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Nonreciprocal optical response in parity-breaking superconductors
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Superconductivity, an emergence of a macroscopic quantum state, gives rise to unique electromagnetic
responses leading to perfect shielding of magnetic field and zero electrical resistance. In this paper, we propose
that superconductors with the space-inversion symmetry breaking host giant nonreciprocal optical phenomena,
such as photocurrent generation and second harmonic generation. The nonreciprocal optical responses show
divergent behaviors in the low-frequency regime and originate from twofold indicators unique to parity-breaking
superconductors, namely, the nonreciprocal superfluid density and the Berry curvature derivative. Furthermore,
the mechanism and frequency dependence are closely tied to the preserved temporal symmetry in the super-
conductor. The relation is useful for probing the space-time structure of the superconducting symmetry. The
indicators characterize the low-frequency property of nonreciprocal optical responses and hence quantify the
performance of superconductors in nonreciprocal optics.
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I. INTRODUCTION

Nonlinear optics is one of the central fields in physics and
has been offering extensive interests from fundamental sci-
ence to engineering. When the system has no space-inversion
(P) symmetry, the nonlinear optical response acquires the
nonreciprocal property, that is, asymmetry in the response to
mutually antiparallel external fields. A prototypical example
of the nonreciprocal response is the diode effect where the
electric conductivity is allowed or almost forbidden depend-
ing on the direction of voltage. The nonreciprocal optical
(NRO) phenomena have been explored in various systems
[1,2]. The leading NRO response is represented by the second-
order nonlinear response. The formula is given by the current
response induced by the double photoelectric field

〈
J α

NRO(ω)
〉 =

∫
d�

2π
σα;βλ (ω; �,ω − �)Eβ (�)Eλ(ω − �).

(1)

The NRO response covers two important phenomena, namely,
second harmonic and photocurrent generations which are de-
noted by σ (2ω; ω,ω) and σ (0; ω,−ω), respectively.

The second harmonic generation, where irradiating light
with frequency ω induces the light oscillating with the dou-
bled frequency 2ω, is a useful tool for probing the microscopic
P breaking in materials. In the field of multiferroic material
science, the second harmonic generation led to the successful
optical imaging of magnetic domains [1]. Furthermore, re-
cent second harmonic generation experiments implied exotic
symmetry breaking in quantum materials such as a family of
high-temperature copper-based superconductors [3,4].

On the one hand, the photoinduced direct current, namely,
the photocurrent generation (photogalvanic effect), is also

of interest. The conventional mechanism for the photocur-
rent response is attributed to spatially inhomogeneous and
asymmetric structures found in photodiode devices, whereas
recent studies shed light on the bulk photocurrent response
originating from microscopic parity breaking [5]. Since the
bulk photocurrent performance is influenced by the electronic
property of materials, the realization of a novel type of photo-
electric converter is one of the strong motivations for materials
science. Potential candidate systems are topological materials
[2,6] and parity-violating magnets [7,8]. In the former sys-
tems, the photocurrent response is enhanced by the nontrivial
quantum geometry in the electronic band structure, while the
latter systems allow for a tunable photocurrent response due
to the good controllability of magnetic order.

Stimulated by the progress mentioned above, we investi-
gate the NRO responses in another class of quantum materials,
superconductors. Superconductors host striking electromag-
netic properties stemming from the Cooper pairs’ quantum
condensation. Well-known examples are the perfect shield-
ing of magnetic flux (Meissner effect) and zero resistivity
phenomenon. The optical conductivity also shows a unique
spectrum in the low-frequency region and has been exploited
to evaluate the superfluidity of Cooper pairs [9]. The non-
trivial quantum nature of superconductors is also attracting
from the viewpoint of nonreciprocal optics. The dissipation-
free electric conductivity of superconductors is favorable for
suppressing undesirable energy loss in the photoelectric con-
version process. It is therefore expected that superconductivity
paves a new way for optoelectronics. Supporting this prospect,
enhanced nonreciprocal direct conductivity has been reported
in superconductors [10,11] and the “perfect” diode effect has
recently been observed in a parity-breaking superconductor
[12]. Despite the potential applications to these transport
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FIG. 1. Nonreciprocal optics in superconductors. (a) Sketch of nonreciprocal optical responses in a parity-breaking superconductor. The
Cooper pairs (paired electrons) are colored in green. The injected light generates light with doubled frequency (second harmonic generation)
and direct current (photocurrent generation). (b) s + p-wave superconductivity is an example of a time-reversal-symmetric parity-breaking
superconductor. Its characteristic NRO response is the diverging imaginary component of the NRO conductivity (Im[ σNRO]), which is
determined by the Berry curvature derivative B̂d . (c) s + ip-wave superconductivity is a parity-time-reversal-symmetric parity-breaking
superconductor. The nonreciprocal superfluid density f̂ contributes to the diverging NRO conductivity in the real part (Re[ σNRO]).

responses, only a few works were conducted for exploring
NRO responses of superconductors [3,13–17]. In particular,
unique features of the NRO response in superconductors
remain elusive. To motivate further interest in superconductor-
based optoelectronics, in this paper, we predict a giant NRO
response of parity-violating superconductors.

The key features of the NRO response are twofold. One
is the absence of the definite P parity in the superconduct-
ing state. The other is the temporal symmetry, such as the
time-reversal (T ) symmetry and the symmetry of the com-
bined P and T operations, called the parity-time-reversal
(PT ) symmetry. Based on the symmetry analysis and mi-
croscopic calculations, in this paper, we demonstrate that the
parity-breaking superconductor shows the diverging NRO re-
sponse in the low-frequency regime. This newly discovered
response is useful for sensitive photodetection and energy
harvesting. We also show that the frequency dependence
manifests the characteristic power law associated with two
indicators, namely, the Berry curvature derivative B̂d and
the nonreciprocal superfluid density f̂ , which are closely
tied to the temporal symmetry. Figure 1 overviews this work
with a typical example of parity-breaking superconductors
comprising the even-parity s-wave and odd-parity p-wave
pairings.

The outline of the paper is given in the following. In Sec. II,
we present the symmetry analysis to identify superconductors
offering the NRO responses and classify potential candi-
dates. Section III briefly explains the formulation of the NRO
response in superconductors. Starting from the general ex-
pression obtained with the Bogoliubov–de Gennes formalism,
we propose the superconductivity-induced NRO response,
which we call the anomalous NRO response. The analytical
formulas are in agreement with those obtained by twofold
methods, namely, density matrix and Green function methods
(the derivations are detailed in Appendixes D and E). The
results are summarized in Table I. Furthermore, making use
of the adiabatic time-evolution process, we obtain formulas
for the anomalous nonreciprocal responses which can apply
to many-body Hamiltonians (Sec. IV). The analytical results
are corroborated by the numerical calculations of the NRO

responses such as photocurrent and second harmonic genera-
tions in Sec. V. The contents are concluded in Sec. VI.

Throughout this paper, we present formulas with the units
h̄ = 1 (Dirac constant) and q = 1 (electron charge).

II. SYMMETRY AND CANDIDATE SUPERCONDUCTORS

First, we present the symmetry analysis of candidate
superconductors for the nonreciprocal optics. Broken space-
inversion symmetry is an essential ingredient for the NRO
response in the superconducting state as well. On the other
hand, the emergence of superconductivity gives the stiffness
of the U(1)-gauge transformation. Therefore, it is relevant
to take into account the combined operations of the usual
symmetry operations and U(1)-gauge transformation. In the
case of the odd-parity superconductors, the combined inver-
sion operation P×U(1) is still preserved although the normal
P symmetry is spontaneously broken by the superconduct-
ing transition. The surviving “inversion” symmetry [P×U(1)]
also prohibits the NRO conductivity. Thus, we cannot expect
any NRO responses in purely odd-parity superconductors,
e.g., centrosymmetric ferromagnetic superconductors such as
UGe2, URhGe, and UCoGe [18]. Multiple superconducting
transitions in UPt3 are also expected to be caused by purely
odd-parity pairings [19,20]. This symmetry requirement is
different from that of the diagonal long-range order invoking
parity violation such as structural transitions and magnetic
orderings [21].

According to the above-mentioned symmetry considera-
tions, superconductors hosting the NRO response have no
definite parity under the P operation. To our best knowledge,
the parity violation realizes in the following setups: (I) su-
perconductivity occurs in the system where P symmetry has
already been broken in the normal state, (II) an external field
induces parity breaking unique to superconductors, and (III)
multiple superconducting transitions are caused by coexisting
even-parity and odd-parity Cooper pairings.

Case (I) may exist in a broad range of materials since there
are a series of noncentrosymmetric bulk superconductors such
as CePt3Si and Li2(Pd,Pt)3B [22]. In addition, parity-breaking
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TABLE I. Classification of normal and anomalous photocurrent responses. Parities under the T - and PT -symmetry operations are denoted
by ±. In the column “e” we specify the linearly polarized light-induced (�) or circularly polarized light-induced (�) photocurrent. The check
mark (�) in the column “FS (Fermi-surface effect)” indicates the photocurrent which vanishes in the absence of the Fermi surface. As for
the normal photocurrent, we reproduce the classification performed in Ref. [21] where the normal state is assumed. On the other hand, the
anomalous photocurrent is unique to superconductors.

Mechanism T PT e FS Ref.

(Normal photocurrent)
Drude − + � � [52]
Berry curvature dipole + − � � [55]
Intrinsic Fermi surface (electric) + − � � [48]
Intrinsic Fermi surface (magnetic) − + � � [21]
Injection current (electric) + − � [47]
Injection current (magnetic) − + � [51]
Shift current + − � [46,47]
Gyration current − + � [21,56]
(Anomalous photocurrent)
Nonreciprocal superfluid density − + � This work
Berry curvature derivative + − � This work
Drude derivative − + � � This work

effects have recently been demonstrated [23–25] in artificial
two-dimensional superconductors such as ultrathin MoS2 [26]
and SrTiO3/LaAlO3 interfaces [27]. Other situations with
broken P symmetry can be found when superconductivity co-
exists with the structural transition [28] and magnetic ordering
[3,29].

Corresponding to case (II), an electric current breaks the P
and T symmetries. Different from the metal state, the super-
conducting state allows the electric current to flow in thermal
equilibrium with the aid of the superfluidity. Under the elec-
tric current, Cooper pairs acquire finite momentum and the
Fulde-Ferrell superconductivity is realized [30], which is clas-
sified as the PT -symmetric parity-breaking superconducting
state. Thus, it is expected that superconductors exhibit NRO
responses under the supercurrent flow. The experimental ob-
servations have been reported in Refs. [14–16].

Finally, we consider case (III). This class of the parity-
breaking superconductors is intrinsic, nontrivial, and exotic
because the superconductivity itself breaks both of the P
symmetry and its combination with the U(1) gauge trans-
formation. This type of parity violation is solely induced
by superconducting instability, and thus it is in sharp con-
trast to the known parity-breaking superconductors classified
into cases (I) and (II). The spontaneously parity-mixed su-
perconductivity may be stabilized near the topological phase
transition between s-wave and p-wave superconducting states
[31]. It was shown that the relative phase of the even- and odd-
parity pair potentials is ±π/2 in a coexisting phase space. The
resultant parity-mixed superconductivity preserves PT sym-
metry. Although this scenario requires a tunable parameter for
the topological phase transition, the recent discovery of the
heavy-fermion superconductor UTe2 [32], which shows mul-
tiple superconducting transitions [33–38], led to a theoretical
prediction of the spontaneously parity-mixed superconductiv-
ity [39].

