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Infinite families of fracton fluids with momentum conservation
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We construct infinite families of new universality classes of fracton hydrodynamics with momentum conser-
vation, both with multipole conservation laws and/or subsystem symmetry. We explore the effects of broken
inversion and/or time-reversal symmetry at the ideal fluid level, along with momentum relaxation. In the case
of one-dimensional multipole-conserving models, we write down explicit microscopic Hamiltonian systems
realizing these new universality classes. All of these hydrodynamic universality classes exhibit instabilities and
will flow to new nonequilibrium fixed points. Such fixed points are predicted to exist in arbitrarily large spatial
dimensions.
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I. INTRODUCTION

Recent years have seen the discovery and classification
of many new phases of quantum matter with elementary ex-
citations, dubbed fractons, which exhibit restricted mobility
[1–26]. More recently, it has been noticed that these same
phases of quantum matter give rise to novel universality
classes of hydrodynamic behavior [27], which arise due to the
conservation of exotic space-dependent conserved charges,
such as the total dipole moment of a system [28–33], or
the charge along lines and/or planes in a higher-dimensional
lattice [34,35].

The first studies of such hydrodynamic behavior focused
on the subdiffusion of a single conserved charge, which was
immediately relevant for both numerical studies of random
quantum circuits [28,30] as well as tilted Fermi-Hubbard
models in optical lattices [36,37]. However, more recently, it
has also been noted that these fracton fluids exhibit interesting
and unexpected behavior when momentum is also conserved
[38,39]; in particular, hydrodynamics is generally unstable in
physically realizable dimensions [38].

In this paper, we will describe infinitely many new fam-
ilies of hydrodynamic models with “fractonic” conservation
laws, as well as momentum conservation. Our goal is not to
systematically analyze any one of them (as [38] did for the
dipole-conserving fluid), but instead to draw some general
lessons about the way in which momentum conservation can
modify fracton hydrodynamics. A detailed understanding of
this issue will help lead to systematic field theories which
couple fractonic models to gravity (if and when this is even
possible [4]): after all, the effective field theories of hydrody-
namics necessarily couple a momentum-conserving fluid to a
spacetime or vielbein (when classical background fields are
accounted for) [40]. But as the field theoretic construction of
a momentum-conserving universality class is quite nontrivial
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[41–44], we will instead seek to analyze our new univer-
sality classes using simpler methods grounded in classical
Hamiltonian mechanics. We expect that our constructions will
help to make progress on these more challenging theoretical
problems.

In Sec. II, we use a continuum Hamiltonian formulation
to describe fracton fluids with momentum conservation. In
Sec. III, we will begin to discuss dissipative effects—in partic-
ular, the consequences of breaking momentum conservation.
We will both recover more conventional fractonic subdiffu-
sion, and also argue for novel universality classes that arise
without time-reversal symmetry (which have not yet been
discovered). In Sec. IV, we present one-dimensional discrete
Hamiltonian models which can form the basis of large-
scale numerical simulations for theories with quadrupole (and
higher) conservation laws, and confirm that hydrodynamic
quasinormal modes within ideal hydrodynamics match with
our more generic predictions.

II. IDEAL HYDRODYNAMICS IN THE CONTINUUM

We begin by developing a simple continuum Hamiltonian
formalism for hydrodynamics with fractonic conservation
laws. This approach is more conceptually clean and will natu-
rally work in all spatial dimensions d .

A. Poisson brackets

Let ρ(x) and πi(x) denote the charge density and d compo-
nents of momentum density. We assume that the coordinates
x ∈ Rd live on the plane. Following [45], we define a classical
Poisson bracket which correctly incorporates the effects of
translations on the classical fields:

{πi(x), ρ(y)} = ρ(x)∂iδ(x − y), (2.1a)

{πi(x), π j (y)} = [π j (x)∂i − πi(x)∂ j]δ(x − y), (2.1b)

{ρ(x), ρ(y)} = 0. (2.1c)
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Given some Hamiltonian H , we arrive at equations of mo-
tion by requiring that a variable φ evolves as

∂tφ = {φ, H}. (2.2)

Spatial locality demands that the Hamiltonian H be expressed
as a local integral:

H =
∫

dd x H(ρ, πi ), (2.3)

in terms of a Hamiltonian density H.
It is very useful to define

vi := πi

ρ
. (2.4)

Indeed, using (II.1), we notice that

{vi(x), ρ(y)} = ∂iδ(x − y). (2.5)

Because the commutator of vi and ρ leads to a field-
independent object, we will find it most natural to write H
in terms of vi, rather than πi. The equations of motion for ρ

and vi then become particularly simple:

∂tρ = −∂i
δH

δvi
, (2.6a)

∂tvi = −∂i
δH

δρ
− 1

ρ
(∂iv j − ∂ jvi )

δH

δv j
. (2.6b)

The latter term in the equation of motion for vi contains
nonlinearities that we do not study here. For the models we
consider, it vanishes identically to first order in perturbations
from equilibrium. These nonlinearities are a candidate for
future study.

