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We calculate the dynamic structure factor S(k,w) in the paramagnetic regime of quantum Heisenberg
ferromagnets for temperatures 7' close to the critical temperature 7, using our recently developed functional
renormalization group approach to quantum spin systems. In d = 3 dimensions, we find that for small momenta
k and frequencies w the dynamic structure factor assumes the scaling form S(k, w) = (tTG(k)/7 )P (ké, wt),
where G(k) is the static spin-spin correlation function, £ is the correlation length, and the characteristic timescale
T is proportional to £°/2, We explicitly calculate the dynamic scaling function ®(x, y) and find satisfactory
agreement with neutron scattering experiments probing the critical spin dynamics in EuO and EuS. Precisely
at the critical point where & = oo, our result for the dynamic structure factor can be written as S(k, w) =
() ' T.Gk)W, (w/wy), where w; o< k>/2. We find that W.(v) vanishes as v='%/° for large v, and as v3/> for
small v. While the large-frequency behavior of W, (v) is consistent with calculations based on mode-coupling
theory and with perturbative renormalization group calculations to second order in € = 6 — d, our result for small
frequencies disagrees with previous calculations. We argue that until now, neither experiments nor numerical
simulations have been sufficiently accurate to determine the low-frequency behavior of W .(v). We also calculate
the low-temperature behavior of S(k, w) in one- and two-dimensional ferromagnets and find that it satisfies

dynamic scaling with exponent z = 2 and exhibits a pseudogap for small frequencies.

DOI: 10.1103/PhysRevB.105.024403

I. INTRODUCTION

The spin dynamics of isotropic Heisenberg ferromagnets
for temperatures 7 at and slightly above the critical tem-
perature 7. has been investigated for many decades both
theoretically [1-19] and experimentally via inelastic neutron
scattering [20-25]. The central quantity of interest is the dy-
namic structure factor

Stk = 5 37 [ dre B s 05,00, (1L
ij v7®

where the spin operators S; are localized at the sites R;
of a Bravais lattice, the indices i, j=1,...,N label the
lattice sites, and the time evolution is in the Heisenberg pic-
ture. In dimensions d < 6, the calculation of S(k, w) in the
vicinity of the critical point of a Heisenberg ferromagnet
is challenging because the dynamics is dominated by non-
Gaussian critical fluctuations [4,8—10]. In the spirit of the
€ expansion of thermodynamic critical exponents via renor-
malization group (RG) methods [26], the critical dynamics
has been investigated for small € = 6 — d by applying a dy-
namic RG procedure to the relevant stochastic equations of
motion [8-10,13,14]. However, the problem is considerably
more complicated than the € expansion of critical exponents
because one is interested in the spectral line shape of S(k, w)
close to the critical point. Recall that according to the dynamic
scaling hypothesis [4,5] the dynamic structure factor for small
momenta and frequencies can be written in the scaling form

where G(k) is the static spin-spin correlation function, & is the
correlation length, 7 is a characteristic timescale, and ®(x, y)
is a dimensionless scaling function. To obtain meaningful re-
sults for the scaling function ®(x, y) within a perturbative RG
approach, some kind of interpolation procedure is necessary
which resums the € expansion [14]. Moreover, it is a priori not
clear whether an extrapolation to the physically relevant case
€ = 3 is possible. Nevertheless, satisfactory agreement be-
tween RG calculations to first order in € and neutron scattering
experiments [21] has been reported [14]. However, according
to Ref. [13], two-loop corrections corresponding to terms of
order € can significantly change the one-loop result for the
spectral line shape and it is not clear how even higher orders
in € would change the two-loop result for d = 3.

In principle, it should be possible to calculate the scal-
ing function ®(x, y) using modern functional renormalization
group (FRG) methods [27-32] which give flow equations for
momentum- and frequency-dependent correlation functions
and do not rely on the small parameter € = 6 — d; the present
paper is a step in this direction. In fact, in our recent work
on the spin dynamics of quantum paramagnets at infinite tem-
perature [33], we have used a variant of the FRG approach to
quantum spin systems developed in Ref. [34] to derive an inte-
gral equation of the imaginary-frequency spin-spin correlation
function G(k, iw) of Heisenberg magnets in the paramagnetic
phase. The latter is related to the dynamic structure factor via
the fluctuation-dissipation theorem:

TtGlk 11 ,
St o) = 290 ke wr), (12) Stk,w) = ————ImG(k, w +i0).  (1.3)
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As discussed in Ref. [33] and briefly summarized in the Ap-
pendix, in the paramagetic phase of a Heisenberg model, it is
convenient to parametrize the imaginary-frequency spin-spin
correlation function in terms of an energy scale A(k, iw)
(which we have called dissipation energy in Ref. [33]) as
follows:

) Ak, iw)
G(k, =Gk)————. 1.4
(k, iw) = G( )A(k, i) + o] (1.4)
The dissipation energy satisfies the integral equation
. 1 Vik, q)
Ak, iv) = — _—, 1.5
( ) N;A(q,zw)—l—la)l (1.5)
where the kernel is given by
Vk.q) = TG ()G (@IGg +k)Z(g. k)
+ Glg — k)Z(q, —k) — 2G(q)]. (1.6)
Here the vertex correction factor is
2
Z(q.k) =[1+3l/(qg + k) = J@IG(@)] . (1.7)

where J(k) is the Fourier transform of the exchange cou-
plings. In Ref. [33], we have explicitly solved the integral
Eq. (1.5) for various types of Heisenberg models at infinite
temperature, where the static spin-spin correlation function
can be calculated systematically via an expansion in powers
of 1/T. In this paper, we will solve Eq. (1.5) for an isotropic
Heisenberg ferromagnet for temperatures close to the critical
temperature 7T, including the critical point 7 = T,. Using the
fluctuation-dissipation theorem Eq. (1.3), we then obtain the
dynamic structure factor in the critical regime of a Heisen-
berg ferromagnet. The necessary analytic continuation to real
frequencies can be trivially performed because our integral
Eq. (1.5) is local in frequency.

An alternative method to obtain the spin dynamics of
Heisenberg magnets is based on the so-called mode-coupling
theory [35-38], where one derives an approximate integral
equation for the Kubo relaxation function [39] which is local
in the time-domain and hence nonlocal in frequency space.
The structure of our integral equation is therefore very differ-
ent from the integral equation for the Kubo relaxation function
of mode-coupling theory. In fact, the locality in frequency
considerably simplifies the solution of our integral Eq. (1.5). It
is therefore not surprising that in some regimes our result for
S(k, w) differs from the predictions of mode-coupling theory.
Because both mode-coupling theory and our approach based
on truncated FRG flow equations are approximate, it is a
priori not clear which method gives more accurate results
in the critical regime. In this paper, we will explicitly solve
Eq. (1.5) in the critical regime of a Heisenberg ferromagnet
and compare our results with perturbative RG calculations
based on the € expansion, with mode-coupling theory and
with experiments.

II. DYNAMIC STRUCTURE FACTOR
IN THREE DIMENSIONS

In this section, we consider a spin-S Heisenberg ferro-
magnet with short-ranged exchange on a three-dimensional
Bravais lattice with cubic symmetry and lattice spacing a. The

Hamiltonian can be written as

1
H == EZJijSi Sj

ij

2.1

For a nearest-neighbor coupling on a simple cubic lattice, the
corresponding Fourier transform of J;; reads

J(k) = —2J[cos(kca) + cos(kya) + cos(k.a)], 2.2)

where J > 0 for a ferromagnet.