Other superconductivity-driven symmetry breaking was
also studied in terms of chiral superconductivity [40,41] and
nematic superconductivity [42]. The time-reversal symmetry

breaking has been discussed based on the μSR and Kerr
rotation measurements [40], while the rotation symmetry
breaking has been studied by various bulk measurements
[42]. However, experimental probes for detecting intrinsic
space-inversion symmetry breaking are awaited to verify a
new phase of matter. The NRO response may be useful for
detecting parity violation induced by superconductivity and
for evaluating its parity-mixing effect. In the numerical cal-
culations, we demonstrate the NRO responses arising from
the parity violation of case (III) as an example, while our
formulation applies to all the cases (I)–(III).

III. FORMULATION OF NRO RESPONSES IN
SUPERCONDUCTORS

A. General formula for NRO responses

Our formulation is based on the Bogoliubov–de Gennes
(BdG) Hamiltonian

HBdG = 1
2�†HBdG� + const, (2)

where Nambu spinor �† = (c†, cT ) with the creation (c†) and
annihilation (c) operators of electrons. The BdG Hamiltonian
HBdG consists of the normal-state Hamiltonian HN and the pair
potential 	:

HBdG(A) =
(

HN(A) 	

	† −[HN(A)]T

)
. (3)

The vector potential A dependence is taken into account for
the electromagnetic field perturbation, while we choose A = 0
in the equilibrium. Following the standard perturbative treat-
ments (Appendix A), we evaluate the expectation value of the
electric current density as

〈J α (ω)〉 =
∑
n=1

〈J α (ω)〉(n), (4)

where 〈J α (ω)〉(n) is the electric current of the nth order in
A. With the velocity gauge E = −∂t A(t ), we obtain the NRO
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response function in Eq. (1) corresponding to the second-order component 〈J α (ω)〉(n=2). The formula is given by

σα;βγ (ω; ω1, ω2) = 1

2(iω1 − η)(iω2 − η)

[∑
a

1

2
Jαβγ

aa fa (5)

+
∑
a,b

1

2

(
Jαβ

ab Jγ

ba fab

ω2 + iη − Eba
+ Jαγ

ab Jβ

ba fab

ω1 + iη − Eba

)
(6)

+
∑
a,b

1

2

Jα
abJβγ

ba fab

ω + 2iη − Eba
(7)

+
∑
a,b,c

1

2

Jα
ab

ω + 2iη − Eba

(
Jβ

bcJγ
ca fac

ω2 + iη − Eca
− Jβ

caJγ

bc fcb

ω2 + iη − Ebc

)
(8)

+
∑
a,b,c

1

2

Jα
ab

ω + 2iη − Eba

(
Jγ

bcJβ
ca fac

ω1 + iη − Eca
− Jγ

caJβ

bc fcb

ω1 + iη − Ebc

)]
, (9)

where indices a, b, c are spanned by the energy eigen-
states of the unperturbed BdG Hamiltonian HBdG(0) and the
eigenenergy difference is Eab = Ea − Eb. We introduced the
Fermi-Dirac distribution function fa = (eβEa + 1)−1 and ac-
cordingly defined fab = fa − fb. The infinitesimal positive
parameter η appears due to the adiabatic application of the
external field. The electric current operators are defined by

Jα1...αn = (−1)n ∂nHBdG(A)

∂Aα1 . . . ∂Aαn

∣∣∣
A=0

. (10)

The first- and second-order ones (n = 1, 2) are called para-
magnetic and diamagnetic current density operators, respec-
tively. The detail of the derivation is shown in Appendix A.

When the pair potential vanishes, the formula for the NRO
conductivity agrees with the prior results for the normal state
[43,44]. We can check the consistency by replacing A with k
in the derivation. The replacement is justified by the minimal
coupling p → p − qA in the normal state, whereas it fails
in the superconducting state because particles with opposite
charges, that is electron and hole, are treated on equal footing
in the BdG formalism.

The failure of the replacement also implies that some
useful relations do not hold for the BdG Hamiltonian. For
instance, according to the Hellmann-Feynman theorem en-
sured in the normal state, we obtain the relation between
the paramagnetic current operator Jα and Berry connection
embedded in the band structure as

Jα
ab(k) = ∂

∂kα

Eaδab + iEab ξα
ab(k), (11)

in the Bloch representation [45]. The Berry connection is
defined as

ξα
ab(k) = i

〈
ua(k)

∣∣∣∣ ∂ub(k)

∂kα

〉
, (12)

with the periodic part of the Bloch states {|ua(k)〉}. This rela-
tion is essential for a remarkable simplification of formulas for
transport and optical phenomena in the normal state [21,46–
48]. On the other hand, it is unclear whether the nonlinear
conductivity of superconductors can be computed similarly to
the optoelectronic phenomena in the normal state.

The failure of the Hellmann-Feynman relation in Eq. (11)
may make it hard to formulate the optical conductivity in a
physically transparent way. The difficulty, however, is elimi-
nated by vector potential parametrization. Taking into account
the minimal coupling, we introduce the variational parameter
λ by

H[ p̂] → Hλ = H[ p̂ − λ]. (13)

Here and hereafter in this section, we drop “BdG” of HBdG

and HBdG for simplicity. Since the parameter λ plays the same
role as the (spatially uniform and time-independent) vector
potential, we obtain the relation

Jα
ab = − lim

λ→0
〈aλ|∂Hλ

∂λα

|bλ〉 (14)

for the paramagnetic current operator. Note that this relation
holds even in the BdG formulation. The Hellmann-Feynman
relation for the vector potential is obtained as

〈aλ|∂Hλ

∂λα

|bλ〉
[ = −(

Jα
λ

)
ab

] = ∂Ea(λ)

∂λα

δab − i[ξλα , Hλ]ab,

(15)
where we define the connection ξλα with the replacement
∂kα

→ ∂λα
in Eq. (12):

ξ
λα

ab = i

〈
aλ

∣∣∣∣ ∂bλ

∂λα

〉
. (16)

The eigenstates |aλ〉 , |bλ〉, eigenenergy Ea(λ), and modified
velocity operator Jα

λ are defined on the basis of Hλ. The quan-
tities defined with the parameter λ become those with λ = 0
in the limit λ → 0. We can apply the Hellmann-Feynman rela-
tion to the simplification of the optical conductivity formulas.
For instance, the linear optical conductivity and photocurrent
response are decomposed into the normal and anomalous con-
tributions with the aid of the λ parametrization (Appendixes
C and D).

Although the introduction of the variational parameter re-
minds us of the Kohn’s classical work [49,50], we note that
there is a slight difference. In Ref. [49], the variational pa-
rameter is continuous and can be taken smaller than 2π/L (L
is the linear dimension of the system), whereas we adopt the
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(2π/L)-discretized values for λ and finally take the thermo-
dynamic limit L → ∞. In other words, in a finite system, the
variational parameter λ is defined for the (2π/L)-discretized
values and the λ derivative is instead evaluated by the neigh-
boring values for λ. The finite-size effect on Eq. (15) vanishes
after the thermodynamic limit. Note that all physical observ-
ables have (2π/L)-periodic λ dependence in the normal state,
while generally they do not in the superconducting state based
on the BdG formalism with a fixed pair potential. The reason
is the following: In the normal state, the introduction of λ

just shifts the wave number, and λ dependence of physical
quantities vanishes after the k summation. By contrast, in the
superconducting state, λ corresponds to the center-of-mass
momentum of the Cooper pairs and, thus, the states with
different λ should be distinguished from each other. While
the value of λ minimizing the free energy (denoted by λ = 0
in this paper) is realized in equilibrium, the derivatives of λ

have physical implications such as the superfluid weight as we
see below. Thus, the vector potential parametrization offers
us a good means to extract physical properties intrinsic to
superconductors.

B. Anomalous photocurrent responses

Emergence of the superconductivity leads to unique optical
phenomena which we call anomalous optical responses. For
example, we investigate the photocurrent response given by
the NRO conductivity σα;βγ (0; �,−�), and frequency depen-
dence will be suppressed in this section.

The real and imaginary parts denote the photocurrent
conductivity induced by linearly polarized and circularly po-
larized lights, respectively [5]. According to the prior studies
investigating the normal state, the mechanism for the pho-
tocurrent generation and its dependence on the polarization
state of light are closely related to the temporal symmetry
such as T and PT symmetries [21,46–48,51,52]. The same
classification applies to the superconducting state as revealed
in our derivation.

Leaving the derivation to Appendix D, we show the formu-
las for the NRO response used in the following calculation.
In the gapful superconductors at low temperatures, the total
photocurrent conductivity is given by the two components

σ = σn + σa. (17)

The former (σn) is a normal photocurrent which is a coun-
terpart of the known photocurrent in the normal state, while
the latter new contribution (σa) represents an anomalous pho-
tocurrent unique to the superconducting state.

The normal part consists of the four contributions

σn = σEinj + σMinj + σshift + σgyro, (18)

which are termed electric injection current, magnetic injection
current, shift current, and gyration current, respectively. The
formulas read as

σ
α;βγ

Einj = − iπ

8η

∑
a �=b

(
Jα

aa − Jα
bb

)
�

λβλγ

ba Fab, (19)

σ
α;βγ

Minj = π

4η

∑
a �=b

(
Jα

aa − Jα
bb

)
g
λβλγ

ba Fab, (20)

σ
α;βγ

shift = −π

4

∑
a �=b

Im
[
[Dλα

ξλβ ]abξ
λγ

ba + [Dλα
ξλγ ]abξ

λβ

ba

]
Fab,

(21)

σα;βγ
gyro = − iπ

4

∑
a �=b

Re
[
[Dλα

ξλβ ]abξ
λγ

ba − [Dλα
ξλγ ]abξ

λβ

ba

]
Fab.

(22)

Fab = fab δ(� − Eba) means the Pauli exclusion principle at
the optical transition. We also defined the geometric quanti-
ties such as Berry curvature (�λαλβ

ab ), quantum metric (gλαλβ

ab ),
and the covariant derivative (Dλα

). The covariant derivative
is associated with the equienergy Berry connection where
bra-states and ket-states satisfy Ea = Eb. Note that we finally
take the limit λ → 0. The shift current formula is in agreement
with that derived in Ref. [13]. We also note that the known
formulas for the normal photocurrent response [21] are repro-
duced by the replacement of λ with the crystal momentum k.
The replacement is justified only in the normal state where the
pair potential 	 is zero.

Because of the inequivalence of λ and k, the anomalous
NRO conductivity appears in the superconducting state. The
anomalous part consists of two contributions

σa = σNRSF + σCD. (23)

The expressions are given by

σ
α;βγ

NRSF = lim
λ→0

− 1

2�2
∂λα

∂λβ
∂λγ

Fλ, (24)

σ
α;βγ

CD = lim
λ→0

1

4�2
∂λα

[∑
a �=b

Jβ

abJγ

ba fab

(
1

� − Eab
+ 1

Eab

)]
.

(25)

In Eq. (24), Fλ is the free energy of the BdG Hamiltonian. The
second-order derivative of the free energy is the superfluid
density ρ

αβ
s = limλ→0 ∂λα

∂λβ
Fλ, which supports the macro-

scopic quantum coherence of the superconducting state [9].
Thus, σ

α;βγ

NRSF is determined by the nonreciprocal correction to
the superfluid density ρ

αβ
s , which we call nonreciprocal su-

perfluid density f αβγ = limλ→0 ∂λα
∂λβ

∂λγ
Fλ. The anomalous

term in Eq. (24) is rewritten by

σ
α;βγ

NRSF = − 1

2�2
f αβγ . (26)

The nonreciprocal superfluid density f̂ is a totally symmetric
rank-3 tensor. It shows the odd parity under the P and T
symmetry operations, whereas the even-parity under the PT
operation.