B. Thermodynamics

The requirement that our theory is consistent with thermo-
dynamics leads to additional insight into the nature of these
equations. In particular, note that (ignoring temperature and
thermal hydrodynamic fluctuations, which will not play much
of a role in this paper although certainly of importance in
principle)

dH = −μdρ − Vidπ i = −μdρ − Vi(vidρ + ρdvi ). (2.7)

We emphasize that Vi is defined as the chemical potential of
the ith component of momentum density, and that in general
Vi is very different from vi. Requiring that pressure P is the
Legendre transform of H ,

dP = dH + d (μρ) + d (Viπ
i ), (2.8)

we see that

dP = ρdμ + π jdV j . (2.9)

Note that (2.8) and (2.9) simply represent our first law of
thermodynamics, with the important caveat that we are not
including energy density among the conserved modes to keep
track of.1 This is primarily for technical convenience: it will

1Alternatively, one may wish to consider states at constant entropy
density, so that the T ds contribution to (2.7) vanishes.

be instructive to think of H as a Hamiltonian density, es-
pecially to compare the continuum models with discretized
models in Sec. IV. In hydrodynamic models where we must
also consider energy density as a slow degree of freedom,
it is likely necessary to instead use an effective field theory
formalism along the lines of [46], which is not as obvious to
compare to a microscopic model. It follows from (2.7) that

δH

δρ
= Viv

i + μ, (2.10a)

δH

δvi
= V iρ. (2.10b)

These definitions are sufficient to show

−∂tπi = −ρ∂tvi − vi∂tρ = ρ∂iμ + π j∂iV
j + ∂ j (πiV

j ).
(2.11)

In particular, (2.9) gives

∂iP = ρ∂iμ + π j∂iV
j (2.12)

so

−∂tπ j = ∂iP + ∂ j (πiV
j ). (2.13)

With the identification

Ti j = δi jP + πiVj, (2.14)

we ascertain that momentum is conserved and that

−∂tπi = ∂ jT
j

i . (2.15)

We see that (2.14) represents the ideal hydrodynamic expres-
sion for the stress tensor, in agreement with [38]. The charge
current Ji is given by Ji = ρVi, but as in general fracton hy-
drodynamics [27], it is not appropriate to think of the current
as a vector; instead, one should think of currents in alternative
representations of the spatial symmetry group. The practical
consequence of this is that Vi will (as we see) usually itself be
a total derivative.

C. Enumerating conserved charges

For any integrable function f (x1, x2, . . . , xd ), we define a
“multipolar” charge associated to f as

Q f :=
∫

dd x f (x1, x2, . . . , xd )ρ. (2.16)

We say that Q f is conserved if

dQ f

dt
:= {Q f , H} = 0. (2.17)

If F and G are conserved by the dynamics, it follows from
the Jacobi identity that {F, G} is also conserved. This places
strong constraints on the kinds of fracton fluids that are al-
lowed.

Define total momentum

�i =
∫

dd x πi. (2.18)

Recalling the definition made in (2.1a), we immediately see
that

{Q f ,�i} =
∫

dd x
∂ f

∂xi
ρ = Q∂i f . (2.19)
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That is, provided that momentum is conserved by dynamics
and a given Q f is conserved, every charge corresponding to
any number of partial derivatives of f is also conserved. We
consider a number of examples where we demonstrate that a
particular Q f is conserved, based on the discussion above to
provide the fact that derivatives of f also generate conserved
charges, and do not need to be listed explicitly. In particular,
the conservation of a charge generated by a polynomial of
finite degree in xi implies that the charges generated by all
lower-degree polynomials are also conserved. It appears to us
that polynomial functions are special in that one can have a
finite algebra of conserved quantities arising from (2.19). It
could be interesting if one can find a modification such that
fractional derivatives [47] can play a role in the construction.

Now consider the transformation

vi → vi + ∂i f . (2.20)

We see, under this transformation, H transforms as

δH =
∫

dd x
δH

δvi
∂i f = −

∫
dd x f ∂i

δH

δvi
= −{H, Q f }.

(2.21)
Evidently, the charge generated by f is conserved if and only
if H is invariant under the transformation (2.20). We regard
this fact as a consequence of the multipole algebra [48].