A. Scaling regime above the critical temperature

To solve the integral Eq. (1.5) for the dissipation energy
Ak, iw), we need the static spin-spin correlation function
G(k), which can be written as

1
J (k) + 2(k)’
where X (k) is the static irreducible self-energy. With this

definition, the kernel V (k, g) defined in Eq. (1.6) can also be
written as

Gk) = (2.3)

G
Vik,q)=TG ' ()G(g+ k)[%[l(q +h) = J(@P

+3(q)—-2(@q+k)+ (k— —k):|. 24
In three dimensions, we may neglect the momentum depen-
dence of the self-energy, which amounts to setting

(k) ~ £(0). 2.5)

This approximation is incompatible with the finite value of
the anomalous dimension 7 at the critical point. However,
in three dimensions the numerical value of n &~ 0.027 for
the Heisenberg universality class [40] is rather small, so the
finite value of n has almost no practical consequences. With
the approximation Eq. (2.5), the kernel V (k, ¢) in Eq. (2.4)
simplifies to

T
Vik,q) = ZG_I(k)G(q +R)G@ (g + k) — T (@

+ (k= —k). 2.6)

Since we are only interested in the dynamic structure factor
for small momenta ka < 1 and frequencies w < J, we may
expand the Fourier transform of the exchange coupling J (k)
to quadratic order in k,

J(k) = J(0) + J"(ka)* + O(k*), 2.7)

where for a ferromagnetic nearest-neighbor coupling on a
cubic lattice J(0) = —6J and J” =J. The approximation
Eq. (2.7) is justified for |T — T.| < T, in dimensions d < 6
because, in this case, the leading singular contribution to the
static susceptibility G(k) is dominated by small momenta;
the limits of momentum integrations can then be extended to
infinity as long as the relevant integrals are ultraviolet con-
vergent. In this approximation, the static spin-spin correlation
function G(k) assumes for ka < 1 the Ornstein-Zernike form

X

Gk) = Tr R

2.8)
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where
_
J(0) + X(0)

is the uniform susceptibility and the square of the correlation
length & is given by

x =60)= (2.9)

£ = pox, (2.10)
with the bare spin stiffness
po =J"d%. (2.11)

Note that at the critical temperature, J(0) + X(0) = 0 and
hence £ = oco. If we approximate the static self-energy by
its leading high-temperature expansion, 3(0) ~ 3T /(S(S +
1)), we obtain the usual mean-field estimate for the crit-
ical temperature, 7. =~ |J(0)|S(S + 1)/3. Substituting the
Ornstein-Zernike form Eq. (2.8) for the static spin-spin corre-
lation function into our approximate expression Eq. (2.6) for
the integral kernel V (k, q), we obtain

Tpo [1+ (k§)*1[K* + 2k - q1°8”

+ (k —k).
4 @@+ ktqrer TE= 0

(2.12)
In d dimensions, our integral Eq. (1.5) for the dissipation
energy then reduces to

Vik,q)=

Atk iw) = 2P0 4o d'q [1+ (k&)’1IK* + 2k - q1°€>

T2 Q) [1+ (g&)2[1 + (k + q)2&2]
1

_— 2.1

* A i) + ol (2.13)

where v is the ratio of the volume of a single primitive unit cell
to the volume a“ of the conventional unit cell. Introducing the
characteristic timescale

2
TvJ”

where z = 1 4+ d/2 is the dynamic exponent, the dissipation
energy can be written in the scaling form

Ak, iw) = T 'AKE, iwT),

(&/ay, (2.14)

T =

(2.15)

where the dimensionless scaling function A(x, iy) satisfies the
integral equation

dér x*+2x-r)?
2m) (14 r2)[1 + (x +r)?]

A(x,iy) = [1+ x2]/ (

1
X —————, (2.16)
A(r, iy) + [yl
which can also be written as
AGriy) = [1 4+ 2]/ dir x2 X24+2x-r
X, 1y) = X —
Y Cmy | T+72 1+ @x+rp
1
X — 2.17)
A(r, iy) + |yl

The corresponding scaling form of the imaginary-frequency
spin-spin correlation function is

A(kE, iwT)

Glk, i) = G oD T ol

(2.18)
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FIG. 1. Scaling function A(x,iy) of the dissipation energy
A(k, iw) defined via Eq. (2.15) in d = 3 obtained from the numerical
solution of the integral Eq. (2.22) and divided by x?[1 + x]. We plot
A(x, iy)/(x*[1 + x2]) because this ratio depends only weakly on x.

Substituting this into the fluctuation dissipation theorem
Eq. (1.3), we conclude that for small frequencies, where
! ~ 1 (2.19)
l—eeT o '
the dynamic structure factor can be written in the scaling form
TGk A(KE, i0
S(k. w) = &) (k& M.Jrl ).
A(kE, wt 4+ 10) — iwT
Obviously, this has the scaling form anticipated in Eq. (1.2)
with scaling function

] (2.20)

A(x, y + i0) ] 221

A(x,y+i0) —iy |’
To explicitly calculate the scaling functions in three dimen-
sions, we note that in this case the angular integration in

Eq. (2.16) can be carried out exactly so A(x, iy) can be cal-
culated by solving the one-dimensional integral equation

1 +)C2 /ood V2 x2
r
272 J, A(r,iy) + |yl [ 1+ 72

1+7 1+ |r+x?
1 —1(. 222
+ 4xr n<l—i—|r—x|2 (2.22)

d(x,y) = lIm|:
y

Ax, iy) =

In Fig. 1, we present our numerical results for A(x, iy) as a
function of y for different values of x. The corresponding scal-
ing function ®(x, y) of the dynamic structure factor given in
Eq. (2.21) is shown in Fig. 2. For large values of x = k&, the
dynamic structure factor exhibits a peak with finite width and
dispersion @y oc k*/2. To see this more clearly, it is convenient
to express the scaling functions in terms of the ratio

y T w

== = = —, 2.23
xt o (k€Y o 223
with the characteristic frequency
k 4
wp = (k8) = wy(ka)?, (2.24)
T
and the nonuniversal energy scale w, defined as
TvJ”

w, =, 1; . (2.25)
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®(x,y)

0.8 1

FIG. 2. Scaling function ®(x, y) of the dynamic structure factor
S(k, ) defined via Eq. (1.2) in d = 3 as a function of the dimen-
sionless frequency y = wt for different values of the dimensionless
momentum x = k&.

Eliminating y = wt in favor of v = w/wy as an independent
variable, we can write the scaling forms of the dissipation
energy and the dynamic structure factor as follows:

Ak, iw) = wpB(kE, iw/wy), (2.26)
TGk
Sk, w) = naik)\ll(ké, o/ wy). (2.27)

Comparing these definitions with Egs. (2.15) and (1.2), we see
that

B(x,iv) = x *A(x, ivx%), (2.28)

Y(x, v) = x*®(x, vx°). (2.29)

The relation Eq. (2.21) implies that the scaling function
W(x, v) can be expressed in terms of B(x, v + i0) as follows:

(2.30)

w(x,v)zllm[ B(x, v +i0) ]
V

B(x,v+i0)—iv |
Substituting r = xp in Eq. (2.22), we find that in three dimen-
sions, where z = 5/2 the scaling function B(x, iv) satisfies the

integral equation

B(x, iv)

1+x? /oo p?
2m2x2 J P*B(xp,iv/p?) + |v|
x? 1+x202  (1+x%p+ 12
X + 1 -1
1 +x2p2 4x2p 1+ x%[p — 1
(2.31)

Numerical results for the scaling functions B(x,iv) and
W(x, v) in three dimensions are shown in Figs. 3 and 4. Note
that the peak position of W(x, v) approaches a finite value for
x> 1, implying that & o k> indeed can be identified with
the dispersion of an overdamped critical mode.

o
W
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I N
N o
T T
. .

x512B(x,iv)/(x2[1 + x2])
o
=
[6,]

FIG. 3. Scaling function B(x,iv) of the dissipation energy
A(k, iw) defined via Eq. (2.28) in d = 3 obtained from the nu-
merical solution of the integral Eq. (2.31). We plot the ratio
B(x, iv)/(x*?[1 + x?]) (which is the same as A(x, ivx?)/(x*[1 +
x%])) because this quantity exhibits again a relatively weak depen-
dence on x.

B. Spin diffusion close to the critical point

For hydrodynamic frequencies |y| < 1, we may approxi-
mate A(x, iy) ~ A(x, 0) in Eq. (2.22) which then reduces to

1+)C2 /ood I"2 X2
w2 )y VAo 1+

1+ 72 1+ |r+x?
1 —-1]. .32
+ 4xr n(1+|r—x|2) ( )

A()C, 0) =

Assuming, in addition, |x| <« 1 corresponding to hydrody-
namic momenta we obtain

A(x, 0) = Axx® + O(x"), (2.33)

where from the numerical solution of the integral Eq. (2.32),
we find A, ~ 0.078 in three dimensions. We conclude that to
leading order in k¢ < 1 and wt « 1 the dissipation function
is given by

(k&) _

Ak, iw) ~ Ay——
T

Dk?, (2.34)

W(x,v)
w

FIG. 4. Scaling function W(x, v) of the dynamic structure factor
S(k, w) defined via Eq. (2.29) as a function of the ratio v = w/w; for
different values of the dimensionless momentum x = k§.
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with spin-diffusion coefficient

2 Tv]" a2
D:Azg— =A2‘l — =
T 2 ¢la)T

In particular, for d = 3 we find that the spin-diffusion coef-
ficient vanishes for T — T, as £~/2 oc x~!/4, in agreement
with Ref. [2] and with the prediction of dynamic scaling in
the hydrodynamic regime [4]. Note that the older theory by
Van Hove [1] predicts D o< £ 72 o« x ', which corresponds to
the dynamic exponent z = 4; it turns out that for isotropic fer-
romagnets, the Van Hove theory is only valid for dimensions
above the upper critical dimension d. = 6.

