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Projected entangled pair states study of anisotropic-exchange magnets on the triangular lattice
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The anisotropic-exchange spin-1/2 model on the triangular lattice has been used to describe the rare-earth
chalcogenides, which may have exotic ground states. We investigate the quantum phase diagram of the model
by using the projected entangled pair state method, and compare it to the classical phase diagram. Besides two
stripe-ordered phases, and the 120◦ phase, there is also a multi-Q phase. We identify the multi-Q phase as a Z2

vortex state. No quantum spin liquid state is found in the phase diagram, contrary to the previous density matrix
renormalization group calculations.
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I. INTRODUCTION

Over the past few decades, frustrated magnets, which
can host nontrivial order and exotic quantum phases, have
attracted great attention. The nearest-neighbor triangular an-
tiferromagnet is a typical example of geometric frustration
magnets, where the lattice geometry precludes simultaneous
minimization of the energies of all bonds. Anderson proposed
that the ground state of the model is a quantum spin liquid
(QSL) state [1,2]. However, numerical calculations show that
the ground state is instead a 120◦ order state [3,4].

The bond-dependent anisotropic exchange can be an alter-
native approach to enhance the frustration effects, which may
lead to exotic quantum magnetic states. A famed example is
the Kitaev spin model on the honeycomb lattice [5], where
each bond with different spatial orientation carries a different
Ising-like interaction. An exact solution of this model shows
that the ground state is a QSL state with fractional spin exci-
tations. Very recently, a large family of rare-earth triangular
lattice materials, including YbMgGaO4 [6–13] and rare-earth
chalcogenide family NaYbCh2 (Ch = O, S, Se) [14,15], have
been synthesized and explored experimentally. In these mate-
rials, Yb3+ ions form a perfect triangular layer with effective
spin-1/2 local moments. Strong spin-orbit coupling (SOC)
introduces the anisotropic spin interactions, which provides
ideal platforms to explore the interplay of bond-dependent
exchange frustration and geometric frustration. Experimen-
tally [6–15], it has been demonstrated that these rare-earth
materials show no long-range magnetic order down to low
temperature, which have been proposed as promising candi-
dates as quantum spin liquids.

To understand the magnetic properties of the triangular
materials, a generic spin-1/2 spin model with anisotropic
exchange interactions on triangular lattice based on symmetry
consideration has been proposed in Refs. [8,16]. This model

*smhan@ustc.edu.cn
†helx@ustc.edu.cn

reduces to the Kitaev-Heisenberg (KH) model for certain
exchange parameters. Despite the model has been studied
intensively by various numerical and theoretical methods, in-
cluding the classical spin method [17–20], mean-field theory
[7,21], exact diagonalization (ED) [22], and density matrix
renormalization group (DMRG) method [17,23,24], the phase
diagram of the model is still illusive. Specifically, DMRG
calculations [17,23], as well as ED [22] calculations on small
clusters, show that there is a QSL region between the stripe
phases and the 120◦ phase. However, the QSL state calculated
by ED has a different parent state than that of the DMRG
result [23]. Meanwhile other DMRG [25] studies on the KH
model show that this region in the phase diagram actually has
a Z2 vortex ground state, instead of QSL. It is therefore very
urgent and important to know whether there is indeed a QSL
region in the phase diagram.

To clarify the phase diagram of the anisotropic exchange
spin-1/2 model on the triangular lattice, we perform high
accuracy projected entangled pair states (PEPS) calculations,
and compare the results to those of the classical simulations.
We explore the phase diagram of the model, and find the
stripe phases, 120◦ phase, and multi-Q phase in both quantum
and classical models. Most importantly, we identify that the
multi-Q phase, between the stipe orders and the 120◦ phase,
is a Z2 vortex state, which would not melt to QSL by quantum
fluctuation.

The rest of the paper is organized as follows. In Sec. II, we
introduce the anisotropic exchange model on the triangular
lattice, and the methods used in this work. We present the
phase diagram of the classical simulations in Sec. III A and the
phase diagram of the quantum model in Sec. III B. We discuss
more on the Z2 vortex state in Sec. III C and summarize the
work in Sec. IV.