Pragmatically, this will allow us to construct kinetic terms
which preserve charges generated by arbitrary f . We can also
see why vi is more natural than πi, since the “shift symmetry”
demanded by Q f is realized in a simpler way in (2.20). In
particular, if Di is a collection of d differential operators (in d
spatial dimensions) obeying

Di∂
i f = 0, (2.22)

whenever Q f is conserved, then

T = 1

2
(Div

i )2 (2.23)

is a kinetic term which preserves the charge generated by f .
In general it appears to be possible to “eyeball” the sensible
choices of Di which involve the fewest derivatives.

D. Multipole conservation

We wish to construct a family of models for each integer n
that conserve the first n multipole moments. Pursuant to this,
choose some fixed polynomial fn of degree n and define

Q fn =
∫

dd x fnρ (2.24)

for each positive integer n. Explicitly, we desire to construct a
kinetic motif which preserves all possible choices of Q fn for
fixed n (and all m < n). Pursuant to this, we define

Di1,i2,...,in = ∂i1∂i2 · · · ∂in . (2.25)

Since any polynomial of degree less than n is in the kernel of
(2.25), we immediately see that

H = ρ

2
(Di1,i2,...,invin+1 )(Di1,i2,...,invin+1 ) + 1

2
ρ2 (2.26)

preserves Q fn .2 Without loss of generality, we are setting
some prefactors to unity to simplify the resulting equations.
This system is in equilibrium when ρ is constant and πi any
polynomial of degree less than n. We will now examine the
properties of this system near equilibrium with and without
the breaking of space-inversion and time-reversal symmetries.

We start with a system with both inversion and time-
reversal symmetry. While it is possible to compute an explicit
expression for the stress tensor of this system, we elect to com-
pute it only to linear order in perturbations from equilibrium.
We denote the first-order deviation of some variable from its
equilibrium value with a δ. From (II.10) and (2.26), one can
see that each Vi vanishes in equilibrium and therefore that only
the pressure is nontrivial at first order. Once again appealing
to (II.10), one discovers that

∂tδρ = −(−1)n(∂i∂
i)n∂ jδπ

j, (2.27a)

∂tδπi = −∂iδρ, (2.27b)

and, in turn, ω = ±|k|n+1. Hence we find “magnon-like”
modes but with arbitrary weak dispersion relations.

A curious feature of these systems is that the momentum
susceptibility

χPP ∼ πi

Vi
∼ k−2n. (2.28)

This generalizes the result of [38] to general multipole-
conserving models with n > 1.

E. Breaking time-reversal symmetry in one-dimensional models

For the sake of convenience, we now restrict ourselves to
a single spatial dimension. We examine the properties of the
multipole conserving Hamiltonians (2.26) under the breaking
of space-inversion and time-reversal symmetry. Consider

H = HT + U , (2.29)

where HT is a time-reversal symmetric Hamiltonian and

U = γ ∂m
x ρ∂n

x v. (2.30)

In practice, we restrict γ < 1 so as to ensure that H is posi-
tive definite. Further, we note that γ = 0 recovers unbroken
physics. Otherwise, it is suitable to regard 0 < γ < 1 as a
tuning parameter.

Let us note the symmetries of U . It is always time-reversal
odd, because under time-reversal (T):

T · ρ = ρ, (2.31a)

T · v = −v. (2.31b)

Since under spatial inversion (or parity, P, in one dimen-
sion),

P · ρ = ρ, (2.32a)

P · v = −v, (2.32b)

2Note that we have not chosen the only way to contract in-
dices above together. Enumerating the additional allowed tensors is
straightforward (but tedious) and we will not do it here. See, e.g.,
[27,30,31].
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TABLE I. Dispersion relation in linear response given by (2.33)
at small k for broken T and broken/unbroken P. σ is a fixed real
number determined by n and m so that σ 2 = 1.

PU = U PU = −U

n + m odd n + m even
ω = ±kn+1(1 − γ 2k2m ) ω = kn+1(±1 + σγ km )

we conclude that U is parity-odd/even whenever n + m is
even/odd. These facts will prove useful below, because we
will want to consider the behavior of our theories when we
either break time-reversal alone, or time-reversal along with
parity.

The equations of motion for (2.29) are

∂tv = −∂x

(
1

2

(
∂n

x v
)2 + ρ + γ (−1)m∂n+m

x v

)
,

∂tρ = −∂n+1
x (−1)n

(
ρ∂n

x v + γ ∂m
x ρ

)
.