Another contribution in Eq. (25) is named conductivity
derivative effect because the formula roughly corresponds to
the λ derivative of the linear optical conductivity. Support-
ing this argument, the formula in the low-frequency limit
(� → 0) leads to the λ derivative of the total Berry curvature∑

a εβγ δ�
λδ
a fa, which gives the anomalous Hall conductivity

[53]. Thus, we can recast Eq. (25) as

σ
α;βγ

CD → σ
α;βγ

sCD = lim
λ→0

i

4�
εβγ δ∂λα

(∑
a

�λδ

a fa

)
(27)

≡ i

4�
εβγ δB αδ

d (28)
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in the low-frequency regime. Here, we represented the con-
ductivity derivative effect in the static limit (σα;βγ

sCD ) by Berry
curvature derivative B̂d and suppressed O(�0) terms. The
temporal symmetry of B̂d is contrasting with the nonreciprocal
superfluid density f̂ ; B̂d is T even and PT odd.

The anomalous photocurrent responses are particularly of
interest due to the giant photoelectric conversion for the low-
frequency light. The anomalous photocurrent response shows
high performance for the light with frequency up to the en-
ergy scale of the superconductivity (� � 0.1–1 THz). The
PT -symmetric parity-breaking superconductors show the di-
vergent response as large as O(�−2) due to the nonreciprocal
superfluid density, whereas the T -symmetric superconduc-
tors host the O(�−1)-diverging response arising from the
Berry curvature derivative. Furthermore, the photocurrent
converted from the low-frequency light may be mainly carried
by Cooper pairs and hence flow without undesirable Joule
heating. The energy-saving property originates from the quan-
tum mechanical nature of the superconductors and cannot be
achieved by existing photoelectric converters such as the p-n
junction of semiconductors.

C. Anomalous contributions to general NRO responses

In Sec. III B, the anomalous and normal photocurrent re-
sponses are detailed on the basis of the gapful parity-breaking
superconducting state. The low-frequency divergent behav-
ior is similarly observed in other NRO responses such as
the second harmonic generation. In this section, the anoma-
lous contribution to the NRO responses is obtained by the
Green function method. Although the derivation is left to
Appendix E, the low-frequency anomalous contribution reads
as

σα;βγ (ω1 + ω2; ω1, ω2) = σ
α;βγ

NRSF(ω1 + ω2; ω1, ω2)

+ σ
α;βγ

sCD (ω1 + ω2; ω1, ω2), (29)

where we suppressed O(ωa
1ω

b
2) terms (a + b � 0). The for-

mula is given by the nonreciprocal superfluid density and the
static conductivity derivative effects

σ
α;βγ

NRSF = 1

2ω1ω2
f αβγ , (30)

σ
α;βγ

sCD = − i

4
lim
λ→0

(
1

ω1
∂λβ

σ (λ)
αγ + 1

ω2
∂λγ

σ
(λ)
αβ

)
. (31)

The tensor σ̂ (λ) represents the regular linear conductivity.
Since we formulated the NRO conductivity by the Green
function method with neglecting vertex corrections, the for-
mulas also hold in the presence of a self-energy correction
such as that originates from disorder scattering. The regular
linear conductivity consists of the Drude and Berry curvature
contributions. Thus, when the conductivity tensor σ

(λ)
αβ is de-

composed into the symmetric and antisymmetric components
under the permutation α ↔ β, the static conductivity deriva-
tive is further decomposed into the Drude derivative D̂d and

Berry curvature derivative B̂d :

∂λγ
σ

(λ)
αβ = ∂λγ

[
1
2

(
σ

(λ)
αβ + σ

(λ)
βα

) + 1
2

(
σ

(λ)
αβ − σ

(λ)
βα

)]
(32)

= Dγ ;αβ

d + εαβδBγ δ

d . (33)

The Drude derivative defined by Eq. (E57) vanishes without
quasiparticle excitation. In contrast to the Berry curvature
derivative (T even and PT odd), the Drude derivative is for-
bidden by the T symmetry but allowed in the PT -symmetric
systems. As a result, the static conductivity derivative effect is
rewritten by

σ
α;βγ

sCD = − i

4

[
1

ω1

(
Dβ;αγ

d + εαγ δBβδ

d

) + 1

ω2

(
Dγ ;αβ

d + εαβδBγ δ

d

)]
.

(34)

The obtained expressions reveal that the nonreciprocal su-
perfluid density and Berry curvature derivative contribute to
the general NRO conductivity as well as the photocurrent
generation. Furthermore, Eq. (29) includes the Fermi-surface
effect such as the Drude derivative contribution, while the
gapful superconductor is assumed in Sec. III B. If the Fermi-
surface contribution is neglected, we obtain the relation of the
Berry curvature derivative

εβγ δBαδ
d = εαγ δBβδ

d − εαβδBγ δ

d . (35)

Taking ω1 = −ω2 = −� in Eq. (29) and assuming the gap-
ful superconducting state, we reproduce the Berry curvature
derivative effect in Eq. (28).

We comment on the tensor symmetry of the above-
mentioned quantities induced by the parity-breaking super-
conductivity. First, the nonreciprocal superfluid density f̂ is
a totally symmetric rank-3 polar tensor and thus allowed
in the noncentrosymmetric crystal point groups except for
the several high-symmetric chiral groups where Cn (n � 4)
rotation symmetry holds [432 (O), 422 (D4), 622 (D6)].
Next, we consider the static conductivity derivative. The
Berry curvature derivative B̂d is the axial rank-2 tensor
and hence allowed in the gyrotropic groups [54]. Here, we
denote the gyrotropic groups as the noncentrosymmetric crys-
tal point groups other than the three crystal point groups
6̄ (C3h), 6̄m2 (D3h), 4̄3m (Td ). The Drude derivative D̂d is the
direct product of the rank-1 and rank-2 polar tensors. Thus, it
has the same symmetry as that of the piezoelectric response
coefficient and allowed in all the noncentrosymmetric crystal
point groups except for the cubic and chiral group 432 (O).

Finally, we provide a classification table of photocurrent
generation (Table I) to summarize the results obtained by the
density matrix (Sec. III B) and Green function (Sec. III C)
methods. Mechanism of normal and anomalous photocurrent
is classified based on the temporal symmetry of the system
and the polarization state of light.

IV. GENERALIZATION TO MANY-BODY SYSTEMS

In Sec. III, we derived the anomalous NRO responses from
the second-order perturbation theory. In this section, we derive
a more general formula for anomalous responses unique to
superconductors, which applies to interacting systems.

We consider the many-body Hamiltonian comprising pa-
rameters λ which adiabatically evolve in time. We assume
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that the ground state is separated from the excited states by
a finite-energy gap. We also assume the zero temperature. The
secular equation of the Hamiltonian H = H (λ(t )) reads as

H (λ(t )) |aλ〉 = εa(λ) |aλ〉 , (36)

where the instantaneous eigenstates and eigenvalues are in-
troduced. If the many-body wave function is initially in the
ground state |0〉 and adiabatically evolves in time, the wave
function is obtained as [57]

|ψ (t )〉 = |0λ〉 +
∑
a �=0

−i

ε0(λ) − εa(λ)
|aλ〉 〈aλ | ∂t 0λ〉 (37)

= |0λ〉 −
∑
a �=0

1

ε0(λ) − εa(λ)
|aλ〉�

λα

a0 λ̇α, (38)

with the many-body Berry connection �
λα

a0 ≡ i 〈aλ|∂λα
0λ〉.

The operator ∂λα
H (λ(t )) is evaluated by the perturbed wave

function |ψ (t )〉 as〈
∂H (λ(t ))

∂λα

〉
= 〈ψ (t )|∂H (λ(t ))

∂λα

|ψ (t )〉 (39)

= ∂ε0(λ)

∂λα

+ �λαλβ λ̇β . (40)

The many-body Berry curvature is

�λαλβ = 2 Im [〈∂λα
0λ | ∂λβ

0λ〉] (41)

=
∑
a �=0

i
(
�

λα

0a�
λβ

a0 − �
λα

a0�
λβ

0a

)
. (42)

When we take the vector potential A as the adiabatic param-
eter, the expectation value of the electric current is obtained
as

〈J α (t )〉 = −
〈
∂H (A(t ))

∂Aα

〉
(43)

= −∂ε0(A)

∂Aα

− �AαAβ Ȧβ. (44)

The first term is related to the generalized Drude weight
evaluated at the zero temperature [58]. When the ground-state
energy ε0(A) is expanded by the vector potential, we obtain

ε0(A) = ε0(0) + 1

2

∂2ε0(A)

∂Aα∂Aβ

∣∣∣∣
A=0

AαAβ

+ 1

6

∂3ε0(A)

∂Aα∂Aβ∂Aγ

∣∣∣∣
A=0

AαAβAγ + O(A4). (45)

The first-order term is dropped because the electric current is
absent in the unperturbed ground state. ∂2

Aε0(A) and ∂3
Aε0(A)

are derivatives of the free energy in the thermodynamic
limit which means linear and nonreciprocal superfluidity. The
agreement between the Drude weight and superfluid density
(Meissner weight) is a property of the gapful superconductor
at the zero temperature [59]. Converting the vector poten-
tial into the electric field E = −Ȧ, we obtain the anomalous
linear and nonreciprocal optical responses in the many-body
representation. For instance, the response formula for the non-

reciprocal part is written by

σ
α;βγ

NRSF(ω; ω1, ω2) = 1

ω1ω2

∂3ε0(A)

∂Aα∂Aβ∂Aγ

∣∣∣∣
A=0

, (46)

where ω = ω1 + ω2 and the adiabaticity parameter η is
suppressed. When we apply the formula to one-body Hamil-
tonian, Eqs. (30) and (C16) are reproduced.

Similarly, we formulate the Berry curvature derivative
effect on the basis of the many-body Hamiltonian. The many-
body Berry curvature �AαAβ is parametrized by the vector
potential, and the Berry curvature derivative appears in the
first-order expansion coefficient

�AαAβ = �AαAβ
∣∣
A=0 + ∂�AαAβ

∂Aγ

∣∣∣∣
A=0

Aγ + O(A2). (47)

When a one-body Hamiltonian is assumed, the many-
body Berry curvature leads to the one-body expression.
Accordingly, the first-order expansion coefficient ∂Aγ

�AαAβ

reproduces the Berry curvature derivative. The Berry curva-
ture derivative contributes to the nonreciprocal conductivity
as1

σ
α;βγ

sCD (ω; ω1, ω2) = −i

2ω2

∂�AαAβ

∂Aγ

∣∣∣∣
A=0

+ −i

2ω1

∂�AαAγ

∂Aβ

∣∣∣∣
A=0

.

(48)

Thus, the obtained formulas (46) and (48) are consistent with
the low-frequency limit of the anomalous NRO response for-
mulas shown in the previous section.

Finally, we give a few comments. Although we here con-
sider the vector potential effect on the electric current up to
the second order, higher-order anomalous contributions are
similarly obtained as O(|A|n) or O(|A|n−1|Ȧ|) terms (n � 3),
which are higher-order A derivative of the superfluid den-
sity and Berry curvature, respectively. These contributions
may dominate the nonlinear optical responses such as the
high-order harmonic generation in the low-frequency regime,
while the resonant contributions have been intensively studied
[61]. We generalized the formulas for the anomalous NRO
responses to those for the many-body Hamiltonian [Eqs. (46)
and (48)]. The nonreciprocal contributions in Eq. (44) can
cover a broad range of electromagnetic responses, while only
the photoelectric field is treated in Sec. III. For instance, with
a spatially nonuniform vector potential, the anomalous non-
reciprocal contribution leads to the nonreciprocal Meissner
response [62].

V. MODEL STUDY OF ANOMALOUS NRO RESPONSES

Here, we demonstrate the anomalous NRO responses with
numerical calculations. In this section, we consider the parity-
breaking superconductor classified into case (III) (see Sec. II),
where superconductivity itself breaks the P symmetry, by re-
ferring to the recent proposal of the spontaneous parity-mixed

1Similar expression corresponding to Eq. (48) has recently been
obtained in Ref. [60] where the normal state is assumed and thus the
obtained term may vanish.
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superconductivity in a heavy-fermion superconductor UTe2

[39].
With the model Hamiltonian introduced in Sec. V A,

we investigate the normal and anomalous contributions to
the photocurrent response and corroborate our classifica-
tion based on the preserved temporal symmetry (Sec. V B).
The dominant role of the anomalous contribution appears
in the numerical calculations of the photocurrent and sec-
ond harmonic generations (Sec. V C). Finally, we investigate
scattering rate dependence of the anomalous NRO response
(Sec. V D).