II. MODEL AND METHODS

The generic nearest-neighbor spin-1/2 Hamiltonian, which
is invariant under symmetry group R3m, can be written as
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FIG. 1. (a) A schematic diagram of PEPS on a triangular lattice.
The thick solid lines represent the virtual bonds of the PEPS, whereas
the thin vertical lines are the physical indices of the PEPS. “A,” “B,”
and “C” in the figure denote the three sublattices of the triangular
lattice. ϕα = {0, 2π/3,−2π/3} for the bond along the primitive
vectors a1, a2, and a3, respectively. (b) The Brillouin zone of the
triangular lattice, where the squares denote the k points of a 12 × 12
lattice. �, K, M are the high symmetric points in the Brillouin zone,
and the X point is located on the line between the K and M points.

[8,16]
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Here Si refers to the spin-1/2 operators on site i,
and 〈i j〉 denotes a pair of nearest-neighbor spins. ϕα =
{0, 2π/3,−2π/3} are the angles between the lattice vectors
aα and the x axis [see Fig. 1(a)] in crystallographic axes. The
first term of Eq. (1) is the standard XXZ model and is invariant
under the global spin rotation around the z axis. The J±±
and Jz± terms define the bond-dependent anisotropic interac-
tions caused by the strong SOC, which break the rotational
symmetries of the Hamiltonian, but retain the time reversal
symmetry. In this work, we set J = 1, and Jz± take positive
values, because the phase diagram for −Jz± can be obtained
by a global π rotation around the z axis [16].

It is also natural to rewrite model (1) in the cubic axes.
When � = 1 and Jz± = 2

√
2J±±, model (1) is reduced to the

well-known KH model in the cubic axes [17]. More details of
the relation between model (1) and the KH model are given in
Appendix A1. Recent first-principles calculations show that
� is rather close to 1 in NaYbS2 (� = 0.980) and NaYbO2

(� = 0.889) [26]. Therefore, in this work, we focus on the
phase diagram in the case of � = 1.

We investigate the anisotropic triangular model (1), by us-
ing both the classical method and the quantum many-particle
method. In the classical simulations, the spins are treated as
unimodular classical vectors. We obtain the ground state of
the classical model on a 30 × 30 lattice by optimizing the
total energies via a replica exchange molecular spin dynamics
method [27–29], which can effectively avoid the system being
trapped in the local minima.

To investigate the phase diagram of the quantum model, we
employ the PEPS method. The ground state wave functions
are presented by PEPS on the N = Lx × Ly triangular lattices
with open boundary conditions, as schematically shown in

Fig. 1(a),

|�〉 =
d∑

s1···sN =1

Tr
(
As1

1 As2
2 · · · AsN

N

)|s1s2 · · · sN 〉, (2)

where tensor Asi
i = Ai(r, l, u, d, si ) is a five-index tensor lo-

cated on site i. si is the physical index and r, l, u, d are the
virtual bonds of the PEPS, with a bond dimension D. In this
study, all results are obtained by the PEPS with D = 8, unless
otherwise noted. To obtain a highly accurate ground state, the
PEPS wave functions are first optimized by the imaginary
time evolution with a simple update method [30], followed
by a stochastic gradient optimization method [31].

To distinguish different ordered states, we calculate the
spin structure factor (SSF) for each spin component,

Sν (q) = 1

N

∑
i j

eiq·(Ri−Rj )
〈
Sν

i Sν
j

〉
, (3)

where ν = x, y, z are the spin components and N is the to-
tal number of sites. The total SSF is the sum of the three
components. In Fig. 1(b), we show the Brillouin zone of the
12 × 12 triangular lattice, where the X point is located on the
line between the K and M points.

III. RESULTS AND DISCUSSION

A. Phase diagram of the classical model

The phase diagram of the classical simulations in the
Jz±-J±± plane is shown in Fig. 2(a) for �=1. There are
five different phases. On the left side of the phase diagram,
the ground state is of a stripe-x order, where the spins lie in the
x-y plane. In the top-right corner of the phase diagram, there
is another stripe-ordered phase, the stripe-yz phase, where
the spins are partially out of the x-y plane. In the vicinity of
Jz±, J±± ∼ 0, there is the 120◦ phase. The spin textures of the
120◦, stripe-x and stripe-yz phases are shown in Figs. 2(b)–
2(d), respectively. All these states are single-Q commensurate
states.