(2.33)

Expanding in perturbations from equilibrium, Fourier trans-
forming, and solving the resulting relation between frequency
and wave number, we find

ω = kn+1
[
γ λ(n, m)km ±

√
1 − γ 2λ(n + 1, m)2k2m

]
(2.34)

with

λ(n, m) = cos
[π

2
(n − m)

]
cos[π (n + m)]. (2.35)

We will continue to use this definition of λ(n, m) for the
remainder of this paper. The key features of λ(n, m) are that
λ(n, m) is only nonzero when n and m are of the same parity
in Z2 and in this case, |λ(n, m)| = 1. In some sense, the sym-
metry properties of the system at hand are captured entirely
by λ and we find that precisely this function appears in other
examples.

Small k expansions of (2.34) are available in Table I. Note
that dispersion relations following from (2.33) can admit no
instabilities since Hamiltonian mechanics are conservative.
We are primarily interested in m = 0 and m = 1 special cases
of U because inflating m provides corrections to the disper-
sion relation that are farther and farther from leading order;
however, depending on whether we want parity to be broken
or not, we must consider both the cases m = 0 and m = 1.

Observe that when parity is preserved, the dispersion rela-
tions do not qualitatively change. Indeed, from Table I, the
dispersion relation is modified only by O(1) constants, or
at subleading orders in derivatives—either of these effects
however could also arise from time-reversal-symmetric per-
turbations. However, when parity is broken, there is always a
“drift” term which is an odd integer power, such as γ k2+1;
this is intuitive, since ω(γ , k) = ω(−γ ,−k).

It is instructive to consider particular instances of the above
construction. First, we consider the dipole-conserving case
with m = 1,

H = ρ

2
(∂xv)2 + 1

2
ρ2 + γ ∂xρ∂xv. (2.36)

Notice that the symmetry-breaking term, ∂xρ∂xv, is odd un-
der space inversion and odd under time-reversal symmetry.

Referring to (2.34), we see that the leading order dispersion
relation acquires a subleading order drift term

ω = ±k2 − γ k3. (2.37)

The choice m = 1 seems more interesting than m = 0 because
the latter gives

ω = ±k2(1 − γ 2), (2.38)

which is qualitatively similar to the unbroken case. By con-
trast, in the quadrupole-conserving case with m = 0,

H = ρ

2

(
∂2

x v
)2 + 1

2
ρ2 + γ ρ∂2

x v (2.39)

leads to

ω = ±k3 + γ k3. (2.40)

In this case, the leading order dispersion relation is already
modified by the “drift” term proportional to γ .

F. (Generalized) subsystem symmetries

We now turn our attention to a family of models which
exhibit a so-called “subsystem symmetry” [34] (along with
some multipolar generalizations thereof). We wish to con-
struct a Hamiltonian density which preserves some number
of multipole moments on every (d − 1)-dimensional subset
with a single fixed coordinate. In two spatial dimensions, this
would mean that charge, dipole moment, etc., are fixed on
every line of fixed x and every line of fixed y. Explicitly, in
this setting, we demand

d

dt

∫
x=a

dy yαρ = d

dt

∫
y=b

dx xβρ = 0 (2.41)

for integers α and β less than or equal to some fixed posi-
tive integers n1 and n2, respectively. Recalling the discussion
above, this amounts to conserving any charges of the form

f (x, y) =
n1∑

m1=0

ym1 f1(x) +
n2∑

m2=0

xm2 f2(y). (2.42)

Keeping previous constructions in mind, we seek to manufac-
ture a kinetic term invariant under (2.20). Defining

K := ∂xvy + ∂yvx (2.43)

and

D2[v] := ∂n1
x ∂n2

y K, (2.44)

we see that D2[v] is sufficient for our purposes because

∂n1+1
x ∂n2+1

y f (x, y) = 0. (2.45)

Generalizing this to an arbitrary number of spatial dimensions
is not complicated. The following Hamiltonian includes both
time-reversal breaking (γ ) and the appropriate kinetic motifs
to enforce the generalized subsystem symmetry above:

H = ρ

4
D2[v]2 + 1

2
ρ2 + γ

2
ρD2[v]. (2.46)
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Using the equations of motion given in (2.6a), we find that within linear response,

∂tρ = (−1)n1+n2∂n1+1
x ∂n2+1

y (ρD2[v] + γ ρ), ∂tvi = −∂i

(
ρ + γ

2
D2[v]

)
. (2.47)

In order to obtain dispersion relations for this system, we must only consider that K vanishes in equilibrium and thus dispersions
are given by

−iω

⎛
⎝ δρk

δπx,k

δπy,k

⎞
⎠ =

⎛
⎜⎝

−γ (−i)n1+n2 kn1+1
x kn2+1

y −ik2n1+1
x k2n2+2

y −ik2n1+2
x k2n2+1

y

−ikx in1+n2 γ

2 kn1+1
x kn2+1

y in1+n2 γ

2 kn1+2
x kn2

y

−iky in1+n2 γ

2 kn1
x kn2+2

y in1+n2 γ

2 kn1+1
x kn2+1

y

⎞
⎟⎠

⎛
⎜⎝

δρk

δπx,k

δπy,k

⎞
⎟⎠. (2.48)

This gives

ω = kn1+1
x kn2+1

y (γ λ(n1 + n2 + 1, 0) ±
√

2 − γ 2λ(n1 + n2, 0)2). (2.49)

This is very similar in form to the result given in (2.34). A no-
table difference is that, since K is even under space inversion
and odd under time reversal, inversion is broken when n1 + n2

is odd, or when n1 + n2 + 1 is even, which is the circumstance
wherein we see a drift term appear in (2.49).