Within the approximation Eq. (2.34) the dynamic structure
factor exhibits a diffusive zero-energy peak

(2.35)

1 .

Gk) 1 Di2
| —eolT g ka2 —iw
_Tx Dk?
T n (D4 o?

Sk, w) =

(2.36)

Corrections to hydrodynamics can be obtained by retaining

the leading y-dependence of the scaling function A(x, iy) of

the dissipation energy. For d = 3, we obtain
Ax, iy) = Ax, 0) + A1 (0)ly[2 + O), (2.37)

which can be seen by writing under the integral in Eq. (2.22)

! L [1— bl } 2.38)
A(r,iy) +yl A iy) A(r, iy) + |yl

and noting that for |y| < 1 the second term on the right-hand
side becomes singular so that the integral can be restricted
to the regime r < O(|y|'/?). Note that for sufficiently large
momenta x = O(1), the narrowing of the scaling function
W(x, v) of the dynamic structure factor shown in Fig. 4 for
v K x7¢, which is accompanied by a finite minimum at v = 0
and symmetric maxima at finite v, can be explained in terms
of the nonanalytic correction in Eq. (2.37) with a negative
Aj(x) in this regime. In the opposite limit of small x, the
function W(x, v) exhibits only a single maximum at vanishing
frequency which is related to the fact that in this regime
the sign of A;(x) is positive. The latter behavior of A;(x) is
illustrated in Fig. 1 for the case x = 0.09.

According to Fogedby and Young [12], at high tempera-
tures (i.e., in the noncritical regime) the leading nonanalytic
frequency dependence of the generalized diffusion coefficient
D(w) of a paramagnetic spin system is in three dimensions
proportional to @*?. Our result Eq. (2.37) in the critical
regime implies a larger w'/? correction which is nevertheless
negligible in the strict hydrodynamic limit [11,12,36] given
by the prescription x = k& — 0 and y = ot oc x> — 0, im-
plying that the leading correction to the dissipation energy
Ak, w < k%) scales as k. In the momentum-time domain,
this limit corresponds to arbitrarily small momenta and long
times ¢ that are constrained by constant Dk’¢. The Fourier
transform S(k, t) of the dynamic structure factor to the time

domain is then dominated by the diffusion pole in Eq. (2.36):

00 iwt 2

Sk, 1) o / dw% o e~ PF1, (2.39)
o Dk +w

On the other hand, if we fix momentum k and consider
the limit of arbitrary small frequencies or long times, the
nonanalytic term of order |y|'/? in Eq. (2.37) dominates the
asymptotics because it implies a branch point at vanishing fre-
quency. In the time domain, the presence of this term produces
a purely algebraic contribution ~(Dk?¢)~3/2, which decays
much slower than the exponential generated by the diffusion
pole. Given the fact that the nonanalytic term A; (x)|y|'/? ex-
ists for arbitrary x = k&, the general long-time asymptotics in
the time domain is proportional to [A(x, 0)t]73/2. From this,
we conclude that in three dimensions the on-site autocorrela-
tion function decays for t — oo as

(8:(0) - 8i (1))

: (2.40)

1 _
= ZS(k, 1)~ Ct 32,
k

where the value of C; is not only determined by the diffu-
sion pole but also by the leading nonanalytic correction in
Eq. (2.37) [41].

Nonhydrodynamic corrections to diffusion have been dis-
cussed previously in the literature [11,12,36]. However, in
these works the nonanalytic terms appear as functions of
D'k* — iw with D' < D, so the branch points occur at finite
frequencies for k # 0. As a result, the branch-cut contribution
to S(k,t) contains an additional exponential modulation on
top of the power-law tails, which is absent in our approach.

C. Scaling at the critical point

Precisely at the critical point, k§ = o0, so it is convenient
to express the dissipation energy and the dynamic structure
factor in terms of v = y/x* = w/wy, see Eqs. (2.26) and
(2.27). Setting x = oo in these expressions and defining the
critical scaling functions

B.(iv) = B(co, iv), (2.41)

W, (v) = W(oo, v), (2.42)

the dissipation energy and the dynamic structure factor at the
critical point can be written as

Ak, iw) = oxB.(io]wy), (2.43)
T.G(k
Sk, w) = m(k )\Ifc(a)/a)k). (2.44)

In Figs. 5 and 6, we show our results for the critical scaling
functions B.(iv) and W.(v) in three dimensions. Taking the
limit x — oo in the integral Eq. (2.31) for the scaling function
B(x, iv), we find that for d = 3 the critical scaling function
B_(iv) satisfies the integral equation

1 oo
0

3 1
w1+ Zm|2 Z 2| as)
2 p—1

1
P :
P*B.(iv/p?) + |v]
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FIG. 5. Critical scaling function B.(iv) of the dissipation en-
ergy A(k, iw) defined via Eq. (2.43) for d = 3. Given the fact that
B.(iv) is proportional to |v|~>/ for large and for small |v|, we plot
[v[*°B.(iv).

where z = 5/2. The asymptotic behavior of B.(iv) for small
and large v can be easily obtained without explicitly solving
the integral Eq. (2.45). Keeping in mind that the integral in
Eq. (2.45) is cut for p < |v|'/%, we obtain in the regime |v| <
1 to leading order

B.(iv) ! /Dod !
)~ — s
W om2 Jy P oBuiv/ ) + vl

[p|!/et /‘X’d sz
= R ——
272z J, B.(issgnv) + |s|

By

= |v|_3/5’ for [v| — O, (2.46)
where
1 oo S_2/5
By = —2/ ds———. (2.47)
572 Jo B (issgnv) + |s|

In the opposite limit |[v| >> 1, we may expand the term in the
last line of Eq. (2.45) to leading order for large p:
3

0

p+1
14+ —1
+2n

p—1

(2.48)

4
‘ —p’= 3+ o(1/p%).

We(v)

\

FIG. 6. Critical scaling function W.(v) of the dynamic structure
factor S(k, w) defined via Eq. (2.44) for d = 3.

It follows that for large |v| the scaling function B.(iv) has a
similar asymptotic behavior as for small |v| with a different
prefactor,

By~ 2B 2.49

c(iv) §|v|_3/5’ or |[v| — oo. (2.49)
According to Eq. (2.30), the corresponding line shape of the
dynamic structure factor is given by the critical scaling func-
tion

(2.50)

\pc(v):%hn[ B.(v + i0) }

B.(v +i0) — iv

Our result Eq. (2.49) for large |v| implies that for large
frequencies w > wy  k>/2, the dynamic structure factor at
the critical point of a three-dimensional ferromagnet exhibits
a non-Lorentzian decay,

Stk,w) x 0w 5, w— oo, (2.51)

in agreement with previous calculations [3,13]. Note that a
Lorentzian line shape decays for large frequencies as w2,
implying a larger tail than predicted by Eq. (2.51). The
non-Lorentzian high-frequency tail can also be observed for
T > T. in the regime (w/w,)"/* > max{(£/a)~", ka}, which
is equivalent with the condition v > max{x~', 1}, as can
be inferred from the integral Eq. (2.31) for B(x, iv).

On the other hand, for small frequencies, our result

Eq. (2.46) implies
Stk #0, w) x w3,

w— 0,

(2.52)

which contradicts previous findings from mode-coupling
calculations [3,7,16] and perturbative RG calculations
[13,14,19], using an extrapolation of a truncated expansion
in powers of € = 6 — d to the physically relevant case € = 3.
Both methods predict a finite value of S(k, Q) at the critical
point, corresponding to a finite limit of the scaling function
B.(iv) for v — 0. The nonanalytic behavior of B.(iv) given
in Eq. (2.46) predicted by our approach leads to a broad hump
in the spectral line shape centered at v &~ 0.2 and a pseudogap
[42] for smaller frequencies, as shown in Fig. 6. Note that the
concept of a pseudogap has been used in literature on high-
temperature superconductors to describe the low-frequency
suppression of spectral weight observed in magnetic scat-
tering [42]. In the same sense, the low-frequency feature
described by Eq. (2.52), i.e., the (nonanalytic) suppression of
S(k, w) for o — 0, can be called a pseudogap.

