic textures
[94,109–111]. The observation of the momentum-dependent
antisymmetric spin polarization would be also useful to un-
derstand the nature of the multiple-Q states in both real and
momentum spaces.
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