In the intermediate region of the phase diagram, multi-
Q phases become the ground states, in which the magnetic
moments are ordered at multiple Q vectors in the Brillouin
zone. One of the multi-Q phases, which surrounds the 120◦
phase, is the modulated 120◦ phase. The noncoplanar spin
configuration of the modulated 120◦ phase remains close to
the 120◦ configuration locally, but modulates at larger scale,
as shown in Fig. 2(e). The typical total SSF of the (classical)
modulated 120◦ phase is given in Fig. 10(a) of Appendix A 3,
which shows that the peaks of the total SSF move slightly
away from the wave vector K point, which is the ordering
vector of the 120◦ state.

In addition to the modulated 120◦ phase, there is another
multi-Q phase, which can be identified as a Z2 vortex state
by its real-space spin textures and SSFs. In Figs. 3(a)–3(c),
we plot the spin configurations in the three sublattices of a
30 × 30 lattice. The spin configurations of a given sublattice
consist of ferromagnetic (FM) domains and vortices. In the
region where one sublattice forms a FM domain, the spins
of the other two sublattices form vortices. More specifically,
when we trace a closed path around the center of the FM
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FIG. 2. (a) Classical phase diagram for model (1). On the red dot-
ted line (Jz± = ±2

√
2J±±), the anisotropic spin model (1), reduces to

the KH model. (b)–(e) The spin configurations of (b) the 120◦ phase,
(c) the stripe-x phase, (d) the stripe-yz phase, and (e) the modulated
120◦ phase. The arrows correspond to the projections of the classical
spins onto the x-y plane, whereas the color of spins indicates the
magnitude of Sz.

domain, the spins of the other two sublattices complete a
2π rotation around the center, i.e., the spin texture forms Z2

vortices. The parent state of the Z2 vortex state is also the 120◦
state, which has a similar local structure to the 120◦ state, but
forms a vortex on large scale.

When � = 1 and Jz± = ±2
√

2J±± [i.e., the two red lines
in Fig. 2(a)], model(1) reduces to the KH model in the cubic
axes [17], which has been extensively studied by various nu-
merical methods [18,19,32]. It has been shown that there is
a Z2 vortex state in both the positive and the negative Kitaev
interactions region of the KH model, which corresponds to
the positive and negative J±± regions in Fig. 2(a). To compare
our results with those of the KH model, we transform the spin
configuration of the Z2 vortex phase from the crystallographic
reference frame to the cubic frame [17] and recalculate the
SSFs of different spin components. Figure 3(d) shows the total
SSF, whereas Figs. 3(e)–3(g) show the SSFs of the x, y, and
z spin components, respectively. The peaks of the SSFs of the
three spin components move slightly away from the K points

along different directions. The SSFs are essentially the same
with those of the Z2 vortex phase in the KH model [18,19].
The results suggest that the Z2 state is stable in a quite large
parameter space beyond the KH model.

The anisotropic triangular spin model has been studied via
the instabilities of magnons [17]. Reference [17] also finds
a multi-Q phase in the case of � = 1, in which the magnon
spectra are softened at three symmetric k points in the im-
mediate vicinity of the � and K points. The phase has been
identified as the Z2 phase. However, in Ref. [17], the multi-Q
phase is proposed as a single Z2 vortex state, in contrast to our
results that there is also a modulated 120◦ state. Furthermore,
in Ref. [17], the magnons of the 120◦ phase at � = 1 are
unstable to any finite value of Jz±, which is in contrast to
our results that the 120◦ phase is stable when the anisotropic
interactions Jz± and J±± are small.

B. Phase diagrams of quantum model

In this section, we investigate the phase diagram of the
anisotropic triangular model quantum mechanically to under-
stand the effects of quantum fluctuation. The phase diagram is
shown in Fig. 4 for � = 1. Similar to the classical model, the
stripe-x phase and the stripe-yz phase are on the bottom-left
and top-right corner, respectively. In the intermediate region,
there is a 120◦ phase and a multi-Q phase.