The corresponding momentum dependence of S(k, w) at
the critical point is shown in Fig. 7. It is convenient to measure
momenta in units of k,, defined by

(2.53)

which is equivalent with k,a = (w/w,)"/?. From Eq. (2.44),
we see that the momentum dependence of the dynamic struc-
ture factor at the critical point is proportional to the scaling
function

T.(p) = p 20 (p7%),

where p = k/k, = v~'/%. Due to the conservation of total
spin, for fixed w # 0 the dynamic structure factor exhibits a

(2.54)
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FIG. 7. Scaling function W,(p) defined in Eq. (2.54) describing
the momentum dependence of the dynamic structure factor at critical
temperature.

peak at finite momentum. The asymptotic behavior for v < 1
implies that

Stk,w #0) x k*, k— 0, (2.55)

in agreement with previous calculations [3,7,13,14,16,19].
Note that a Lorentzian profile would imply S(k, ) oc k'/2.
On the other hand, for large momenta k > k,, we find that
S(k, ) decays as k~°, which disagrees with the k=/> be-
havior corresponding to a Lorentzian and the more intricate
line shapes of mode-coupling theory and perturbative RG
calculations [3,7,13,14,16,19].

D. Comparison with previous calculations

As already shown in Fig. 6, the pseudogap in the spectral
line shape w < w; with the nonanalytic frequency depen-
dence given in Eq. (2.52) disagrees with the results of previous
theoretical investigations using either mode-coupling theory
[3,7,16] or perturbative RG methods [13,14,16,19], based on
a low-order expansion in powers of € = 6 — d. Both methods
give a finite value of S(k, 0); in fact, from the extrapolation
of a RG calculation using a truncated € expansion to order
€2, it has been found that S(k, w) assumes a unique maximum
at vanishing frequency [13]. A possible explanation of this
discrepancy is that, at least for d = 3, our approach is simply
not valid for small frequencies w < wy, so the pseudogap
in the spectral line shape predicted by our approach in this
regime is an unphysical artefact of our approximate method.
On the other hand, mode-coupling theory also uses a number
of uncontrolled approximations, while the validity of the ex-
trapolation of a low-order expansion in powers of € = 6 — d
to the physically relevant case € = 3 is questionable.

In principle, this problem can be clarified by means
of large-scale numerical simulations. Unfortunately, numer-
ical spin dynamics calculations of the critical line shape of
isotropic ferromagnets performed many years ago by Chen
and Landau [17] do not cover the relevant regime of arbi-
trarily small momenta. More recent numerical spin dynamics
results are available only outside the scaling regime [18] and
give evidence for the existence of well-defined paramagnetic
spin waves with sufficiently short wavelengths in Heisenberg
ferromagnets. In this context, a one-peak structure at long

wavelengths, in line with previous investigations, was indeed
mentioned by the authors of Ref. [18] although an actual line
shape was never shown. Apparently, the results for the scaling
regime were at this point assumed to be converged and interest
in this particular problem has waned. In a subsequent review
[19] on critical dynamics, no allusion to this calculation was
made and the statement of Ref. [17] regarding the absence of a
controlled numerical result for S(k, w) was repeated again. In
spite of the situation being still somewhat ambiguous, it is fair
to say that so far there is no numerical evidence supporting
the nonanalytic vanishing of S(k, @) for @ — 0 obtained by
our calculation. This suggests that the pseudogap feature is
simply an artifact of our method. Nevertheless, as shown in
the following subsection, in spite of the (perhaps) unphysical
pseudogap feature, our approach leads to a satisfactory agree-
ment with available experiments.

E. Comparison with experiments

In Refs. [23,24], experimental results for the neutron scat-
tering cross section at the critical temperature 7, = 69.25 K
of the magnetic insulator EuO have been presented. This
material is well described by a Heisenberg ferromagnet
with nearest- and next-nearest-neighbor exchange interactions
Ji =1.21K and J, = 0.24K [20] on a face-centered cubic
(fce) lattice with lattice spacing a = 5.12 A. Note that for a
fcc lattice, the ratio of the volume of the primitive unit cell to
the volume of the conventional unit cell is v = 1/4. To com-
pare the experimental data with our theoretical predictions
presented above, we should take the finite energy resolution
8, of the experiment into account. This can be achieved by
convoluting our theoretical prediction for S(k, w) with the
experimentally relevant resolution function E (w) such that the
experimentally measured neutron scattering cross section is
proportional to

Scon(k, w) = /OO do'E(w — o")S(k, @). (2.56)

Usually, E (w) is chosen to be a Gaussian with width §,,,

wZ

1

2182 exp [ 283)]'
The experimental resolution in the experiment by Boni et al.
[24] is &, = 0.05 meV. Intuitively, it is clear that the pseudo-
gap for w < wy predicted by our theory can only be resolved
experimentally if the relevant energy scale wy is large com-
pared with the experimental resolution §,. Below we show
that this is not the case, so the experimental data of Ref. [24]
cannot resolve a possible pseudogap.

Following the procedure described by Boni et al. [24]
where elastic (w = 0) nonmagnetic scattering is subtracted,
we make the following ansatz for the experimentally observed
neutron scattering intensity at constant momentum:

E(w) = (2.57)

Ii(w) = CScon(k, ®) + B. (2.58)

Here the normalization constant C and the background B are
fit parameters; moreover, we use also the characteristic energy
scale wy; in our scaling functions as a fit parameter. After
fixing C and wy via a x? fit, we compare the data at constant
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FIG. 8. Fit of our theoretical prediction for the convoluted neu-
tron scattering intensity given by Eq. (2.58) to the experimental
neutron scattering intensity at constant wave vector k = 0.15 A~!
displayed in Fig. 2 of Ref. [24]. As discussed in the text, we have
omitted data at small frequencies w < I'y = 0.072 meV. Since in
Ref. [24] the experimental error was given only for a few points,
we have estimated the remaining errors by assigning identical error
bars to groups of adjacent points.

frequency o with

Z,(k) = CScon(k, ) + B, (2.59)

where the background B’ is the only remaining free parameter.
In Fig. 8, we show a fit of our result for the convoluted neutron
scattering intensity given by Eq. (2.58) to the measured data
displayed in Fig. 2 of Ref. [24] with k = 0.15 A~!. Given
our expectations regarding the applicability of our results, for
the fit we have included only data with frequencies in the
regime w 2, 'y, where [';, &~ 0.072 meV is the experimentally
determined linewidth for a Lorentzian [6,23,24]:

Tk

(2.60)
Note that in the analysis of the experimental data, a heuris-
tic modification of the simple Lorentzian was initially used
[21,23] which separates the data by the same criterion to ac-
count better for the data at large frequencies. Later, this ansatz
was replaced by the interpolation formula from asymptotic
RG calculations [13,14], which in fact predicts a shape similar
to the empirical ansatz. Obviously, the convoluted spectral line
shape in Fig. 8 exhibits only a central peak, i.e., the pseudogap
for small frequencies predicted by our theory is not visible due
to the rather large experimental resolution. The obtained value
for the characteristic frequency w; = 0.222 meV is some-
what larger than our theoretical prediction wy = 0.158 meV if
we use accepted values for the bare stiffness J” = J; + J, =
1.45 K. The background B ~ 31 counts is not too far off from
the fixed value B = 28, where the latter is extracted from
the measured scattering at low temperatures [24] and is also
obtained by fitting the data to the result of asymptotic RG
theory [13,14]. In fact, the fit parameters C and w; do not
significantly change if we choose B = 28. We conclude that
the experimental line shape for not-too-small frequencies is
quantitatively explained by our theory. In contrast, an attempt
to fit the data with a Lorentzian line shape overestimates the
spectral weight in the high-frequency tails.

Wi = 0.177 meV 1

I(w) [counts / 4.5 min]

w [meV]

FIG. 9. Fit of our theoretical prediction for the convoluted neu-
tron scattering intensity given by Eq. (2.58) to the data at constant
wave vector k = 0.15 A~! displayed in Fig. 2 of Ref. [24].

For completeness, we also show in Fig. 9 a fit of our theory
to the full set of data. The characteristic frequency now comes
out smaller w; = 0.177 meV and agrees much better with
the theoretical value w; = 0.158 meV. The larger ratio 6,,/wy
implies a smoother and slimmer line shape around @ = 0. The
larger background B ~ 37 counts necessary for the fit might
indicate that for small frequencies our theoretical approach
does not correctly account for the data.