A. Model Hamiltonian

The model Hamiltonian consists of spinful fermions on the
two-dimensional square lattice. In the tight-binding approxi-
mation, the normal part HN of HBdG reads as

Hk
N = (ε0 − μ) + V ρx + g · σρz, (49)

at each crystal momentum k. Pauli matrices σ and ρ, re-
spectively, denote the spin and crystal sublattice degrees of
freedom. The model is constructed on the square network
where two crystal sublattices are placed in the checkerboard
pattern. The Hamiltonian comprises the chemical potential μ

and the intrasublattice and intersublattice hoppings defined as

ε0 = −4t1 cos kx cos ky, (50)

V = −2t2(cos kx + cos ky). (51)

Assuming the locally noncentrosymmetric structure, the stag-
gered spin-orbit coupling is given by the local Rashba type
[63–65]

g = 4α(cos kx sin ky,− sin kx cos ky, 0). (52)

The parity-mixed pair potential consists of the s-
wave component ψk = 	e and p-wave component dk =
4	o sin kx cos kyẑ. For a T -symmetric parity-breaking super-
conductor, the pair potential is taken in the s + p-wave form

	kiσy = ψk + dk · σ, (53)

at each crystal momentum k, while the s + ip-wave type pair
potential is given by

	kiσy = ψk + idk · σ, (54)

for a PT -symmetric superconductor. Note that the
intrasublattice pairing is adopted for simplicity. The
superconducting state is the admixture of the Ag- and
Eu-type pairings in terms of the irreducible representation
of the point group D4h (4/mmm). The preserved unitary
symmetry operations in the parity-breaking superconducting
state are characterized by the C2v (m2m) symmetry, whose
twofold rotation axis is the y axis. This symmetry allows the
NRO conductivity σ y;yy, σ y;xx, σ x;xy, σ x;yx, σ z;yz, σ z;zy, and
σ y;zz. The last three components having the index z are not
considered because the two-dimensional model is adopted.

The parameters are μ = −4, α = 0.3, t1 = 0.6, t2 = 1.0,
	e + 4	o = 0.1, and 	e/	o = 4. The resultunt BdG Hamil-
tonian manifests gapful superconducting states, although the

anomalous NRO responses are also allowed in the nodal su-
perconductors [62]. For a quantitative estimate, we set t2 =
1 eV and calculate the response coefficients in the SI unit.
Thus, the numerical results of the NRO conductivity are given
in the unit A V−2. Although the model Hamiltonian is two
dimensional, we convert the obtained NRO conductivity into
the three-dimensional value by using the thickness of the two-
dimensional net l = 1 nm . The numerical calculations are
performed on the N2-discretized Brillouin zone. For numeri-
cal convergence, we introduce a phenomenological scattering
rate γ (Appendix B) and a finite temperature T for the Fermi-
Dirac distribution function.

B. Normal and anomalous photocurrent responses

Here, numerical analysis of the photocurrent conductiv-
ity σ x;yx(0; �,−�) is presented. The frequency dependence
of the conductivity is implicit unless otherwise mentioned.
Figure 2 plots the frequency dependence of the photocurrent
conductivity σ x;yx under the linearly polarized and circularly
polarized lights. To distinguish the normal and anomalous
photocurrent responses, we calculate each contribution as well
as the total photocurrent conductivity. We note that the NRO
responses vanish in the absence of the staggered spin-orbit
coupling due to a preserving effective parity symmetry such
as the combination of the P inversion and spinor rotation.
The symmetry constraint similarly works in the linear optical
response [66].

In the case of the T -symmetric system, the real part
Re [σ x;yx] for the linearly polarized light in Fig. 2(a) stems
from the normal photocurrent mechanism, that is, the shift
current (σshift ) [46,47]. Since the normal photocurrent re-
quires quasiparticle excitations, the contribution vanishes in
the low-frequency regime (� � 0.01) due to the supercon-
ducting gap. On the other hand, the imaginary part Im [σ x;yx]
for the circularly polarized light is solely determined by the
anomalous contribution, namely, the conductivity derivative
(σCD) [Fig. 2(b)]. In agreement with Eq. (28), we clearly
observe the low-frequency divergence proportional to �−1

in the circular photocurrent conductivity Im [σ x;yx]. Although
the normal photocurrent called the electric injection current
(σEinj ) also contributes to the circular photocurrent conduc-
tivity, it gives a negligible contribution compared to the
anomalous contribution. This result implies that the anoma-
lous mechanism provides distinctive optoelectronic properties
of parity-breaking superconductors.

Similarly, it is shown that the anomalous photocurrent
gives rise to the dominant photocurrent creation in the
PT -symmetric parity-breaking superconductors [Figs. 2(c)
and 2(d)]. Owing to the PT symmetry, the situation is in
contrast to the T -symmetric superconductors. The circular
photocurrent conductivity Im [σ x;yx] is determined by the
normal photocurrent called gyration current (σgyro) [21,56]
[Fig. 2(d)], while the linear photocurrent Re [σ x;yx] is almost
given by the anomalous contribution, that is due to the non-
reciprocal superfluid density effect (σNRSF), with a negligible
normal photocurrent originating from the magnetic injection
current (σMinj) [51] [Fig. 2(c)]. The low-frequency divergence
of Re [σ x;yx] is inversely proportional to �2 in agreement with
the formula (26).
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FIG. 2. Frequency dependence of the photocurrent conductivity σ x;xy in (a), (b) a T -symmetric parity-breaking superconductor and
(c), (d) a PT -symmetric parity-breaking superconductor. (a), (c) Plot the real part while (b), (d) are the imaginary part. The total photocurrent
conductivity (σ ) is shown in red, while the normal and anomalous photocurrent conductivities are shown in blue and green, respectively.
The calculation is performed with N = 4000 and T = 10−4. We also adopted γ = 10−4 for the T -symmetric case and γ = 3 × 10−3 for the
PT -symmetric case. The optical gap is marked by the dashed line in each plot.

Here, we compare the photocurrent conductivity and the
numerically calculated nonreciprocal superfluid density to
make the analytical result in Eq. (26) more compelling.
Figure 3 shows the comparison between Re[ �2σ x;yx] and
the nonreciprocal superfluid density f xyx. In agreement
with the analytical result, the NRO conductivity multiplied
by the square of frequency �2 asymptotically approaches
to the nonreciprocal superfluid density in the low-frequency

R
e

FIG. 3. Comparison between the photocurrent conductivity and
numerically calculated nonreciprocal superfluid density. The pho-
tocurrent conductivity Re[ σ x;yx] (blue solid line) and the nonre-
ciprocal superfluid density f xyx (red dashed line) are calculated by
Eqs. (17) and (D68), respectively. We take T = 10−4 and N = 3000.
The calculation of Re[ σ x;yx] is performed with γ = 10−3.

limit. Since Re[ σ x;yx] includes a nondivergent part of the
conductivity derivative effect in Eq. (25), the dispersion in
Re[ �2σ x;yx] ∝ �2 is observed. The agreement between the
analytical and numerical results indicates that the nonrecip-
rocal superfluid density is an indicator of the low-frequency
NRO response. Conversely, the NRO measurements such as
the second harmonic generation and photocurrent response
may provide a quantitative estimate of the nonreciprocal su-
perfluid density.

C. Anomalous contributions to NRO responses

The divergent NRO responses are similarly observed in
the other photocurrent conductivity components and in other
NRO responses such as the second harmonic generation. In
this section, we show the frequency dependence of all the
allowed components of the photocurrent and second harmonic
generation coefficients. We distinguish the two response func-
tions by the second harmonic generation coefficient σ

α;βγ

SHG =
σα;βγ (2�; �,�) and the photocurrent conductivity σ

α;βγ

PC =
σα;βγ (0; �,−�). The numerical calculations are performed
with the total NRO conductivity formula [Eqs. (5)–(9)] where
frequencies are taken by ω1 = ±ω2 = �.

First, we consider the T -symmetric parity-mixed super-
conductor. The low-frequency divergence manifests in the
imaginary part of the NRO responses [Figs. 4(b) and 4(d)].
The divergence originates from the Berry curvature derivative
B̂d . In agreement with the analytical expression in Eq. (34),
Im[ σ

x;xy
SHG] = Im[ σ

x;yx
SHG] and Im[ σ

x;xy
PC ] = −Im[ σ

x;yx
PC ] converge

to the same value in the low-frequency limit [see green-
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Im

FIG. 4. Frequency dependence of the second harmonic and photocurrent generation in a T -symmetric superconducting state. (a) Re[ σ
α;βγ

SHG ]
and (b) Im[ σ

α;βγ

SHG ] for the second harmonic generation. (c) Re[ σ
α;βγ

PC ] and (d) Im[ σ
α;βγ

PC ] for the photocurrent generation. We take γ = 10−4,
T = 10−4, and N = 4000.

colored plots in Figs. 4(b) and 4(d)]. Im[ σ
y;yy
SHG] does not show

divergence in the low-frequency regime since the vanishing
totally antisymmetric tensor εyyδ = 0 forbids the Berry cur-
vature derivative effect. Note that the divergence does not
appear in the real part of the NRO conductivity except for
an artificial contribution arising from the phenomenological
scattering rate as discussed in Sec. V D.

Next, we look into the NRO response functions of the PT -
symmetric parity-mixed superconductor. The low-frequency
divergence is observed in the real part of the NRO responses
[Figs. 5(a) and 5(c)] due to the nonreciprocal superfluid den-
sity f̂ . Since f̂ is the totally symmetric tensor, f xxy = f yxx

leads to the same low-frequency divergence in Re[ σ x;xy]
and Re[ σ y;xx], while Re[ σ

x;xy
SHG] = Re[ σ

x;yx
SHG] and Re[ σ

x;xy
PC ] =

Re[ σ
x;yx
PC ] are satisfied by definition.

D. Scattering rate dependence of anomalous NRO responses

We address the scattering rate dependence of the anoma-
lous NRO responses by taking the photocurrent conductivity
as an example.

For the anomalous NRO responses in the low-frequency
regime, numerical results show the diverging behavior.
Re[σ x;yx] (Im[σ x;yx]) in the low-frequency regime is, how-
ever, influenced by the scattering rate for the T -symmetric
(PT -symmetric) parity-breaking superconductor. In contrast,
Im[σ x;yx] (Re[σ x;yx]) for the T -symmetric (PT -symmetric)
parity-breaking superconductor is intrinsic and hence robust
to scattering-rate effects. These contrasting properties are
revealed by calculating the photocurrent conductivity with
scattering rates ranging over several orders of magnitude
(Fig. 6). For instance, in Fig. 6(a) for the T -symmetric
case, Re[σ x;yx] disappears with decreasing the scattering rate,
whereas Im[σ x;yx] shows the remarkable tolerance to the

scattering effects. According to Table I, the scattering-rate-
sensitive part may be artificial or extrinsic. Thus, we did not
show such part in the previous subsections.