The phase diagram is determined by the order parameters
M(Q)=√∑

υ Sν (Q)/N , where Sν (ν = x, y, z) is the νth SSF
of the spin component, and Q is the spin ordering vector. The
typical total SSFs for the 120◦, the stripe, and the multi-Q
states on the 12 × 12 lattice are shown in Fig. 7. The SSFs of
the 120◦ phase have peaks at the Q = K point, whereas the
SSFs of the stripe phases have peaks at the M point. The SSF
of a multi-Q phase has peaks around the X point, which lies
in line between the M and K points. The details to determine
the phase boundaries are given in Appendix A 2.

The stripe orders are trivial, and therefore will not be
discussed further in the paper. We will focus on the multi-Q
phase and the 120◦ phase in more detail.

Multi- Q (Z2 vortex) phase. In Sec. III A, we identify that
the multi-Q phase of the classical model with large anisotropic
interaction is a Z2 vortex state. To further determine the nature
of the quantum state, we plot the SSFs of the quantum state
in Figs. 5(a)–5(c) for the x, y, and z spin components at
J±± = −0.1, Jz± = 0.325 on a 15 × 15 lattice, respectively.
We compare the SSFs with those of the classical model shown
in Figs. 5(d)–5(f). Both results are computed in the crys-
tallographic reference frame. The SSFs of the x, y, and z
components show that the primary peaks of the quantum state
are essentially the same as those of the classical model, i.e.,
the x, y components of the SSFs are asymmetric with respect
to the �-M line, whereas the z component is symmetric with
respect to this line. Similar results were also reported for a Z2

vortex state in a DMRG study of the KH model [25]. These
results suggest that this multi-Q state is also a Z2 vortex state.

We note that previous DMRG calculations find a possible
QSL phase in the region of Jz± � [0.27, 0.45] and J±± �
[−0.17, 0.1] in the isotropic limit � = 1 [17,23], in contrast
to the Z2 vortex state obtained in this work. We note that
the DMRG calculations were performed on rather narrow
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FIG. 3. Spin configurations and SSFs of the classical Z2 vortex phase. (a)–(c) The spin configurations of three sublattices, where the spins
have been projected onto the x-y plane, and the yellow arrows point upwards out of the plane and blue arrows point downwards out of the
plane. (d) The total SSF of the Z2 vortex phase, calculated at J±± = −0.1, Jz± = 0.325 in the cubic axes, and (e)–(g) the SSFs of the x, y, and
z components.

cylinders. To further check the stability of the Z2 vortex
phase in this region, we perform more detailed calculations
using J±± = −0.1, Jz± = 0.325, which is in the center of
the possible QSL phase in previous DMRG studies [23], on
larger lattices. Figures 6(a)–6(c) depict the total SSFs obtained
by PEPS with D = 8 for the 15 × 15, 15 × 18, and 18 × 18

FIG. 4. The quantum phase diagram for model (1), including the
stripe-x, stripe-yx, 120◦, and Z2 vortex phases.

lattices, respectively. As we see, the SSFs show even sharper
peaks around the K points for the larger lattice. Figures 6(d)
and 6(e) show M(Q), the intensity of the primary peaks of the

FIG. 5. The SSFs of the quantum and classical Z2 vortex phases
in the crystallographic axes. (a)–(c) The SSFs of the x, y, and z
components of the quantum spin model at J±± = −0.1, Jz± = 0.325,
respectively. (d)–(f) The corresponding classical SSFs of the x, y, and
z components at the same point.
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FIG. 6. The total SSFs of the quantum spin model at J±± =
−0.1, Jz± = 0.325 on the (a) 15 × 15 lattice, (b) 15 × 18 lattice,
and (c) 18 × 18 lattice using bond dimension D = 8. (d) The in-
tensity M(Q) of the primary peaks as a function of 1/

√
N for N =

15 × 15, 15 × 18, and 18 × 18. (e) M(Q) as a function of 1/D for
D = 5, 6, 7, 8 on the 15 × 15 lattice. Extrapolations are performed
using linear fittings.