Another way to test the consistency of our results with
experiments is to compare scans at constant energy transfer,
described by Eq. (2.59), which are much more sensitive to the
precise form of the line shape due to the shape dependence
of the peak position k.(w). In our case, we find k,(w)a ~
[3.25 w/w,]*? < kya, where the microscopic energy w; is
defined in Eq. (2.25), and a half width Ak(w) = 0.5 k,(w). For
a Lorentzian with I'" = I'y(ka)~>/? (where I'" = 0.139 meV
for EuO), the peak position is k,(w)a = [a)/(SF’)]Z/5 with
Ak(w)/k«(w) = 1.57. This should be compared with the re-
sults of asymptotic RG calculations [14], which give for
the peak position k,(w)a = [w/(1.317)]*/> and for the width
Ak(w)/k«(w) = 0.75. Using our result from the fit to the scan
at constant momentum, we have w, = 0.429 meV =~ 3I",
which implies that our predicted peak positions are about 15%
larger than the RG result [14,24], whereas for a Lorentzian the
peak positions are about 30% smaller. In Fig. 10, we show a
fit of our theoretical prediction to the data at fixed frequency
w = 0.3 meV presented in Fig. 3 of Ref. [24], where we
restricted ourselves to small momenta ka < (w /I”)z/ 5 (corre-
sponding to the upper limit ka < 1.36). The fitted background
B’ ~ 92 counts is reasonably close to the corresponding result
B’ ~ 83 counts reported in Fig. 3 of Ref. [24]. The data
shown in Fig. 10 seem to be compatible with our theory, in
particular, sufficiently far away from the peak. However, the
limited number of points and the relatively large statistical
errors do not allow for a strong statement concerning the
validity of our theory. In fact, the measured intensity data at
the smaller frequency w = 0.2 meV, which is also shown in
Fig. 3 of Ref. [24], with the same restrictions to the data, show
significantly less agreement to our theory.

Another material where high-precision neutron scatter-
ing data probing the critical spin dynamics are available is
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FIG. 10. Fit of our theoretical prediction for the convoluted in-
tensity given in Eq. (2.59) to experimental data at constant frequency
o = 0.3 meV displayed in Fig. 3 of Ref. [24]. For consistency, we
have considered only data with small momenta ka < (w/I")*° ~
1.36 because for large momenta k 2> k,, we expect a breakdown of
our ansatz. Note that the data shown here are collected during a larger
time-interval than the data in Fig. 9.

the related compound EuS [25], which is also a Heisen-
berg ferromagnet on a fcc lattice with lattice spacing a =
5.95 A, nearest-neighbor exchange exchange interactions
J1 = 0.47 K, next-nearest-neighbor exchange J, = —0.24 K
[20], and a critical temperature 7. = 16.5 K. In Figs. 11
and 12, we show fits of our theoretical results to scans at
the critical temperature reproduced from Figs. 2 and 3 of
Ref. [25]. The experimental resolution is in this case §,, =
0.035 meV. The scan at fixed momentum shown in Fig. 11
is for k =0.22 A~!, while the constant-frequency scan in
Fig. 12 is for v = 0.15 meV. As in the case of EuO dis-
cussed above, we have retained only data points which fulfill
the respective conditions w > I'y = I'(ka)>/? = 0.051 meV
or ka < (w/T")*° ~ 2.0, where T'" = 0.026 meV. From the
fixed momentum scan, we obtain w, = 0.079 meV, which
(like in EuO) is somewhat larger than the theoretically pre-
dicted value w, = 0.059 meV. The fit itself agrees with the

wg = 0.154 meV

I (w) [counts / 5 min]

0 Il Il Il Il
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

w [meV]

FIG. 11. Fitof our theoretical result Eq. (2.58) for the convoluted
line shape to constant wave-vector scan of the experimentally deter-
mined critical line shape of a EuS displayed in Fig. 2 of Ref. [25]
at k =0.22 A~'. For the fit, we have omitted small frequencies
o < Ty = 0.051 meV from the data.

160 T T

140
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(o]
o

1w(Kk) [counts / 20 min]
-
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o

(=2}
o
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FIG. 12. Fit of our theoretical result Eq. (2.59) for the convo-
luted line shape to constant frequency scan at w = 0.15 meV of the
experimentally determined critical line- shape of EuS displayed in
Fig. 3 of Ref. [25]. For the fit, we have dropped large momenta
ka 2 (w/T")*5 ~ 2.0.

data quite well and the fitted background B coincides exactly
with the experimental value B = 15 counts. Note that the ratio
between the fitted frequencies w,(EuO)/w,(EuS) of both ma-
terials is consistent with I''(EuO)/I"’(EuS). To our advantage,
for the scan at fixed energy shown in Fig. 12 much more
points than for EuO [24] are now available to the left of the
peak. The agreement between our theoretical prediction and
the experimental data is rather good, especially for the smaller
momenta in this set. Stronger deviations start to appear only
for the rightmost points, since the predicted peak position is
again shifted by about 15% compared to the experimental
value.

All in all, we have to admit that the interpolation formula
from a perturbative RG calculation based on an extrapolation
of a truncated € = 6 — d-expansion [13,14], which was ini-
tially used to fit the data for a three-dimensional ferromagnet
at T =T, by Boni et al. [24], agrees with the experimental
data somewhat better than the results obtained within our
approach. This might indicate that the pseudogap of the crit-
ical line shape for w < wy is an artifact of our approach,
although it is not visible in the spectral line shape for small
frequencies due to the finite experimental resolution. On the
other hand, for sufficiently large frequencies our approach
produces critical line shapes which are fully consistent with
the experimental data and certainly perform better than a
simple Lorentzian in the lower intensity part of the scatter-
ing cross section. Note that the momenta for the scans at
fixed k are actually quite large, i.e., ka = 0.768 for EuO and
ka = 1.309 for EuS; especially for EuS, these values exceed
the expected boundaries of the critical region where dynamic
scaling should hold. Surprisingly, for the systems under con-
sideration dynamic scaling seems to be valid in a much larger
range of momenta and frequencies [24,25] than theoretically
expected.

Let us conclude this section with a caveat. In real magnets,
the spins are not only coupled by short-range exchange in-
teractions, but also by long-range dipole-dipole interactions,
which we have completely ignored in our paper because
typically these are much smaller than the exchange interac-
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tions. Nevertheless, for temperatures close to T, dipole-dipole
interactions cannot be neglected because they violate spin-
conservation, and are expected to change the universality
class. As a consequence, the dynamic exponent is expected
to cross over from z = 5/2 to z = 2 so that also the linewidth
[y and the characteristic frequency wy should change for very
small momenta. This is accompanied by a crossover in the
spectral line shape, which was experimentally found in EuO
at T =T, to be parametrized by a Lorentzian [22] instead
of the exchange-only result for very small wave vectors k
(which are much smaller than the wave vectors probed in the
experiments by Boni et al. [23,24]), although the change in the
linewidth still could not be discerned. In fact, within mode-
coupling theory, the line shape including dipolar interactions
has been calculated by Frey er al. [15,16] who found that
the crossover scale for the linewidth is smaller by almost an
order of magnitude compared to the crossover scale for the
line shape. One therefore has to be careful in applying results
for pure Heisenberg systems to the small momentum tail in
constant energy scans.

III. LOW-TEMPERATURE BEHAVIOR OF THE DYNAMIC
STRUCTURE FACTOR IN REDUCED DIMENSIONS

For the calculations of the dynamic structure factor in
the critical regime of three-dimensional Heisenberg magnets
presented in Sec. II, we have neglected the momentum de-
pendence of the static self-energy (k) in the kernel V (k, q)
of our integral Eq. (1.5) for the dissipation energy A(k, iw),
see Eq. (2.5). We have justified this approximation by arguing
that the momentum dependence of the self-energy can be
neglected due to the small value of the anomalous dimension
n =~ 0.027 of the Heisenberg model in d = 3. Obviously, in
one and two dimensions, this argument is not valid because
in this case the Heisenberg model does not have a critical
point at finite temperature. The momentum dependence of the
static self-energy is then important and cannot be neglected.
In fact, to obtain results which are compatible with dynamic
scaling, kernel V (k, q) of our integral Eq. (1.5) has to be
modified by replacing the difference of the bare couplings in
the vertex-correction factor Z(q, k) defined in Eq. (1.7) by the
difference of inverse static propagators:

Jg+k) —J@g) — G g+k) -G (.