In the T -symmetric system, we do not have any diverging
linearly polarized light-induced photocurrent response when
we take into account scattering effects by implementing the
Green function method [Eq. (29)]. Thus, the low-frequency
divergence of Re[σ x;yx] is an artificial effect arising from the
phenomenology of scattering effects. On the other hand, a
tiny circularly polarized light-induced photocurrent response
in the PT -symmetric system [Fig. 6(d)] may be an extrinsic
effect due to the Drude derivative effect. We can identify a
genuine extrinsic contribution by treating the scattering effect
in a rigorous way beyond the phenomenological scattering-
rate approximation. Such rigorous calculation is left for future
study. The main finding of this numerical work is the intrinsic
low-frequency divergence of the imaginary part of the NRO
conductivity in the T -symmetric superconductor and the real
part in the PT -symmetric superconductor, which are robust
to scattering effects. The scattering-tolerant property ensures
that the Berry curvature derivative B̂d and the nonreciprocal
superfluid density f̂ are promising indicators of the NRO
phenomena in superconductors.

VI. DISCUSSION AND SUMMARY

This paper elaborated the nonreciprocal optical responses
characteristic to parity-breaking superconductors. Based on
the analytical and numerical calculations, we showed that
the anomalous NRO responses play essential roles in su-
perconductors. The key ingredients, namely, nonreciprocal
superfluid density and Berry curvature derivative, manifest in
the superconducting state, although they have no counterpart
in the normal state. Since the anomalous NRO response is
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FIG. 5. Frequency dependence of the second harmonic and photocurrent generation in a PT -symmetric superconducting state.
(a) Re[ σ

α;βγ

SHG ] and (b) Im[ σ
α;βγ

SHG ] for the second harmonic generation. (c) Re[ σ
α;βγ

PC ] and (d) Im[ σ
α;βγ

PC ] for the photocurrent generation. We
take γ = 3 × 10−3, T = 10−4, and N = 4000.

intrinsically divergent under the low-frequency light such as
subterahertz light, it surpasses the NRO responses of other
origins clarified in prior studies [5]. Our microscopic calcula-
tions confirmed that the anomalous NRO responses dominate
the photocurrent and second harmonic generation responses.
For instance, for the linearly polarized light-induced photocur-
rent in the PT -symmetric parity-breaking superconductor,
the normal photocurrent called injection current is negligi-
ble compared to the nonreciprocal superfluid density effect
[Fig. 2(c)].

A promising application of our work is a probe for su-
perconducting symmetry. The parity-mixing effect of the
superconducting pairings has been drawing much attention
in superconducting science from the discovery of noncen-
trosymmetric superconductors [22]. The NRO responses can
appear in the parity-mixed superconductors and thus pro-
vide an estimate of the parity-mixing effect. The estimate
may be demonstrated by incorporating chemical or physical
operation, which tunes the parity-mixing effect [67,68]. Fur-
thermore, the anomalous NRO response is in close relation
with the temporal symmetry preserved in superconductors.
Indeed, the photocurrent response induced by the circularly
polarized (linearly polarized) light shows the characteristic di-
vergence for the low-frequency light when the parity-breaking
superconductor preserves T (PT ) symmetry. Recent studies
implied the symmetry breaking in exotic quantum materials
such as cuprates [3,4,17] and heavy-fermion systems [34,39].
Thus, our classification of the NRO responses will be helpful
for identifying the spatial and temporal symmetries of these
materials.

It is also essential to explore functional devices utilizing
the remarkable properties of the anomalous NRO response

in superconductors. Owing to the enhanced NRO response
for the low-frequency light, the parity-breaking supercon-
ductor may realize a highly efficient optical apparatus for
future terahertz light technology. The anomalous NRO re-
sponse arises from the condensed Cooper pairs, and hence
the photoelectric conversion is expected to be carried out
without undesirable Joule heating. The photodiode without
energy loss possibly originates from the quantum nature of
superconductivity. Interestingly, the energy-saving NRO per-
formance of superconductors can be turned on by injecting
the supercurrent [15] [case (II) in Sec. II]. The tunability
is a consequence of the superfluidity and cannot be found
in systems without macroscopic quantum condensate. The
supercurrent-induced parity violation can be induced in var-
ious superconductors such as prototypical superconducting
alloys and high-temperature copper-based superconductors.
As a result, superconductivity-based optoelectronics are avail-
able in a broad range of materials.

Our systematic study of the nonreciprocal optical response
is expected to stimulate further investigations of superconduc-
tors in the scientific and engineering fields and make essential
building blocks for superconductor-based optoelectronics.
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plotted for (a), (b) the case of T -symmetric superconductors and for (c), (d) the case of PT -symmetric superconductors. In each panel, a series
of scattering rates are distinguished by color. In (b) and (c), all the plots are overlapped, indicating the tolerance to scattering effects. We take
the temperature T = 10−4 and N = 1500.
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APPENDIX A: DENSITY-MATRIX THEORY BASED ON
BOGOLIUBOV–DE GENNES HAMILTONIAN

This Appendix is devoted to the density-matrix formulation
on the basis of the BdG Hamiltonian. We note that some
expressions are overlapped with those in the main text. The
Hamiltonian is given by the BdG form

HBdG = 1
2�†HBdG� + const, (A1)

where Nambu spinor �† = (c†, cT ) with the creation (c†) and
annihilation (c) operators of electrons. Here, the components
of c are the normal-state degrees of freedom, namely, spatial
position, sublattice, orbital, spin, and so on. The BdG Hamil-
tonian HBdG includes the Hamiltonian in the normal state HN

and the pair potential of superconductivity 	:

HBdG(A) =
(

HN(A) 	

	† −HN(A)T

)
. (A2)

The electromagnetic perturbation is taken into account by the
vector potential A. In equilibrium, we take A = 0.

Owing to the particle-hole symmetry of HBdG, the spinor
satisfies the relation

[HBdG, �i] = −(HBdG)i j� j . (A3)

Here, the indices i, j run over both the normal and the Nambu
degrees of the freedom.

It is convenient to retake the basis of the Nambu spinor
�i to the energy eigenstates of HBdG, [HBdG,�a] = −Ea�a.
This commutation relation indicates that the density-matrix
formalism straightforwardly applies to the BdG Hamiltonian
as follows. We introduce the density matrix ρ̂(t ) as in the
normal state. Without perturbation, it is written as

ρ̂ (0) = e−βHBdG/Tr[e−βHBdG ], (A4)

and the time evolution of ρ̂(t ) is described by the von Neu-
mann equation

i∂t ρ̂(t ) = [HBdG + 	H(t ), ρ̂(t )]. (A5)

Here, 	H(t ) = �†	H (t )�/2 is the perturbative Hamilto-
nian. It is convenient to introduce the reduced density matrix
described by the Bogoliubov quasiparticles

ρab(t ) = Tr[�†
b�aρ̂(t )], (A6)

and accordingly obtain the von Neumann equation

i∂tρab = Eabρab(t ) + [	H (t ), ρ(t )]ab, (A7)

where Eab = Ea − Eb and [A, B]ab = AacBcb − AcbBac. In
equilibrium, the density matrix ρ

(0)
ab (t ) = faδab is reduced

to the Fermi-Dirac distribution function fa ≡ (eβEa + 1)−1.
Throughout this work, we consider the photoelectric field
expressed in the velocity gauge. The perturbative Hamiltonian
is given by 	H (t ) = HBdG(A(t )) − HBdG(0), that is,

	H (t ) =
∑
n=1

1

n!
(−1)nAα1 (t ) . . . Aαn (t )Jα1···αn , (A8)
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where we introduce the generalized velocity operator

Jα1...αn = (−1)n ∂nHBdG(A)

∂Aα1 . . . ∂Aαn

∣∣∣
A=0

. (A9)

For the BdG Hamiltonian HBdG(A), the vector potential is cou-
pled to the diagonal part in the form of the minimal coupling
[Eq. (A2)]. Note that we do not take into account field-induced
corrections to the pair potential for simplicity. Integrating
Eq. (A7) iteratively, we obtain the perturbed density matrix
ρ̂(t ). Then, we immediately obtain the expectation value of
the electric current as

〈J α〉(t ) = Tr[ρ̂(t )J α (t )], (A10)

with the velocity operator

J α (t ) = 1
2�†Jα

A (t )�. (A11)

The matrix denotes the modified velocity operator

Jα
A (t ) =

∑
m=0

1

m!
(−1)mAβ1 (t ) . . . Aβm (t )Jα β1...βm . (A12)

Here, we give the perturbed density matrix by expanding
the density matrix in Eq. (A7) as

ρab(t ) =
∑
n=0

ρ
(n)
ab (t ). (A13)

ρ
(n)
ab denotes the O(|A|n) correction to the density matrix.

Accordingly, the perturbed density matrix up to the second
order is obtained as

(i∂t − Eab)ρ (0)
ab (t ) = 0, (A14)

(i∂t − Eab)ρ (1)
ab (t ) = −Aα (t )[Jα, ρ (0)(t )]ab, (A15)

(i∂t − Eab)ρ (2)
ab (t ) = − Aα (t )[Jα, ρ (1)(t )]ab

+ 1
2 Aα (t )Aβ (t )[Jαβ, ρ (0)(t )]ab. (A16)

Taking the convention for Fourier transformation as

X (t ) =
∫ ∞

−∞

dω

2π
X (ω)e−iωt−ηt , (A17)

we obtain the perturbed density matrix in the frequency do-
main. The adiabaticity parameter η is positive infinitesimal.
The density matrix is ρ

(0)
ab (ω) = faδab 2πδ(ω) and

ρ
(1)
ab (ω) = − 1

ω + iη − Eab
Aα (ω)Jα

ab fba, (A18)

ρ
(2)
ab (ω) = 1

ω + 2iη − Eab

∫
dω1dω2

(2π )2
(2π )δ(ω − ω1 − ω2)

× (−Aα (ω1)[Jα, ρ (1)(ω2)]ab

+1

2
Aα (ω1)Aβ (ω2)Jαβ

ab fba

)
. (A19)

The expectation value of the electric current is calculated
by the current operator [Eq. (A9)] and the perturbed density
matrix,

2〈J α (t )〉 = 2Tr[J α (t )ρ̂(t )] =
∑
a,b

Jα
ab(t )ρba(t ). (A20)

The perturbed electric current operator reads as

J α (t ) = J α
(0)(t ) + J α

(1)(t ) + J α
(2)(t ) + · · · , (A21)

J α
(0)(t ) =

∫
dω

2π
e−iωt 2πδ(ω)J α, (A22)

J α
(1)(t ) = −

∫
dω

2π
e−iωt+ηtJ αβAβ (ω), (A23)

J α
(2)(t ) =

∫
dω

2π
e−iωt+2ηt

∫
dω1dω2

2π
δ(ω1 + ω2 − ω)

× 1

2
J αβγ Aβ (ω1)Aγ (ω2). (A24)

Before proceeding to the second-order nonlinear optical con-
ductivity, let us consider the linear optical conductivity. The
linear response is given by

〈2J α (ω)〉(1) =
∫

dt eiωt Tr
[
2J α

(1)(t )ρ̂ (0)(t ) + 2J α
(0)(t )ρ̂ (1)(t )

]
(A25)

=
∑
a,b

(
−Jα

abJβ

ba fab

ω + iη − Eba
Aβ (ω) − Aβ (ω)Jαβ

ab faδab

)
.

(A26)

In the last line, the former and the latter originate from the
correction to the density matrix and current operator, which
are so-called paramagnetic and diamagnetic contributions, re-
spectively. With the velocity gauge E = −∂t A(t ), the linear
optical conductivity is obtained as

2σαβ (ω) = 1

iω − η

∑
a,b

(
−Jα

abJβ

ba fab

ω + iη − Eba
− Jαβ

ab faδab

)
.