Z2 vortex state, as functions of 1/
√

N and 1/D, respectively.
A finite-size extrapolation shows that M(Q) still exists in
the thermodynamic limit, and M(Q) varies mildly with bond
dimension D (see also Fig. 9 for SSFs obtained by PEPS with
D = 5, 6, and 7 in the Appendix), which is finite as D → ∞.
These results suggest that the Z2 vortex phase is stable and
does not show any traces of melting in larger systems or using
larger bond dimensions. Therefore, we conclude that model
(1) has no QSL ground state or has only a very small QSL
region in the phase diagram.

120◦ phase. The most noticeable difference between the
phase diagrams of the classical model and quantum model,
is that the modulated 120◦ phase disappears in the quantum
model, and the region of the 120◦ phase is much larger than
that of the classical model. The (classical) spin wave results
also show that magnons in the � = 1 limit are unstable to any
finite value of Jz±, but the DMRG results show that the 120◦
state is stable for Jz± � 0.27 [17]. However, we find that the
120◦ state in the large anisotropic interactions Jz± and J±±
region, becomes unstable for larger systems. In Figs. 10(b)
and 10(c), we compare the total SSFs of the 12 × 12 and
15 × 15 lattices for J±± = −0.025 and Jz± = 0.225. Com-
paring to the SSF of the 12 × 12 lattice, the primary peaks
of the 15 × 15 lattice move away slightly from the K point.
The results suggest that the region of the 120◦ phase region
in thermodynamic limit is smaller than that shown in Fig. 4,
calculated on the 12 × 12 lattice.

C. Discussion

The Z2 vortex state is a distortion of its 120◦ parent state.
The interplay of bond-dependent anisotropic exchange and
geometric frustration is the key to induce the Z2 vortex phase
[33]. In the KH model, the distance between vortices increases
with decreasing anisotropic Kitaev interaction. Therefore, in

relatively small systems, the area of the Z2 vortex phase is
reduced, which suggests that a large system size is necessary
to detect the Z2 vortex state.

Our calculations show that the Z2 vortex state is stable in
the intermediate region between the 120◦ phase and the two
stripe phases, and the quantum fluctuations would not destroy
the classical Z2 vortex state. This is contrary to the DMRG
results which find a QSL phase in the region [17,23]. In the
anisotropic triangular model, the large coordination numbers
play vital roles to stabilize the classical magnetic orders,
despite the existence of bond-dependent exchange frustration
and geometric frustration [34].

The Z2 vortex state can be detected by small-angle neu-
tron or x-ray scattering methods and NMR. There are many
materials that can be described by model (1), including rare-
earth chalcogenide family NaYbCh2 (Ch = O, S, Se) [14,15],
YbMgGaO4 [6–13], iridate Ba3IrTi2O9, etc. These materials
can serve as a potential platform to observe the Z2 vortex
state.

We note that some experimental studies have found some
spin liquid signature in these materials, but our results suggest
that the nearest-neighbor interaction model in the triangular
lattice does not give rise to spin liquid phase. Additional
interactions might be important to describe these materials;
for instance, next nearest-neighbor interaction [26] or the in-
terlayer interactions [15].

IV. SUMMARY

We investigate the phase diagram of the quantum
anisotropic triangular model by using the PEPS method, and
compare it to that of the classical model. The results show
the quantum phase diagram is very similar to that of the
classical model. We identify the multi-Q phase between the
stripe phases and the 120◦ phase as the Z2 vortex state, which
is stable even under the quantum fluctuation. No quantum spin
liquid state is found in the phase diagram, contrary to the
previous DMRG calculations.
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APPENDIX

1. Kitaev-Heisenberg model

Many rare-earth magnets can support the Kitaev type of
bond-dependent exchange interactions, including the materi-
als of the honeycomb lattice, triangular lattice and pyrochlore
lattice built from edge-sharing octahedra [35,36]. In the rare-
earth compounds, such as YbMgGaO4 and NaYbCh2 (Ch =
O, S, Se), the layered triangular lattice structures are com-
posed of magnetic ions surrounded by edge-sharing octahedra
of ligands. The bonds of magnetic ions and ligands form
cubic shapes [17,35]. Following the choice of Ref. [17], the
transformation from the cubic to crystallographic reference
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FIG. 7. Typical total SSFs of the quantum model of (a) the
120◦ phase at J±± = 0, Jz± = 0.15; (b) the stripe phase yz at J±± =
0.2, Jz± = 0.2, and (c) the multi-Q phase for J±± = −0.1, Jz± =
0.25. The results are calculated on a 12 × 12 lattice.