The careful reader may notice that we could have defined
a more general kinetic term K ,

K := c1∂xvy + c2∂yvx, (2.50)

without disrupting the symmetries of (2.46). Indeed, one may
wonder if additional symmetries could be achieved by partic-
ular choices of c1 and c2. Since partial derivatives commute,
under (2.20),

K → K + (c1 + c2)∂x∂y f (2.51)

for generic f . Of course, if c1 + c2 = 0, then we effectively
require

d

dt
Q f = 0 (2.52)

for every function f . This is only possible if ρ is static. This is
to say that the choice of c1 and c2 is unimportant qualitatively
except in the case given by (2.52), in which case there is
almost no dynamics. This is slightly curious, since this choice
corresponds to a motif where K is the analog of “vorticity” in
a regular fluid.

Another argument that one cannot simply add a “vorticity”
kinetic term to H is as follows. Using (2.50),

∂i
δ

δvi
ρD2[vi]

2 = 2(−1)n1+n2 (c1 + c2)∂n1+1
x ∂n2+1

y (ρD2[vi]).

(2.53)
Of course, if c1 + c2 = 0, then this means that ∂tρ = 0. It is
straightforward to verify then that K is static and therefore
that vi is static provided that ∂iρ also vanishes. In fact, in
this particular setting, any function ρ(x) may be chosen as
the equilibrium value of ρ. Then, we find that

∂tvi = −∂iρ, (2.54)

which implies that the velocity field is in general a linear
function of t , since the right-hand side is independent of t .

III. TOWARD DISSIPATIVE HYDRODYNAMICS

In this section, we will provide a few brief comments about
the dissipative corrections to ideal hydrodynamics. These are
quite interesting, because following [38] they are expected to
lead to new nonequilibrium universality classes which gener-
alize the Kardar-Parisi-Zhang fixed point [49,50]. However,
an exhaustive analysis of these effects is beyond this paper:
in particular, because with the breaking of spacetime sym-
metries, we do not yet have a complete understanding of the
allowed dissipative coefficients within hydrodynamics. Nev-
ertheless, we will present some preliminary thoughts about
what we expect, and hope to address these questions more
systematically in the near future.

A. Momentum relaxation

One way to predict dissipative corrections to hydrodynam-
ics is to relax momentum in a self-consistent way. When this
is done, we expect to reproduce the subdiffusive theories of
[27] upon taking the k → 0 limit of the quasinormal mode
dispersion relations, albeit now with the possibility of includ-
ing inversion-breaking terms as well.

Let us restrict our attention only to models in a single space
dimension for the sake of convenience. Suppose we replace
the equations of motion given in (2.6a) with

∂tρ = −∂i
δH

δvi
,

∂tvi = −∂i
δH

δρ
+ (∂iv j − ∂ jvi )

δH

δv j
− βvi.

(3.1)

Note that β is the relaxation rate for momentum density. The
dispersion relation of this system is given by

det

(
γ (−1)n+1(ik)n+m+1 + iω (−1)n+1(ik)2n+1

−ik γ (−1)m+1(ik)n+m+1 + iω − β

)
= 0, (3.2)
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or equivalently,

ω = −iβ + γ λ(n, m)km+n+1

±
√

k2n+2 − [kn+m+1γ λ(n + 1, m) + β]2
. (3.3)

Similarly to conventional hydrodynamics in the presence of
momentum relaxation [51,52], there are two modes that exist,
with the following dispersion relations as k → 0:

ω ≈ −iβ, (3.4a)

ω ≈ γ λ(n, m)km+n+1 − ik2n+2

2β
. (3.4b)

The former corresponds to the momentum density, which
can now relax at a finite rate; the latter corresponds to a sub-
diffusive mode for charge, with possible drift in the presence
of inversion-breaking. We see that, again, the presence of a
leading order drift term depends on whether or not n + m is
even, as in Table I. Note that the power of the drift term will
generically be either kn+1 or kn+2 depending on whether n is
even or odd.