(A27)

Similarly, the second-order electric current is divided into
three components,

〈J α (ω)〉(2) =
∫

dt eiωt Tr
[
J α

(2)(t )ρ̂ (0)(t )

+ J α
(1)(t )ρ̂ (1)(t ) + J α

(0)(t )ρ̂ (2)(t )
]
. (A28)

The second-order optical conductivity is explicitly given by

2σα;βγ (ω; ω1, ω2) = 1

iω1 − η

1

iω2 − η

[∑
a

1

2
Jαβγ

aa fa (A29)

+
∑
a,b

1

2

(
Jαβ

ab Jγ

ba fab

ω2 + iη − Eba
+ Jαγ

ab Jβ

ba fab

ω1 + iη − Eba

)
(A30)
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+
∑
a,b

1

2

Jα
abJβγ

ba fab

ω + 2iη − Eba
(A31)

+
∑
a,b,c

1

2

Jα
ab

ω + 2iη − Eba

(
Jβ

bcJγ
ca fac

ω2 + iη − Eca
− Jβ

caJγ

bc fcb

ω2 + iη − Ebc

)
(A32)

+
∑
a,b,c

1

2

Jα
ab

ω + 2iη − Eba

(
Jγ

bcJβ
ca fac

ω1 + iη − Eca
− Jγ

caJβ

bc fcb

ω1 + iη − Ebc

)]
, (A33)

in which the first line, second line, and third to fifth lines
correspond to the first, second, and third components in
Eq. (A28), respectively. Note that only Eqs. (A32) and (A33)
appear in electron systems in the continuum space [46]. We
confirmed that the obtained formulas are consistent with those
in the normal state [43,44,69] by replacing the vector poten-
tial with the crystal momentum k and by ignoring the pair
potential.

APPENDIX B: PHENOMENOLOGICAL
SCATTERING RATE

Here, we introduce the phenomenological treatment of
the scattering rate. The scattering rate γ is introduced
by modifying the von Neumann equation in Eq. (A5)

to

i∂t ρ̂
(n) =

n∑
m=0

[H(n−m)(t ), ρ̂ (m)(t )] − inγ ρ̂ (n), (B1)

where ρ̂ (n) and H(n) are O(F n) where F represents the strength
of the external field. The scattering rate is therefore multi-
plied by the perturbation order n of the density matrix. This
description is reasonable to obtain physically meaningful re-
sults. Implementing the phenomenology in Eq. (B1), Ref. [44]
obtained the (third-order) nonlinear optical conductivity spec-
trum consistent with the gauge symmetry.

Following Eq. (B1), we obtain the formula for the non-
reciprocal optical conductivity by replacing the adiabaticity
parameter η with γ in Eqs. (5)–(9). Note that the prefactor in
Eq. (5), (iω1 − η)−1(iω2 − η)−1, does not include the scatter-
ing rate γ since it appears by converting the vector potential
into the electric field.

APPENDIX C: LINEAR OPTICAL CONDUCTIVITY

We demonstrate that λ parametrization introduced in Sec. III A leads to a physically transparent expression by investigating
the linear conductivity in Eq. (A27). Similarly to Eq. (15), the diamagnetic current operator obeys the relation

Jαβ
aa = 〈a|∂λα

∂λβ
H |a〉 = −∂λβ

Jα
aa + i[ξλβ , Jα]aa, (C1)

where λ dependence is suppressed. The linear conductivity in Eq. (A27) is therefore simplified as

2σαβ (ω) = 1

iω − η

[∑
a

−∂λα
∂λβ

Ea fa −
∑
a �=b

(
−Jα

abJβ

ba fab

ω + iη − Eba
− iξλβ

ab Jα
ba fab

)]
(C2)

= 1

iω − η

[∑
a

−∂λα
∂λβ

Ea fa +
∑
a �=b

Jα
abJβ

ba fab

(
1

ω + iη − Eba
− 1

Eab

)]
(C3)

= 1

iω − η

[∑
a

−∂λα
∂λβ

Ea fa − (ω + iη)
∑
a �=b

Jα
abJβ

ba fab

(ω + iη − Eba)Eab

]
. (C4)

From the obtained expression, we see the clear physical meaning of each contribution to the linear optical conductivity. For
instance, the second term in the right-hand side represents an interlevel transition process and is rewritten by

i
∑
a �=b

Jα
abJβ

ba fab

(ω + iη − Eba)Eab
= −i

∑
a �=b

Eab

ω + iη − Eba

(
gλαλβ

ab − i

2
�

λαλβ

ab

)
fab, (C5)

where we introduced the band-resolved quantum metric and Berry curvature [21,70]

gλαλβ

ab = Re
[
ξ

λα

ab ξ
λβ

ba

]
, �

λαλβ

ab = −2 Im
[
ξ

λα

ab ξ
λβ

ba

]
. (C6)
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In this way, this term has a geometric meaning. In particular, taking the static limit ω → 0, the interlevel transition process is
given by the Berry curvature ∑

b( �=a)

�
λαλβ

ab fa = εαβγ �
λγ

a fa. (C7)

We introduce the Berry curvature parametrized by the variational parameter λ:

�
λγ

a = 1

2

∑
b( �=a)

εαβγ �
λαλβ

ab . (C8)

Replacing λ with k, we can see that the obtained expression reproduces the formula for the anomalous Hall conductivity in the
normal state. Note that the Berry curvature effect does not lead to the quantized Hall conductivity in the superconducting
state since the variational parameter has no periodicity in terms of 2π/L (L is the system size). In the normal state, the
recovered periodicity of k(λ) leads to the quantized Hall conductivity in the gapful phase at the zero temperature [53]. Note
also that the Berry curvature defined in Eq. (C8) is different from the Berry curvature contributing to the thermal Hall effect in
superconductors [71,72]. The latter one (“thermal” Berry curvature) is defined by the connection (12), and treats electrons and
holes on equal footing, giving rise to the thermal transport. On the other hand, Eq. (C8) (“charge” Berry curvature) is defined by
Eq. (16), and includes electrons and holes with different signs, contributing to the charge transport as is derived here.

The remaining term in the linear conductivity [Eq. (C4)] is the intralevel transition process denoted by

1

iω − η

∑
a

−∂λα
∂λβ

Ea fa. (C9)

Recalling the Drude conductivity in the normal state, we can deduce the Drude part in Eq. (C9). Conducting the partial
integration, we obtain

1

iω − η

∑
a

[−∂λβ
(∂λα

Ea fa) + ∂λα
Ea∂λβ

fa]. (C10)

The second term gives the Drude conductivity, whereas the first term should vanish in the normal state due to the periodicity of
the Brillouin zone. On the other hand, the disappearance of the first term does not hold for the superconducting state. With the
free energy calculated with the Hamiltonian Hλ,∑

a

∂λα
Ea fa = Tr[(∂λα

H ) f (Hλ)] (C11)

= − 1

β
∂λα

Tr ln(1 + e−βHλ ) (C12)

= 2∂λα
Fλ. (C13)

The prefactor 2 comes from the doubling of particles and holes. Accordingly, we obtain

−1

iω − η

∑
a

∂λβ
(∂λα

Ea fa) = −2

iω − η
∂λα

∂λβ
Fλ (C14)

= −2

iω − η
ραβ

s (C15)

= −2ραβ
s

(
P

1

iω
− πδ(ω)

)
, (C16)

where the superfluid density is defined by ρ
αβ
s = ∂λα

∂λβ
Fλ. In the final line, P denotes the principal integral for the frequency �.

Finally, taking the limit λ → 0, we obtain the real part

πραβ
s δ(ω), (C17)

which ensures the zero electrical resistivity. As a result, we reproduced the linear optical conductivity in the superconducting
state [9,73] based on the formulation using the variational parameter λ.

APPENDIX D: DERIVATION OF FORMULAS FOR PHOTOCURRENT RESPONSE

The λ parametrization works in the formulation of NRO conductivity in superconductors as in the case of the linear optical
conductivity (Appendix C). For example, we study the photocurrent response with the condition ω1 = −ω2 = � in Eqs. (5)–(9)
and suppress the frequency dependence in the following.
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The entire expression is given by

σα;βγ = σα;βγ
a + σ

α;βγ

b + σα;βγ
c + σ

α;βγ

d , (D1)

where each contribution is given by

2σα;βγ
a = 1

(i� + iδ − η)(−i� + iδ − η)

∑
a

1

2
Jαβγ

aa fa, (D2)

2σ
α;βγ

b = 1

(i� + iδ − η)(−i� + iδ − η)

∑
a,b

(
1

2

Jαβ

ab Jγ

ba fab

−� + δ + iη − Eba
+ 1

2

Jαγ

ab Jβ

ba fab

� + δ + iη − Eba

)
, (D3)

2σα;βγ
c = 1

(i� + iδ − η)(−i� + iδ − η)

∑
a,b

1

2

Jα
abJβγ

ba fab

2δ + 2iη − Eba
, (D4)

2σ
α;βγ

d = 1

(i� + iδ − η)(−i� + iδ − η)

×
∑
a,b,c

[
1

2

Jα
ab

2δ + 2iη − Eba

(
Jβ

bcJγ
ca fac

−� + δ + iη − Eca
− Jβ

caJγ

bc fcb

−� + δ + iη − Ebc

)

+
∑
a,b,c

1

2

Jα
ab

2δ + 2iη − Eba

(
Jγ

bcJβ
ca fac

� + δ + iη − Eca
− Jγ

caJβ

bc fcb

� + δ + iη − Ebc

)]
. (D5)

For a technical reason, we introduce a finite-sum frequency 2δ = ω1 + ω2 [47,48] and will take the limit δ → 0. First, we take
the component σd . When Ea = Eb, the expression diverges in the limit δ → 0 due to Eab = 0. Thus, we perform the expansion
of what is enclosed in the parentheses for δ. For instance, taking the first term in Eq. (D5),

1

2

Jα
aaJβ

acJγ
ca fac

2δ + 2iη

(
1

−� + δ + iη − Eca

)
= 1

2

Jα
aaJβ

acJγ
ca fac

2δ + 2iη

(
1

−� + iη − Eca
− δ

(−� + iη − Eca)2
+ O(δ2)

)
(D6)

→ 1

2
Jα

aaJβ
acJγ

ca fac

(
1

2iη(−� + iη − Eca)
− 1/2

(−� + iη − Eca)2

)
. (D7)

In the last line, we take the limit δ → 0. Thus, O(δ−1) and O(δ0) terms are nonzero in Eq. (D5). The careful treatment can
be found in the prior studies where the perturbative calculations are performed on the basis of the Bloch states [21,47,48]. O(δ0)
terms are given by

2σ
α;βγ

intI = 1

�2 + η2

∑
a,c

−1

4
	α

acJβ
acJγ

ca fac
1

(� − iη − Eac)2
+ [(β, γ ,�) ↔ (γ , β,−�)] (D8)

= 1

�2 + η2

∑
a,c

1

4
Jβ

acJγ
ca fac∂α

1

� − iη − Eac
+ [(β, γ ,�) ↔ (γ , β,−�)] (D9)

= 1

�2 + η2

∑
a,c

1

2
Jβ

acJγ
ca fac∂αP

1

� − Eac
. (D10)

This contribution will be discussed later.
Taking the O(δ−1) term, we obtain

2σ
α;βγ

inj = 1/(4iη)

�2 + η2

∑
a �=c

−2iπ	α
acJβ

caJγ
ac facδ(� − Eac) (D11)

= 1/(4iη)

�2 + η2

∑
a �=c

−2iπ	α
acE2

caξ
β
caξ

γ
ac facδ(� − Eac) (D12)

= �2/(4iη)

�2 + η2

∑
a �=c

−2iπ	α
acξ

β
caξ

γ
ac facδ(� − Eac) (D13)

= −π

2η

∑
a �=c

	α
ac

(
gβγ

ca − i

2
�βγ

ca

)
facδ(� − Eac). (D14)

We defined the velocity difference matrix 	α
ac = Jα

aa − Jα
cc = −∂αEac and used Eqs. (15) and (C6). For a simplified notation, we

suppress λ for the connection, derivative, and geometric quantities.
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The obtained component σinj is the so-called injection current. We can decompose the injection current into two terms: one
is determined by the quantum metric and symmetric under the interchange β ↔ γ (photocurrent induced by linearly polarized
light, LP photocurrent), while the other determined by the Berry curvature is antisymmetric (photocurrent induced by circularly
polarized light, CP photocurrent). Labeling these photocurrents by “Minj” and “Einj,” we rewrite the injection current term by