frame, Scryst = R̂Scubic, is given by

R̂ =

⎛
⎜⎜⎝

0 1√
2

1√
2

−
√

2
3

1√
6

− 1√
6

− 1√
3

− 1√
3

1√
3

⎞
⎟⎟⎠. (A1)

The Hamiltonian (1) can be rewritten as the extended Kitaev-
Heisenberg model:

H =
∑
〈i j〉γ

[
J0Si · S j + KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)

+ �′(Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ

j + Sβ
i Sγ

j

)]
, (A2)

where {α, β, γ } = {y, z, x}, {z, x, y}, and {x, y, z}, for the
X bond, Y bond, and Z bond, respectively, and {X,Y,Z} ≡
{±a1,±a2,±a3}. In the �=1 limit, and along the line of
Jz± =2

√
2J±±, model (A2) reduces to the Kitaev-Heisenberg

model,

H =
∑
〈i j〉γ

J0Si · S j + KSγ

i Sγ

j , (A3)

where J0 =J + 2J±± and K =−6J±±.

2. Phase boundary of the quantum model

The typical total SSFs of the 120◦ phase, stripe phases,
and multi-Q phase are shown in Fig. 7 for the quantum spin
model. The SSFs are calculated on a 12 × 12 lattice via the
PEPS method. The SSFs are peaked at the K point, M point,

FIG. 8. The order parameters M(Q) as functions of J±± with (a)
Jz± = 0.25 and (b) Jz± = 0.35.

FIG. 9. The total SSFs obtained by PEPS with (a) D = 5 and (b)
D = 6 and (c) D = 7 for J±± = −0.1, Jz± = 0.325 on the 15 × 15
lattice.

and around the X point for the 120◦ phase, stripe phases, and
multi-Q phases, respectively. The values of the peaks can be
used as the order parameters of the phases.

To determine the phase boundary of the quantum model,
we scan the parameters in the J±±-Jz± plane with �=1, and
calculate the order parameters. Figure 8 depicts the order
parameters M(Q) at Q = M, K , X , as functions of J±± for
Jz± = 0.25 [Fig. 8(a)] and Jz± = 0.35 [Fig. 8(b)], respec-
tively. The results are obtained on the 12 × 12 lattice. These
results suggest that the intermediate region of the phase di-
agram is multi-Q phase, which can be further identified as
a Z2 vortex phase. There are first-order-like phase transitions
from the 120◦/multi-Q phases to the stripe phases, which are
consistent to previous DMRG study [23]. The phase boundary
between the multi-Q phase and the two stripe phases is close
to the boundary of classical results and classical spin-wave
results [17].

3. Additional results

Figure 9 shows the total SSFs obtained by the PEPS with
D = 5, 6, and 7 in the Z2 vortex phase, which are essentially
the same as those obtained by using D = 8 [see Fig. 6(a)].
Therefore, the PEPS with D = 8 is large enough to capture
the essential physics of the Z2 vortex state.

Figure 10 depicts the total SSFs calculated at J±± =
−0.025 and Jz± = 0.225. Figure 10(a) shows the SSF of the
classical model calculated on a 30 × 30 lattice, whose peaks
move slightly away from the K points. The SSF suggests that
the ground state is a modulated 120◦ phase. Figures 10(b)

FIG. 10. The total SSFs calculated at J±± = −0.025, Jz± =
0.225: (a) the SSF of the classical model, and (b),(c) the SSFs of
the quantum model calculated at the 12 × 12 and 15 × 15 lattices by
PEPS, respectively.
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and 10(c) depict the SSFs of the quantum model calculated
by PEPS on the 12 × 12 and 15 × 15 lattices, respectively.
For the 12 × 12 lattice, the peaks of the SSF are located
on the K points, suggesting that the ground state is a 120◦
phase. However, the SSF of the 15 × 15 lattice is simi-

lar to that of the classical modulated 120◦ phase, whose
primary peaks move slightly away from the K points, which
means that the 120◦ phase is unstable at this point. Therefore,
the region of the 120◦ phase should be smaller than that
calculated on the 12 × 12 lattice in the thermodynamic limit.
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