This is actually somewhat nontrivial: as was emphasized
already in [27], in general it is not the case that one can write
down the lowest-order coefficients in the higher-rank currents
Ji1···in+1 in a fracton fluid. Nevertheless, the model above im-
plies that one must be able to write down these leading order
terms for dissipationless drift in the presence of inversion
breaking. In particular, we predict that for a dipole-conserving
model, one can only write down Jxx = ∂xρ when inversion and
time reversal are broken, yet when quadrupoles are conserved,
we can write down Jxxx = ρ.

B. Instabilities

In this subsection, we will predict the upper critical dimen-
sion below which hydrodynamics is unstable to fluctuations.
We again assume momentum is conserved. We will focus on
multipole-conserving theories in the discussion for simplicity,
though similar power counting should hold for other models.
Following [27] and the discussion above, we predict that the
dynamical critical exponent of dissipation is

z = 2n + 2. (3.5)

This is important, as this will fix the relative scaling of time
and space in our power-counting arguments. The reason for
this is that, as in the ordinary KPZ analysis, one wishes to
study the breakdown of hydrodynamics at the propagating
wave front of an excitation, which in a multipole-conserving
theory will have a dissipationless part ω ∼ kn+1 + · · · .

The equations of motion are

∂tπi + ∂ jT
j

i = 0, (3.6a)

∂tρ + ∂i1∂i2 . . . ∂in+1 Ji1i2...in+1 = 0. (3.6b)

We add noise in the form of τi j and ξi1i2...in+1 so that the
dynamics with fluctuations are related to those without by

Ti j → Ti j + τi j, (3.7a)

Ji1i2...in+1 → Ji1i2...in+1 + ξi1i2...in+1 . (3.7b)

Above, τi j and ξi1... are Gaussian white noise, with vari-
ances given by

〈τi jτlm〉 = 2ηi jlmδ(t )δd (x), (3.8a)

〈ξi1i2...in+1ξ j1 j2... jn+1〉 = Ci1···n+1 j1... jn+1δ(t )δd (x). (3.8b)

η and C here represent tensors proportional to dissipative coef-
ficients within hydrodynamics. In fluctuating hydrodynamics,
we must take these noise terms to be marginal. Combining
(3.5) and (III.8), we find that τi j ∼ ξi1···in+1 ∼ kn+1+d/2. (By
this power counting, note that ω ∼ k2n+2.) But since the di-
mensions of currents and densities must be related, we can
deduce that ρ ∼ k−2n−2+(n+1)ξ ∼ kd/2, while πi ∼ kd/2−n.

The leading order nonlinearity arises in the pressure P(ρ),
and so when expanding the equations about equilibrium (δρ =
ρ − ρeq),

∂tδπi + 1

χ
∂xδρ + λδρ∂xδρ + λ′δρ2∂xδρ + ∂xτ

xx + . . . = 0,

(3.9a)

∂tδρ − A∂2n+1
x vx + C

χ
∂2n+2

x δρ + ∂n+1
x ξxx...x + . . . = 0,

(3.9b)

we find that the dimension of the coefficient λ ∼
kn+2+d/2k−1−d ∼ kn+1−d/2. Thus this is a relevant perturbation
whenever

d < 2n + 2. (3.10)

This means that 2n + 2 is the upper critical dimension of
the momentum-conserving theory with n-pole conservation.
For large n, this can be arbitrarily large. Below this upper
critical dimension, we expect that this theory will flow toward
a multipolar generalization of the KPZ fixed point, as was
explained in detail for the case n = 1 in [38].

Lastly, we remark that the upper critical dimension in
(3.10) agrees with the recently computed upper critical dimen-
sion below which complete multipolar spontaneous symmetry
breaking is not (a multipolar generalization of the Mermin-
Wagner theorem) [53]. It is not clear to us whether there is
a profound reason why these two upper critical dimensions
must be identical, or a simple accident of power counting
in these models. The propagating modes studied above do
not consist of the same degrees of freedom as multipolar
Goldstone bosons.

IV. MICROSCOPIC MODELS IN 1D

In this section, we present a list of microscopic Hamil-
tonian models which exhibit both momentum and multipole
conservation in one spatial dimension. We will present these
systems as Hamiltonian dynamical systems, and so strictly
speaking all of these models also have energy conservation.
Following [38], it is possible to relax energy conservation
by adding suitable noise; one can also simply make some
coefficients time-dependent if desired. These constructions
may be useful in actually carrying out large-scale numerical
simulations, in order to look for the nonequilibrium fixed
points predicted above. Unfortunately, due to the extremely
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slow relaxation predicted above, it will be quite challenging to
run the simulation for long enough to detect the new physics.