σ
α;βγ

inj = σ
α;βγ

Minj + σ
α;βγ

Einj , (D15)

2σ
α;βγ

Einj = iπ

4η

∑
a �=b

	α
ab�

βγ

ba fabδ(� − Eab), (D16)

2σ
α;βγ

Minj = −π

2η

∑
a �=b

	α
abgβγ

ba fabδ(� − Eab). (D17)

Because the relevant geometric quantities have the contrasting symmetry property, the LP (CP) photocurrent is prohibited by the
T (PT ) symmetry [51]. Conversely, the LP (CP) photocurrent due to the injection current term is allowed in systems preserving
the PT (T ) symmetry, and it is called magnetic (electric) injection current. Although the injection current formula shows the
diverging behavior due to η = +0, the scattering effect suppresses this divergence [74]. The regularized expression is given by

2σ
α;βγ

inj = −π

2iγ

∑
a �=b

	α
ab

(
gβγ

ba − i

2
�

βγ

ba

)
fabL(� − Eab). (D18)

We defined the Lorentzian function parametrized by the scattering rate γ ,

L(x) = γ

π

1

γ 2 + x2
. (D19)

Finally, we obtain the two components from Eq. (D5) with the intralevel transition condition Ea = Eb as

σ
α;βγ

d,intra = σ
α;βγ

inj + σ
α;βγ

intI . (D20)

Next, we consider the interlevel transition process (Eab �= 0) for σd . In this case, we safely take the limit δ → 0. The
expression is given by

2σ
α;βγ

d,inter = 1

�2 + η2

[ ′∑
a,b

∑
c

1

2

Jα
ab

2iη − Eba

(
Jγ

bcJβ
ca fac

� + iη − Eca
− Jγ

caJβ

bc fcb

� + iη − Ebc

)]

+ [(β, γ ,�) ↔ (γ , β,−�)]. (D21)

Here, �′ indicates the summation of a, b with the condition Eab �= 0. Making use of Eq. (15), we rewrite the current operator by
the Berry connection,

Jα
ab

Eab
Jγ

bc = −iξα
abJγ

bc = 〈a | ∂αb〉〈b | Jγ | c〉 = −〈∂αa | b〉〈b | Jγ | c〉 = −〈Dαa | b〉〈b | Jγ | c〉, (D22)

where we use the covariant derivative

|Dαa〉 = |∂αa〉 + i
Ead =0∑

d

ξα
da |d〉 . (D23)

The gauge degree of freedom associated with the covariant derivative is defined by the eigenstates having the same energy. The
degeneracy does not exist in some cases, and hence the covariant derivative is characterized by the U(1) gauge [46]. On the other
hand, for the PT -symmetric and spinful systems, the PT -ensured Kramers degeneracy leads to the U(2) covariant derivative
[21] even in the presence of the variational parameter λ. With the covariant derivative, Eq. (D21) is transformed as

2σ
α;βγ

d,inter = − 1

2(�2 + η2)

[∑
a,c

〈Dαa | Jγ | c〉Jβ
ca fac

� + iη − Eca
+

∑
b,c

〈c | Jγ | Dβb〉Jβ

bc fcb

� + iη − Ebc

]

+ [(β, γ ,�) ↔ (γ , β,−�)] (D24)

= − 1

2(�2 + η2)

∑
a,b

[〈Dαa | Jγ | b〉Jβ

ba fab + 〈a | Jγ | Dαb〉Jβ

ba fab
]

×
(

P
1

� − Eba
− iπδ(� − Eba)

)
+ [(β, γ ,�) ↔ (γ , β,−�)]. (D25)
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Introducing the Berry connection Aα associated with the covariant derivative Dα , we symbolically define the covariant derivative
of operators by

[DαO]ab = ∂αOab − i[Aα, O]ab. (D26)

Accordingly, we obtain

〈Dαa | Jγ | b〉 + 〈a | Jγ | Dαb〉 = [DαJγ ]ab − (∂αJγ )ab = [DαJγ ]ab + Jαγ

ab . (D27)

Meanwhile, σb in Eq. (D3) reads as, with the limit δ → 0,

2σb = 1

2(�2 + η2)

∑
a,b

Jαγ

ab Jβ

ba fab

[
P

1

� − Eba
− iπδ(� − Eba)

]
+ [(β, γ ,�) ↔ (γ , β,−�)]. (D28)

Thus, by summing this term and Eq. (D25), the component including Jαγ in Eq. (D25) is canceled. The remaining term is given
by

σ
α;βγ

d,inter + σ
α;βγ

b = σ
α;βγ

abs + σα;βγ
rea , (D29)

where

2σ
α;βγ

abs = − 1

2(�2 + η2)

∑
a,b

−iπ
[
[DαJγ ]abJβ

ba − [DαJβ]baJγ

ab

]
fabδ(� − Eba) (D30)

and

2σα;βγ
rea = − 1

2(�2 + η2)

∑
a,b

[
[DαJγ ]abJβ

ba + [DαJβ]baJγ

ab

]
fabP

1

� − Eba
. (D31)

σ
α;βγ

abs characterized by the resonant contribution is distinguished from the injection current term [Eq. (D18)] because it is
insensitive to the scattering rate. This term is divided into the LP and CP photocurrents as

σ
α;βγ

abs = σ
α;βγ

shift + σα;βγ
gyro , (D32)

2σ
α;βγ

shift = − π

2�2

∑
a �=b

Im
[
[DαJβ]abJγ

ba + [DαJγ ]abJβ

ba

]
fabδ(� − Eba), (D33)

2σα;βγ
gyro = − iπ

2�2

∑
a �=b

Re
[
[DαJβ]abJγ

ba − [DαJγ ]abJβ

ba

]
fabδ(� − Eba), (D34)

where we use the identity

[DαJγ ]abJβ

ba − [DαJβ ]baJγ

ab = i Im
(
[DαJβ]abJγ

ba + [DαJγ ]abJβ

ba

) − Re
(
[DαJβ ]abJγ

ba − [DαJγ ]abJβ

ba

)
. (D35)

The resulting terms σshift and σgyro are called shift current [5,46,47] and gyration current [21,56]. Owing to the Hellmann-
Feynman relation, the velocity operators are rewritten by the Berry connections as

2σ
α;βγ

shift = −π

2

∑
a �=b

Im
[
[Dαξβ]abξ

γ

ba + [Dαξγ ]abξ
β

ba

]
fabδ(� − Eba), (D36)

2σα;βγ
gyro = − iπ

2

∑
a �=b

Re
[
[Dαξβ]abξ

γ

ba − [Dαξγ ]abξ
β

ba

]
fabδ(� − Eba). (D37)

Following the parallel discussion in Refs. [21,46], we can show that these photocurrent responses are written by the shift vector
and the chiral shift vector, respectively. For the numerical calculations, we approximate the delta function into the Lorentzian
function as in Eq. (D18).

The off-resonant term σrea is added to Eq. (D10) and gives

2σ
α;βγ

intI+rea = 2σ
α;βγ

intI + 2σα;βγ
rea (D38)

= 1

2(�2 + η2)

[∑
a �=b

∂α

(
Jβ

abJγ

baP
1

� − Eab

)
fab + fabP

1

� − Eba

(
i[Aα, Jβ ]baJγ

ab + iJβ

ba[Aα, Jγ ]ab
)]

. (D39)

Owing to the definition of the Berry connection Aα , the second term vanishes in the last line. Performing the partial integration
of the first term, we obtain

2σ
α;βγ

intI+rea = 1

2(�2 + η2)

[
−

∑
a �=b

Jβ

abJγ

baP
1

� − Eab
∂α fab + ∂α

(∑
a �=b

Jβ

abJγ

baP
1

� − Eab
fab

)]
. (D40)
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We should note that the second term enclosed by the derivative of λα does not vanish in the BdG Hamiltonian while it is dropped
due to the periodicity in the crystal momentum space in the normal state. We label the first and second terms in Eq. (D40) by
σFS1 and σSC1:

2σ
α;βγ

FS1 = − 1

2(�2 + η2)

∑
a �=b

Jβ

abJγ

baP
1

� − Eab
∂α fab, (D41)

2σ
α;βγ

SC1 = 1

2(�2 + η2)
∂α

(∑
a �=b

Jβ

abJγ

baP
1

� − Eab
fab

)
. (D42)

Next, we consider σa [Eq. (D2)]. Taking δ → 0 and using the relation

Jαβγ
aa = −∂αJβγ

aa + i[ξα, Jβγ ]aa, (D43)

we obtain

2σα;βγ
a = 1

2(i� − η)(−i� − η)

[∑
a

−∂αJβγ
aa fa +

∑
a,b

Jα
abJβγ

ba fba

Eab

]
. (D44)

The second component in the right-hand side is canceled out by σc [Eq. (D4)]. The first component is further transformed by
Eq. (C1) into

2∂αJβγ
aa = −∂α∂βJγ

aa + i∂α ([ξβ, Jγ ]aa) − ∂α∂γ Jβ
aa + i∂α ([ξγ , Jβ ]aa) (D45)

= 2∂α∂β∂γ εa + i∂α ([ξβ, Jγ ]aa) + i∂α ([ξγ , Jβ ]aa), (D46)

and we accordingly obtain

2σα;βγ
a + 2σα;βγ

c = − 1

2�2

∑
a

fa∂α∂β∂γ εa + 1

�2

[
−

∑
a �=b

1

2

Jβ

abJγ

ba

Eab
∂α fab + ∂α

(∑
a �=b

1

2

Jβ

abJγ

ba

Eab
fab

)]
. (D47)

To see the correspondence between the photocurrent responses in the normal state and those in superconducting state, we perform
the partial integration for the first term,

1

2�2

[
∂β∂γ

(∑
a

fa∂αεa

)
− ∂γ

(∑
a

∂β fa∂αεa

)
− ∂β

(∑
a

∂γ fa∂αεa

)
+

∑
a

∂β∂γ fa∂αεa

]
. (D48)

What is not differentiated by λ is the (nonlinear) Drude term [52] denoted by

2σ
α;βγ

D = − 1

2�2

∑
a

∂αεa∂β∂γ fa. (D49)

This term can be finite in the normal state. The remaining term is finite only in the superconducting state and labeled by

2σ
α;βγ

SC2 = − 1

2�2

[
∂β∂γ

(∑
a

fa∂αεa

)
− ∂γ

(∑
a

∂β fa∂αεa

)
− ∂β

(∑
a

∂γ fa∂αεa

)]
. (D50)

We also denote the λ derivative term in Eq. (D47) as

2σ
α;βγ

SC3 = 1

2�2
∂α

(∑
a �=b

Jβ

abJγ

ba

Eab
fab

)
, (D51)

which is also finite only in the superconducting state. Accordingly, we decompose Eq. (D47) as

σα;βγ
a + σα;βγ

c = σ
α;βγ

D + σ
α;βγ

SC2 + σ
α;βγ

SC3 + σ
α;βγ

FS2 , (D52)

where we defined

2σ
α;βγ

FS2 = − 1

2�2

∑
a �=b

Jβ

abJγ

ba

Eab
∂α fab. (D53)

Combining σFS1 and σFS2, we obtain a Fermi-surface contribution

2σFS1 + 2σFS2 = − 1

�

∑
a �=b

1

2

Jβ

abJγ

ba

Eab(� − Eab)
∂α fab (D54)

= −
∑
a �=b

1

2

Jβ

abJγ

ba

E2
ab

(
1

� − Eab
− 1

�

)
∂α fab. (D55)

024308-19



WATANABE, DAIDO, AND YANASE PHYSICAL REVIEW B 105, 024308 (2022)

In the final line, the first and second components are called intrinsic Fermi-surface term [21,48] and Berry curvature dipole effect
[55,76]. We denote them as

2σ
α;βγ

IFS = −1

2

∑
a �=b

ξ
β

abξ
γ

ba

1

� − Eab
∂α fab, (D56)

2σ
α;βγ

BCD = 1

2�

∑
a �=b

ξ
β

abξ
γ

ba∂α fab = − i

2�

∑
a

�βγ
a ∂α fa. (D57)

The Berry curvature dipole effect is classified as the CP photocurrent since it is antisymmetric under β ↔ γ . On the other hand,
the intrinsic Fermi-surface effect can be decomposed into the LP and CP photocurrents as in the injection current [Eq. (D15)].
The LP and CP parts are called electric and magnetic intrinsic Fermi surface effects, respectively [21,48].