A similar substitution has been proposed by Frey and Schw-
abl [16] within mode-coupling theory to obtain the correct
dynamic exponent z = (5 — n)/2 for n # 0 in the dynamic
scaling law. Note that within an approximation where the
momentum dependence of the self-energy is neglected, the
substitution Eq. (3.1) has no effect. The kernel V (k, ¢) in our
integral Eq. (1.5) for the dissipation energy is then replaced
by

3.1)

T
Vi(k,q) = ZG*(k)G(q)G(q +k)

x (G g) -G ' (q+k)P+ (k- —k). (3.2)

In dimensions d < 2, the Heisenberg model does not have
any long-range magnetic order at finite temperature so, 7. = 0
and the correlation length & diverges for T — 0. To solve our
integral Eq. (1.5) for the dissipation energy, we need the static

spin-spin correlation function G(k) as an input, the calculation
of which in reduced dimensions is by itself a challenging
theoretical problem.

A. One dimension

In one dimension, the static spin-spin correlation function
G(k) of a ferromagnet assumes the Ornstein-Zernike form
Eq. (2.8) for small wave vectors [43,44], where the uniform
susceptibility x and the correlation length & are related by

x=p lE2 o 1/T% (3.3)

Here p is the renormalized spin stiffness. Explicit expressions
for x and £ have been obtained by Takahashi within his
modified spin-wave theory [43,44]. For a spin-S Heisenberg
chain with ferromagnetic nearest-neighbor coupling J > 0,
Takahashi’s result for the correlation length is [43,44]
g JS?

a T

A RG calculation augmented by a Monte Carlo simulation
for § = 1/2 [45] suggests that for small S the prefactor in
Eq. (3.4) may not be correct, but this is irrelevant for our pur-
pose. Substituting the Ornstein-Zernike form Eq. (2.8) for the
static spin-spin correlation function into the modified kernel
Eq. (3.2), we find

Tp [14 (k§)*1[k* + 2k - q]*€*

Vi(k, q) = T 1+ (qg)z][l + (k +q)2€:2]

(3.4)

+ (k - —k),

3.5
which has the same form as the kernel V (k, ¢) in Eq. (2.12)
with the bare spin stiffness py replaced by the renormalized
one. The integral Eq. (1.5) for the dissipation energy has
therefore the same form as Eq. (2.13) with py replaced by
p. As a result, the dissipation energy A(k, iw) can again be
written in the scaling form

Ak, iw) = 1 AKKE, iwT),

(3.6)

where the scaling function A(x, iy) is the same as in Eq. (2.16)
and the characteristic timescale 7 is in d dimensions given by

(§/a)*+?
L=

= — 3.7
VT p/(2a%)
Note that in one dimension at low temperatures,
2 3/2
po XG5 e (3.8)

T JT
so the dynamical exponent in one dimension is z = 2; the
result z = 1 4 d/2 based on dimensional analysis is not valid
in this case due to the vanishing of the critical temperature.
From Eq. (2.16), we see that in d = 1 the scaling function
A(x, iy) satisfies the integral equation

ﬂ (x% 4 2xr)?
2 (L+ [ + (x +1)?]

Alx, iy) = [1 + 2] /
1

X ———.

A(r, iy) + |y]

In Figs. 13 and 14, we show our numerical results for the scal-
ing function A(x, iy) and the corresponding scaling function

(3.9)
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AXiy)/(X2[1 + x2])

FIG. 13. Frequency dependence of the scaling function A(x, iy)
of the dissipation energy A(k, iw) in one dimension obtained from
the numerical solution of the integral Eq. (3.9). As in Fig. 1, we plot
A(x, iy)/(x*[1 + x?]) because this ratio depends only weakly on x.

®(x, y) of the dynamic structure factor defined via Eqs. (1.2)
and (2.21) in one dimension. While results from mode-
coupling theory and PRG calculations based on the e = 6 — d
expansion are not available for d = 1 (the extrapolation of
a low-order expansion in powers of € to the case € =5 is
obviously problematic), the dynamic structure factor of a
ferromagnetic Heisenberg chain has been calculated by Taka-
hashi [46] using his modified spin-wave theory [43,44]. Note
that Takahashi’s result for the uniform susceptibility is [43,44]

st
X = 372
so together with & from Eq. (3.4), our estimate for the relax-
ation time is

(3.10)

__ 2/ay
V3IS '

which is larger by a factor of 2/+/3 ~ 1.15 compared to the
expression given by Takahashi in Ref. [46]. At first sight, the
spectral line shape shown in Fig. 14 seems to resemble the
line shapes obtained by Takahashi [46]. In particular, for suf-
ficiently large x = k&, the peak positions disperse as x> o k?,

@3.11)

1.8

15| x = 0.996 b

0.9 H i

d(x,y)

x =1.992

0.3 E

FIG. 14. Frequency dependence of the scaling function ®(x, y)
of the dynamic structure factor for a ferromagnetic Heisenberg chain
defined via Eqgs. (1.2) and (2.21) for different values of x = k&.

W(x,v)

0.05 0.3 0.6 0.9 1.2 1.5 1.8

FIG. 15. Frequency dependence of the scaling function W(x, v)
of the dynamic structure factor for a ferromagnetic Heisenberg chain
for different values of x = k&.

which can be identified with the dispersion of overdamped
ferromagnetic magnons in the paramagnetic regime. To see
this more clearly, it is useful to plot the scaling function of
the dynamic structure factor as a function of the scaling vari-
able v = w1 /(k&)?, where we have used z = 2. Defining the
scaling function W(x, v) as in Eq. (2.27), with characteristic
frequency wy = (k&)?/t we have

W(x, v) = x> d(x, vx?), (3.12)

which is Eq. (2.29) for z = 2. A plot of the scaling function
W(x, v) as a function of v for different values of x is shown
in Fig. 15. For large x, the curves collapse, proving therefore
the k? dispersion of overdamped paramagnons. Note that our
theory predicts that the asymptotic behavior of the peak width
has the same order as the dispersion. This disagrees with
the prediction of Takahashi’s modified spin-wave theory [46],
who finds that the ratio of width to peak position vanishes
like x~! for x — oo, implying increasingly well-defined spin-
wave excitations for large x = k&. This discrepancy might be
due to the fact that Takahashi’s modified spin-wave theory
does not take spin-wave scattering into account and therefore
underestimates the decay rate of spin waves [47,48].

Finally, let us take a closer look at the small-frequency
behavior of the dynamic structure factor in one dimension,
which for fixed x is determined by the singularity of the
scaling function A(x, iy) for y — 0. From integral Eq. (3.9),
we find fory, x < 1

4

SN A 2115 X
A(x, iy) ~ Axyl +A2|y|3/5’

(3.13)

where A; and A, are numerical constants. For large mo-
menta x > 1, the dissipation energy consists of a sole term
~x*y|~3/3. Equation (3.13) is the one-dimensional analog of
the corresponding expression Eq. (2.37) in three dimensions.
The nonanalytic frequency dependence is responsible for the
pseudogap in the spectral line shape at small frequencies
visible in Figs. 14 and 15 and implies that for @ — O the
dynamic structure factor vanishes as S(k, w) o« w*/>, which
agrees with the behavior in three dimensions, see Eq. (2.52).
As a consequence, S(k, w) exhibits again a pseudogap for
small frequencies and a peak at finite frequencies even in
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the hydrodynamic regime x < 1. Our result excludes normal
diffusive behavior in one dimension. This is in disagreement
with the prediction of modified spin-wave theory, where for
x < 1 the line shape exhibits a single elastic zero-frequency
peak and for larger x one observes a flat minimum for small @
with S(k, 0) > 0, see Fig. 1 of Ref. [46].

In principle, the dynamic structure factor S(k, w) of the
spin-1/2 Heisenberg chain with nearest-neighbor coupling
can be obtained from the thermodynamic Bethe-Ansatz al-
though the explicit evaluation of the relevant matrix elements
can only be carried out approximately via a form-factor ex-
pansion. While the dynamic structure factor of spin chains
with antiferromagnetic coupling has been discussed in lit-
erature [49-51], we have not been able to find published
Bethe-ansatz results for the dynamic structure factor of the
ferromagnetic spin chain. Note that for a ferromagnetic chain,
the ground state is nondegenerate, so at low temperatures the
density of excitations is expected to be small, which makes the
suppression of spectral weight for @ — 0 plausible. The pseu-
dogap scenario is also supported by calculations in the limit of
infinite temperature which predicts anomalous diffusion with
A(k, iw) diverging as w~'/3 and are believed to converge, at
least for integrable spin chains [52,53].