A. Constructing the Hamiltonian

Consider N particles, arranged on a one-dimensional line,
labeled by i = 1, . . . , N . Their position and momentum are
given by the canonically related xi and pi:

{xi, p j} = δi j . (4.1)

In this language, we define the multipole moments

Qn =
N∑

i=1

xn
i (4.2)

so that Q0 is total system charge, Q1 is the total dipole moment
and so on. We also define

P =
N∑

i=1

pi (4.3)

to be the total momentum of the system. We aim to construct a
family of models which leave the first few multipole moments
and total momentum invariant under time evolution. Namely,
we are looking for a Hamiltonian H such that

{H, P} = {H, Q0} = · · · = {H, Qn} = 0. (4.4)

Note that

{H, Qn} =
{

N∑
i=1

xn
i , H

}
= n

N∑
i=1

xn−1
i

∂H

∂ pi
= 0. (4.5)

To help construct such an H , for positive integers n and m,
let us define

�n,i =

⎛
⎜⎜⎜⎜⎜⎜⎝

pi pi+1 . . . pi+n

1 1 . . . 1
xi xi+1 . . . xi+n

x2
i x2

i+1 . . . x2
i+n

...
...

xn−1
i xn−1

i+1 . . . xn−1
i+n

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.6)

and

Ln,i = det �n,i. (4.7)

Since Ln,i is a sum of terms linear in momenta,

N∑
j=1

xn−1
j

∂Ln,i

∂ p j
= det

⎛
⎜⎜⎜⎜⎜⎜⎝

xn−1
i xn−1

i+1 . . . xn−1
i+n

1 1 . . . 1
xi xi+1 . . . xi+n

x2
i x2

i+1 . . . x2
i+n

...
...

xn−1
i xn−1

i+1 . . . xn−1
i+n

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0

(4.8)
by linear dependence. In fact, we conclude that

{Qm, Ln,i} = 0, (m � n). (4.9)

As a consequence, Ln,i is an invariant which we can use to
start building invariant Hamiltonians.

It is instructive to simplify the form of Ln,i somewhat.
Assuming that i � j � i + n, the coefficient of p j in Ln,i is
given by

∂Ln,i

∂ p j
= (−1) j−i det

⎛
⎜⎜⎜⎜⎝

1 1 . . . 1 1 . . . 1
xi xi+1 . . . x j−1 x j+1 . . . xi+n

x2
i x2

i+1 . . . x2
j−1 x2

j+1 . . . x2
i+n

...
...

xn−1
i xn−1

i+1 . . . xn−1
j−1 xn−1

j+1 . . . xn−1
i+n

⎞
⎟⎟⎟⎟⎠. (4.10)

Noting that

am − bm = (a − b)
m∑

l=1

am−l bl−1, (4.11)

and subtracting one column appearing in (4.10) from another,
we see that for any pair of integers (a, b) so that a 	= j 	= b
and a 	= b with both i � a, b � i + n, xa − xb is a factor of
∂Ln,i

∂ p j
. Realizing that Ln,i is linear in each momenta, that the

coefficient of each term in this multinomial (in xks) coefficient
is ±1, and by power counting, we deduce that, up to an overall
sign,

Ln,i = ±
i+n∑
j=i

p j

∏
i�u�v�i+n

u,v 	= j

(xu − xv ). (4.12)

We immediately see that Ln,i is invariant under xi → xi + c
for all i, and therefore

{P, Ln,i} = 0. (4.13)

Thus Ln,i can be used to write down a multipole-conserving
kinetic motif. Note that once n > 1, Ln,i is intrinsically non-
linear.

Now, consider a Hamiltonian of the form

H = V (x1, . . . , xN ) +
N−n∑
i=1

1

2
L2

n,i. (4.14)

So long as V is translation invariant, we are guaranteed that
(4.4) is obeyed. A minimal Hamiltonian corresponds to choos-
ing

H =
N−1∑
i=1

1

2
(1 + xi − xi+1)2 +

N−n∑
i=1

1

2
L2

n,i. (4.15)

Note that we have chosen our potential energy such that equi-
librium corresponds to (e.g.) xi = i. For any suitable choice of
equilibrium, we must have that Ln,i vanishes in equilibrium.
One can see from (4.8) that Ln,i vanishes at pi = c for all i.
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B. Time-reversal breaking

It is straightforward to incorporate broken time-reversal
symmetry (and/or broken parity). Let �i be a function of only
xks, which is invariant under translation and reasonably local.
Then we can try to add the following time-reversal-breaking
term to H :

H̃ = γ

N−n∑
i=1

�iLn,i. (4.16)

Here γ is a constant. In order to preserve a chosen equilib-
rium, we require that