B. Two dimensions

Finally, let us briefly discuss the case of two dimensions
where the Ornstein-Zernike ansatz does not correctly describe
the static susceptibility G(k). For small momenta ka < 1, the
result of modified spin-wave theory is [46]

G(k) = xg(k§), (3.14)
with static scaling function
In(x + +/x% 4+ 1)
gx) = ———————. (3.15)

xvx2 41

The correlation length £ and the uniform susceptibility are
exponentially large at low temperatures [43,44,54],

L Cee®/T, (3.16)
a
x ~ Cye®/", (3.17)

where for nearest-neighbor coupling J on a square lattice « =
27 JS%. Modified spin-wave theory [43,44] gives, in this case,

Ce = /JS/T and C, = 1/(127JS) so at low temperatures

= const. (3.18)

X

Tg?
A more accurate two-loop RG calculation [54] actually leads
to a different temperature-dependence of C¢ and C, but does
not modify the relation Eq. (3.18). Substituting the scaling
from Eq. (3.14) for the static spin-spin correlation function
into the kernel V (k, q) given in Eq. (3.2), we find that the
dissipation energy assumes again the dynamic scaling form
Eq. (3.6) where the scaling function A(x, iy) now satisfies the
integral equation

d*r
ﬂ)zg(r)g(lx +r))

A(x, iy) = g\ (x) f G

' () — g ' (x+ DT’
A(r, iy) + Iyl

(3.19)
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Al iy)/(x2[1 + x2])
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FIG. 16. Frequency dependence of the scaling function A(x, iy)
of the dissipation energy A(k, iw) in two dimensions obtained from
the numerical solution of the integral Eq. (3.19). We plot again
A(x, iy)/ (*?[1 + x?]) to remove the dominant x dependence.

The characteristic timescale t is in two dimensions given by

208 _ |2xa? (€

T=,—== =]

T a T2 \a

Using the fact that, according to Eq. (3.18), the combina-
tion x /(T &?) approaches a temperature-independent constant,
we conclude that in two dimensions T o £2, implying z =
2. For nearest-neighbor interaction J > 0, we may estimate
the constant in Eq. (3.18) by inserting for £ and x the re-

sults obtained by Takahashi within modified spin-wave theory
[43,44], which gives

(3.20)

1 e\

TR —=]. (3.21)
VorJS (a)

This is a factor of (6;r)~'/? &~ 0.23 smaller than the value
given in Ref. [46]. In Fig. 16, we show our result for A(x, iy)
as a function of the dimensionless frequency y obtained from
the numerical solution of Eq. (3.19). The corresponding
scaling function ®(x,y) of the dynamic structure factor is
shown in Fig. 17. To exhibit the dispersion of the peak, we

®(x,y)

y

FIG. 17. Frequency dependence of the scaling function ®(x, y)
of the dynamic structure factor in two dimensions for different values
of x, obtained by inserting the numerical solution of Eq. (3.19) into
the relation Eq. (2.21).
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W(x,v)

FIG. 18. Frequency dependence of the scaling function W(x, v)
of the dynamic structure factor in two dimensions for different values
of x. This function is defined via Eq. (2.27) and is related to ®(x, y)
asin Eq. (3.12).

plot in Fig. 18 the scaling function W(x, v) using v = y/x> =
wt/(k&)? as an independent variable. The qualitative behav-
ior of the scaling functions is similar to the one-dimensional
case: The dynamic structure factor exhibits a pseudogap for
frequencies @ < w; = (k&)?/t and a peak which disperses
as k? for k > £~! and can be interpreted as an overdamped
paramagnon. Note that the dynamic scaling functions ®(x, y)
and W(x, v) describe only the leading frequency dependence
of S(k, w) as long as w < T, so the detailed-balance factor
can still be approximated by the classical expression given in
Eq. (2.19). Since this regime shrinks with decreasing T, the
zero-temperature limit is not covered by these calculations.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the spin dynamics of
quantum Heisenberg ferromagnets with isotropic exchange
interactions in the paramagnetic phase close to the critical
temperature by solving the integral equation for the spin-spin
correlation function derived in Ref. [33] within the framework
of a functional RG approach to quantum spin systems [34].
Our results are consistent with the validity of the dynamic
scaling hypothesis [4,5] and we obtain explicit expressions for
the scaling functions describing the line shape of the dynamic
structure factor S(k, @). Note that dynamic scaling on its own
does not make any statements about the actual line shape close
to the critical point.

In three dimensions, our approach reproduces the known
behavior of the spin-diffusion coefficient [2] in the hydrody-
namic regime. However, we have also detected corrections
to hydrodynamics associated with nonanalytic corrections to
diffusion, which partially have been discussed previously in
Refs. [11,12,36]. The form of these corrections implies a
non-Lorentzian line shape of S(k, w) down to w = 0, which
deviates for small frequencies from results obtained in mode-
coupling theory. Such nonhydrodynamic terms only play a
role if one considers arbitrarily long times ¢ at fixed momen-
tum k. In the strict hydrodynamic limit where k — 0 with
constant k2¢, which is considered in most calculations, these
corrections are negligible.

Precisely at the critical point, we have obtained the
dynamic structure factor in the scaling form S(k,w) =
T.Gk)(mwr) "W (w/wy), where wy o< k¥ with z=15/2 in
three dimensions, see Eq. (2.44). For large v = w/wy, the crit-
ical scaling function W.(v) exhibits a non-Lorentzian decay
proportional to v~'3/3, in agreement with previous calcula-
tions using either mode-coupling theory [3] or the asymptotic
RG based on the extrapolation of the expansion in powers of
€ = 6 — d to the physically relevant case of three dimensions
[13,14]. On the other hand, for small v our result for W.(v)
drastically differs from previous approximate calculations
[3,7,13,14,16,19] which predict a single peak at vanishing
frequency which is, however, broader than the Lorentzian in
the hydrodynamic regime. In contrast, we find that W (v)
exhibits a finite-frequency peak at v & 0.2 and vanishes as
33 for v — 0, leading to a pseudogap in the critical line
shape for small frequencies.

Unfortunately, available numerical simulations [17,18] do
not have sufficient accuracy to resolve this discrepancy. More-
over, as discussed in Sec. II E, neutron-scattering experiments
[23-25] probing the critical spin dynamics in the Heisenberg
ferromagnets EuO and EuS are somewhat inconclusive due
to a limited energy resolution, preventing us from checking
directly on the existence of the aforementioned low-frequency
feature. Taking the finite energy resolution of the experiments
into account, the line shapes obtained within our approach
agree reasonably well with the experiments. However, this
is true even more for the critical line shapes obtained within
asymptotic RG theory [13,14], so we have to admit that, at
least in three dimensions, the pseudogap of the critical line
shape obtained within our approach might be an unphysical
feature of our method.

It is interesting to see how the algebraic singularity of
S(k, w) for small w at the critical point evolves with the di-
mensionality d of the system. By directly taking the limit & —
oo in the integral Eq. (2.13) for the dissipation energy, we find
that in dimensions 2 < d < 6 the low-frequency behavior of
the critical scaling function B.(iv) defined in Eq. (2.43) is

Be(iv) o |73 z=144d)2. @.1)

Equations (2.44) and (2.50) then imply that for « — O the
critical dynamic structure factor in dimensions 2 <d < 6
vanishes as

Sk #0,0) x 0 =¥, forw—0.  (4.2)

The pseudogap therefore disappears for d > 6, where S(k #
0, w) approaches a finite limit for w — 0. On the other
hand, the pseudogap becomes more pronounced in lower di-
mensions, so we expect that in this case our approximate
method give a better description of the relevant fluctuations
responsible for the suppression of spectral weight for small
frequencies. Of course, in d < 2, our estimate Eq. (4.2) is not
valid because it is based on the assumption of a finite critical
temperature; however, in Sec. III we have shown that also in
one and two dimensions, the low-temperature behavior of the
spectral line shape exhibits a pseudogap for small frequencies.
Interestingly, we have found that both in d =1 and d =2
the relevant characteristic energy wy scales as k> at low tem-
peratures, which agrees with the dispersion of ferromagnetic
magnons at 7 = 0. The pseudogap and the finite-frequency
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maximum in the line shape of S(k, w) at finite T can therefore
be associated with overdamped magnons in the paramagnetic
phase. Note that ordinary diffusive behavior would lead to a
zero-frequency maximum in the spectral line shape, so we
conclude that in d = 1 and d = 2 ordinary diffusion does not
emerge even for hydrodynamic momenta k < 1/£.