∂

∂xm
H̃

∣∣∣∣
eq

= ∂

∂ pm
H̃

∣∣∣∣
eq

= 0 (4.17)

for any integer m. Given that Ln,i must vanish in equilibrium
and that �i is assumed to be independent of momenta, these
conditions are equivalent to

N−n∑
i=1

�i
∂Ln,i

∂ pm

∣∣∣∣
eq

=
N−n∑
i=1

�i
∂Ln,i

∂xm

∣∣∣∣
eq

= 0. (4.18)

Again, the form of (4.8) guarantees that the second above
inequality (namely conservation of momentum) holds and we
are left only with the condition that

N−n∑
i=1

�i
∂Ln,i

∂ pm

∣∣∣∣
eq

= 0. (4.19)

Recalling the expression given in (4.10), we find that

∂Ln,i

∂ pm

∣∣∣∣
x j= j

= (−1)m−i

(
n

m − i

) n−1∏
j=1

j! . (4.20)

There are a large class of �i which may be chosen to satisfy
(4.19) in equilibrium with (4.20). In particular, we can take
�i to be a polynomial of degree < n in xi (or xi+ j for some
j 	= 0), because for any polynomial A of degree less than n,
for any m,

n∑
i=0

(−1)i

(
n

i

)
A(m + i) = 0. (4.21)

C. Quasinormal modes

Now suppose we wish to conserve up to the n-pole mo-
ment. Without concerning ourselves over whether or not H
would be convergent, we consider the infinite chain limit
(N → ∞):

H = 1

2

∞∑
i=−∞

(1 + xi − xi+1)2 + L2
i + γ�iLi. (4.22)

Loosely, this is H + H̃ from (4.14) and (4.16), respectively.
There are a variety of suitable choices for �i. As a minimal
choice, we will require that �i be linear in positions and odd
under space inversion. Namely,

�i = xi − xi−1. (4.23)

However, the following results are insensitive to the details
of �i. Indeed, assuming only that d�i/dx j |eq is dependent

only on i − j is sufficient to ascertain dispersion relations up
to constant coefficients. Writing xk and pk to be the discrete
Fourier transform of xn and pn respectively, and defining

S = (1 − e−ik )n, (4.24a)

N =
∞∑

l=−∞
eilk ∂�0

∂xl
, (4.24b)

M = 4 sin2

(
k

2

)
, (4.24c)

we find that the equations of motion given by H are

∂tδxk = c2
nMnδpk + γ cnS∗N∗δxk, (4.25a)

−∂tδpk = Mδxk + γ cnSNδpk, (4.25b)

with

cn =
n−1∏
m=1

m!. (4.26)

For our particular choice of �i,

N = 1 − e−ik . (4.27)

Using (IV.25), we can produce an exact dispersion relation:

ω = cnγ Im[SN] ± cn

√
4n+1 sin2n+2(k/2) − γ 2Re[SN]2.

(4.28)

It follows immediately that ω is real valued for sufficiently
small γ . Momentum conservation guarantees that N vanishes
at vanishing k. This fact immediately demonstrates that the
leading k behavior of ω cannot be reduced by breaking sym-
metry in this manner.

Expanding, now, in small k, we find that

S ≈ (ik)n + n

2
kn+1, (4.29a)

N ≈ ik + k2

2
, (4.29b)

M ≈ k2. (4.29c)

Therefore,

Im(SN) ∼
{

kn+2, n odd,

kn+1, n even,
(4.30a)

Re(SN) ∼
{

kn+1, n odd,

kn+2, n even.
(4.30b)

Observe that the propagating modes have, at leading order,
ω ∼ kn+1. When n is even, we observe that the drift term
in (4.28) must be subleading. These facts are precisely in
agreement with our theory in Sec. II.

V. CONCLUSIONS

To summarize, we have described infinitely many new
universality classes of fracton hydrodynamics with both
momentum conservation and multipolar or subsystem conser-
vation laws. We expect that all of these universality classes
are—in sufficiently low dimension—unstable, similar to what
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was found in [38] for fluids with dipole and momentum con-
servation. The models presented in the previous section can
serve as concrete starting points for systematic numerical
investigations of these new nonequilibrium fixed points in
one-dimensional models; however, we caution that due to
the very large dynamical critical exponents expected for each
new universality class, the timescales required to simulate the
dynamics may be quite long (and thus require many computa-
tional resources).

Beyond more direct investigations of dissipative dynamics
in these new universality classes, which we expect will largely
follow [38,41], we believe that it is particularly important
to understand better the role of spacetime symmetries (such
as time reversal) in fracton hydrodynamics. The models we
constructed in this paper will provide a valuable starting point

for any such future investigation, with or without momentum
conservation.
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