We conclude that the problem of determining the low-
frequency behavior of the line shape of the dynamic structure
factor close to the critical point of an isotropic Heisenberg fer-
romagnet is still not completely solved. Available analytical
calculations all rely on some kind of uncontrolled approxima-
tion (including our approach). Moreover, neither numerical
simulations nor available experiments have so far produced
data with sufficiently high resolution. In one dimension, the
line shape of the dynamic structure factor of the spin-1/2
Heisenberg chain can, in principle, be calculated in a con-
trolled way using the thermodynamic Bethe ansatz, but the
case of a ferromagnetic coupling has so far not been analyzed.
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APPENDIX: SPIN FRG WITH CLASSICAL-QUANTUM
DECOMPOSITION

To make this work self-contained, we outline here the
derivation of our integral Eq. (1.5) for the dissipation energy
A(k, iw) defined via Eq. (1.4) within our recently developed
spin FRG approach. For more details, we refer the reader to
Ref. [33]. To begin, let us consider a general spin-rotationally
invariant Heisenberg Hamiltonian

HZ%Z.},‘J'S,"S]', (A])
ij
where J;; = J(R; — R;) are arbitrary exchange couplings con-
necting spin-S operators S; localized at the sites R; of a
d-dimensional Bravais lattice. Choosing periodic boundary
conditions, we may expand the exchange interactions in a
Fourier series,
1 .
By = 5 2o R I, (A2)
k
where the k sum is over the first Brillouin zone.

Following Ref. [34], we now replace the J;; by deformed
exchange couplings J;; — Jl-’} depending continuously on a
deformation parameter A and follow the evolution of the
generating functional G,[h] of the imaginary-time ordered
connected spin correlation functions when A evolves from
some initial value A = Ay down to A = 0 where Jl-’}:O =J;;.
The generating functional G, [k] is defined by

Galh]l =1n Tr[Tefoﬁ de[¥ hi(0)-Si()-3 3 Ji?s"(f)'sf(f)]], (A3)

where h;(7) is a fluctuating magnetic source field, 7 denotes
time-ordering in imaginary time, and the imaginary-time label
T of the spin operators S;(t) keeps track of the time-ordering.
By taking a partial derivative of Eq. (A3) with respect to
A, we obtain a formally exact closed flow equation [34] for
Galh], implying an infinite hierarchy of integrodifferential
equations for the connected spin correlation functions. Usu-
ally [27-32], one now introduces the (subtracted) Legendre
transform I's[m] of G,[h] which depends on the magneti-
zation m, generates the one-particle irreducible spin-vertices,
and satisfies the Wetterich equation [27]. Unfortunately, in the
case of the Heisenberg model, this approach comes with a
major intricacy, because for the exactly solvable initial con-
dition Ji[j\" = 0 of decoupled spins the two-spin correlation
function for vanishing sources is zero for any finite Matsubara
frequency due to spin conservation, thus implying in turn that
the one-particle irreducible two-point vertex diverges for finite
Matsubara frequencies. As a consequence, the initial condi-
tion for all one-particle irreducible vertices involving finite
frequencies is ill-defined and one cannot calculate a proper
flow using this parametrization. In Refs. [34,55,56], several
ways to avoid this problem have been proposed, all of which
are based on the strategy of replacing G [h] by a different type
of generating functional whose Legendre transform exists
even if the exchange couplings are completely switched off
while it still satisfies the Wetterich equation. For example, one
can start from the generating functional of connected correla-
tion functions which are in addition amputated with respect to
Ji‘} [34,56] so the corresponding vertices are irreducible with
respect to cutting a single interaction line. The corresponding
two-point vertices are identical with those considered in the
diagrammatic approach to quantum spin systems developed
many years ago by Vaks et al. [57,58], who wrote the spin-spin
correlation function in the form

Ik, iw)

(A4)

We refer to T1(k, iw) as the interaction-irreducible dynamic
susceptibility.

In the present paper, a slight variation of this construction
is more useful. Let us therefore note that in the static sec-
tor, where fluctuations with finite frequencies are excluded,
the Legendre transform of G, [h] can be written in terms of
an analytic functional series expansion around m = 0, even
for vanishing exchange interactions. On the other hand, for
finite frequencies the interaction-irreducible vertices are well-
defined [34,55]. To take advantage of these properties, we
work within a hybrid approach which explicitly distinguishes
between static (i.e., classical) and dynamic (i.e., quantum)
fluctuations [33]. However, to make this strategy work in the
paramagnetic phase, it is necessary to define the amputation of
the interaction with respect to the scale-dependent subtracted
exchange interaction

Jak) = Jak) + I'IXI(k, 0) = le(k), (AS5)

which is just the inverse of the scale-dependent static suscep-
tibility G, (k). In analogy with Eq. (A4), we therefore write
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the dynamic spin-spin correlation function in the form

[T, (k, iw) 1

L+ In (0T (k. i) Ta(k) + T30 (K, i)
(A6)
The subtracted scale-dependent generalized susceptibility

I, (k, iw) = T, (k, iw) — 1" (k, 0) (A7)

Gk, iw) =

is irreducible with respect to cutting a single subtracted inter-
action line. The ergodic property [33,59,60]

lim Gk # 0, ) = G(k) (A8)
then implies
'k #0,0) = lin})ﬁxl(k £ 0, iw) = 0. (A9)

Furthermore, spin-rotational invariance implies

|:’H,, Zs,} =0, (A10)

so the total spin ) _, S; is conserved and hence
Gatk=0,iw #0) =0, (All)
Mok =0,iw #0)=0. (A12)

To arrive at a parametrization of the FRG flow where the two-
point vertex for vanishing frequency can be identified with
Y (k) = I, ' (k, 0) and for finite frequency with I, (k, iw> #
0), we introduce the auxiliary functional [33]

Falhe, 571 = Galh®, b = —Jas7] — 5(s7, Jas?),  (A13)

where the matrix elements of the matrix J, are the subtracted
exchange couplings J, (k) and we have decomposed the mag-
netic source field into classical and quantum components, i.e.,

Differentiation of the above auxiliary functional F[h€, s7]
with respect to the sources generates connected spin cor-
relation functions with the additional properties that in the
quantum sector external interaction lines are amputated. The
corresponding two-point function at finite frequencies can
then be interpreted as an effective subtracted exchange in-
teraction, while higher order correlation functions can be
obtained from their connected counterparts by multiplying the
quantum legs by factors of —J . Our hybrid functional with

(A14)

the desired properties is now given by the subtracted Legendre
transform of the above auxiliary functional F,[h€, s7],

Calm®, 9] = (m, k) + (97, s7) — Falh®, 5]
— 2(m°, R{m°) — 1(n?, Rin?), (A15)

where the classical (zero-frequency) field m¢ is the first
derivative of F, with respect to the classical source field k¢
while the quantum field #? is the first derivative of F, with
respect to the quantum source s?. The regulators R and RY
parametrize the deformed exchange coupling for vanishing
and finite frequencies. In the classical limit S — oo, where
the time dependence of the spin operators can be neglected,
the functional I',[m°, 0] reduces to the average effective ac-
tion I's [m€], which is the subtracted Legendre transform of
the classical functional G [h¢]. Note that even for finite spin
lengths S < oo, purely static vertices, where all frequencies
are set to 0, can be identified with the one-particle irreducible
vertices generated by the subtracted Legendre transform of
the quantum functional G,[h]. Following Ref. [33] it can
now be shown that ', [m¢, h?] satisfies a generalized Wet-
terich equation [33], which still has a residual tree-level term
proportional to d, X 4. This tree term is generated because
the A derivatives of the bare and subtracted coupling do not
coincide: d5J, # daJa. Note that the tree term does not gen-
erate contributions to the flow of purely static vertices. After
a number of approximations described in detail in Ref. [33]
which are such that the ergodicity condition Eq. (A9) and
the constraint Eq. (A12) imposed by spin conservation are
fulfilled, we obtain the following integral equation for the
subtracted dynamic susceptibility:

ik, i) = — 3 Vi o)
© Ne? £ Glg) + (g, o)

(A16)

where the dimensionless kernel V (k, q) is defined by
V(k,q) = T(G(q +Kk)Z(g, k) + G(g — k)Z(g, —k) — 2G(g)]
(A17)

and the vertex renormalization factor Z(q, k) is defined in

Eq. (1.7). Note that the kernel is completely determined by

static quantities, i.e., the static susceptibility G(g). Introduc-

ing the dissipation energy A(k, iw) via

Ak, iw)
o]

we finally arrive at the integral Eq. (1.5) given in Sec. L.

ik, iw) = G(k) (A18)
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