Finally, we obtain the normal photocurrent conductivity

σα;βγ
n = σ

α;βγ

Einj + σ
α;βγ

Minj + σ
α;βγ

shift + σα;βγ
gyro + σ

α;βγ

D + σ
α;βγ

IFS + σ
α;βγ

BCD . (D58)

Note that we can easily reproduce the photocurrent response in the normal state by replacing λ with k in the normal photocurrent.
The nonlinear Drude term, intrinsic Fermi-surface term, and Berry curvature dipole effect include the derivative of the Fermi-
Dirac distribution function and thus vanish in a gapped system at low temperature.

Summing the contributions enclosed by the λ differentiation, we obtain the anomalous photocurrent arising from the
superconductivity

2σα;βγ
a = 2σ

α;βγ

SC1 + 2σ
α;βγ

SC2 + 2σ
α;βγ

SC3 (D59)

= 1

2�2
∂α

(∑
a,b

Jβ

abJγ

baP
1

� − Eab
fab

)
+ 1

�2
∂α

(∑
a �=b

1

2

Jβ

abJγ

ba

Eab
fab

)

− 1

2�2

[
∂β∂γ

(∑
a

f (εa)∂αεa

)
− ∂β

(∑
a

∂γ f (εa)∂αεa

)
− ∂γ

(∑
a

∂β f (εa)∂αεa

)]
(D60)

= 1

2�2
∂α

[∑
a �=b

Jβ

abJγ

ba

(
P

1

� − Eab
+ 1

Eab

)
fab

]
− 1

�2
∂α∂β∂γ Fλ

+ 1

2�2

[
∂β

(∑
a

∂γ f (εa)∂αεa

)
+ ∂γ

(∑
a

∂β f (εa)∂αεa

)]
. (D61)

This is the contribution to the photocurrent clarified by this work. Assuming the gapped system at low temperature, we here
ignore the Fermi-surface contribution in the second line of Eq. (D61). We denote the remaining contributions as

2σ
α;βγ

NRSF = − 1

�2
∂α∂β∂γ Fλ, (D62)

2σ
α;βγ

CD = 1

2�2
∂α

[∑
a �=b

Jβ

abJγ

ba

(
P

1

� − Eab
+ 1

Eab

)
fab

]
, (D63)

where “NRSF” denotes nonreciprocal superfluid density while “CD” means conductivity derivative. The nonreciprocal superfluid
density is defined as f αβγ = limλ→0 ∂α∂β∂γ Fλ.

It is convenient for numerical computations to rewrite the formulas by generalized velocity operators. A straightforward
example is the injection current contributions in Eq. (D14). Although Eq. (D14) implicitly includes the infinitesimal variational
parameter λ, we can obtain the formula without λ by taking the limit λ → 0. The resulting formula is written by the generalized
velocity operators and energy spectrum of the BdG Hamiltonian. The quantum metric and Berry curvature are given by

gαβ

ab = 1

E2
ab

Re
[
Jα

abJβ

ba

]
, (D64)

�
αβ

ab = − 2

E2
ab

Im
[
Jα

abJβ

ba

]
, (D65)

where we use Eq. (11) with a �= b. Since the BdG Hamiltonian can be labeled by the crystal momentum k, the injection current
formula is obtained as

2σ
α;βγ

inj = −π

2η

∑
k

∑
a,b

[
Jα

aa(k) − Jα
bb(k)

]Jβ

ba(k)Jγ

ab(k)

E2
ba

fabδ(� − Eab), (D66)
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where a, b denote the band indices of Bogoliubov quasiparticles. Following the parallel discussion, we can derive the numerically
convenient formulas for other contributions by transforming the λ-parametrized formulas into what is given by the generalized
velocity operators and energy spectrum. In the case of the shift current and gyration current contributions [Eqs. (D36) and (D37)],
the covariant derivative of the Berry connection is rewritten by

[Dαξβ]ab = iJβ

ab

	α
ab

E2
ab

+ i

Eab

(
−Jαβ

ab −
∑
a �=c

Jα
acJβ

cb

Eac
+

∑
b�=c

Jα
cbJβ

ac

Ecb

)
. (D67)

After taking the limit λ → 0, the right-hand side becomes a numerically convenient form.
Next, we derive the anomalous photocurrent formulas in the current operator representation. For instance, we take the

nonreciprocal superfluid density effect [Eq. (D62)]. When we assume the gapped and low-temperature state for simplicity, we
can neglect the term including the derivative of the Fermi-Dirac distribution function. The obtained formula for the nonreciprocal
superfluid density is

−2∂α∂β∂γ Fλ =
∑

a

Jαβγ
aa fa +

∑
a �=b

1

Eab

(
Jα

abJβγ

ba + Jβ

abJγα

ba + Jγ

abJαβ

ba + c.c.
)

fa

−
∑
a �=b

	
γ

ab

E2
ab

(
Jβ

abJα
ba + Jβ

baJα
ab

)
fa

+
∑

a �=b,c

1

EabEac
fa

[
Jα

abJβ

bcJγ
ca + Jβ

abJα
bcJγ

ca + c.c.
]

+
∑

b�=a,c

1

EabEbc
fa

[
Jβ

abJγ

bcJα
ca + Jα

abJγ

bcJβ
ca + c.c.

]
. (D68)

Similarly, we can rewrite the formula for the conductivity derivative effect [Eq. (D63)] as

∂α

[
Jβ

abJγ

ba

(
P

1

� − Eab
+ 1

Eab

)
fab

]
(D69)

= −Jβ

abJγ

ba	
α
ab

(
P

1

(� − Eab)2 − 1

E2
ab

)
fab + (−Jαβ

ab Jγ

ba − Jβ

abJαγ

ba

)(
P

1

� − Eab
+ 1

Eab

)
fab

+
[∑

c �=a

(
−Jα

acJβ

cbJγ

ba

Eac
+ Jβ

abJα
caJγ

bc

Eca

)
+

∑
c �=b

(
Jα

cbJβ
acJγ

ba

Ecb
− Jβ

abJα
bcJγ

ca

Ebc

)](
P

1

� − Eab
+ 1

Eab

)
fab, (D70)

where we omit the prefactor 1/(2�2) and neglect the derivative of the Fermi-Dirac distribution function.
Note that there is an arbitrariness in decomposing the total photocurrent into the normal and anomalous contributions within

the independent particle approximation. For instance, although the Berry curvature dipole effect in Eq. (D57) is seemingly
different from what has been derived in prior works [55,75,76], we can reproduce the known expression. Since the Berry
curvature is given by the derivative of the intraband Berry connection (�αβ

a = ∂βξα
aa − ∂αξβ

aa), Eq. (D57) is rewritten by

2σ
α;βγ

BCD = −i
1

2�

(∑
a

∂α

(
�βγ

a fa
) − ∂α�βγ

a fa

)
(D71)

= −i
1

2�

∑
a

[
∂α

(
�βγ

a fa
) − (

∂β�αγ
a − ∂γ �αβ

a

)
fa

]
(D72)

= −i
1

2�

∑
a

[
∂α

(
�βγ

a fa
) − ∂β

(
�αγ

a fa
) + ∂γ

(
�αβ

a fa
) + (

�αγ
a ∂β fa − �αβ

a ∂γ fa
)]

, (D73)

where we obtain the “conventional” Berry curvature dipole contribution

2σ
α;βγ

cBCD = i
1

2�

∑
a

(
�αβ

a ∂γ fa − �αγ
a ∂β fa

)
. (D74)

The remaining contributions are enclosed by the λ derivative,

−i
1

2�

∑
a

[
∂α

(
�βγ

a fa
) − ∂β

(
�αγ

a fa
) + ∂γ

(
�αβ

a fa
)]

, (D75)

which should vanish in the normal state. Accordingly, the two formulas for the Berry curvature dipole effect [Eqs. (D57) and
(D74)] are equivalent in the normal state. On the other hand, when we adopt the formula in Eq. (D74) as the Berry curvature
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dipole effect, it is necessary to include Eq. (D75) in the anomalous contribution. Such arbitrariness in the normal and anomalous
photocurrents may occur because we formulate the response function without any scattering effect. This difficulty is resolved by
the Green function method in Appendix E.

Some of the normal photocurrents diverge in the static limit, for instance, the Drude photocurrent in Eq. (D49). On the other
hand, when the scattering effect is properly introduced, the normal photocurrent is bounded to be finite even in the zero-frequency
limit (� → 0) [43]. On the contrary, the anomalous photocurrent such as the nonreciprocal superfluid density effect should
diverge in the low-frequency limit even with scattering effects since the divergence arises from rewriting the vector potential by
the electric field as E = i�A.

APPENDIX E: DERIVATION BY GREEN FUNCTION METHOD

We formulate the nonreciprocal optical response in superconductors based on the Green function method. The Green function
formalism for the nonlinear conductivity has been reported in prior works [43,52,77], and we apply it to the BdG Hamiltonian.
Starting from the Hamiltonian having the electron correlation, we take the molecular field approximation for the Cooper channel
of the electron-electron interaction. Accordingly, the action is given by

S =
∫

dτ

∫
dr

1

2
�(∂τ + HBdG)�, (E1)

where we suppressed a constant arising from the molecular field approximation and neglected other channels. � is the Nambu-
Grassmann vector consisting of the Grassmann numbers for electrons and holes �T = (ψ1, . . . , ψn, ψ1, . . . , ψn). Since the
action is quadratic in the Grassmann numbers, we can analytically perform the Grassmann integration. The partition function is
obtained as

Z = Tre−βH =
∫

Dψ Dψ e−S = exp

[∫
dτ

∫
dr

1

2
Tr logG−1(τ )

]
. (E2)

We introduced the Gor’kov Green function G,

G−1 =
(

∂τ + HN 	

	† ∂τ − (HN)T

)
, (E3)

where the imaginary-time derivative is performed on the right-hand side. It is necessary for calculations of the conductivity to
take into account the electromagnetic fields. In this work, we introduce the minimal coupling between the vector potential and
the canonical momentum in the normal-state Hamiltonian as

HN[ p̂] → HN[ p̂ − A(τ )] ≡ HN(A(τ )). (E4)

We take the vector potential which yields the photoelectric field in the real-time domain as E = −∂t A(t ). Correspondingly, the
Gor’kov Green function is replaced with GA whose normal-state Hamiltonian is HN(A(τ )).

The expectation value of the electric current is obtained in a straightforward way once the partition function is given. The
electric current is calculated as

〈J α (τ )〉 = − δ

δAα (τ )

∫
dτ ′

∫
dr′ 1

2
Tr

[
logG−1

A (τ ′)
]

(E5)

= 1

2

∫
dr TrJα

A (τ )GA(τ ), (E6)

where the coefficient 1
2 is due to the particle-hole doubling in the BdG Hamiltonian. Jα

A is the current operator for the BdG
Hamiltonian and defined as

Jα
A (τ ) = − δ

δAα (τ )

(
HN(A(τ )) 0

0 −[HN(A(τ ))]T

)
. (E7)

The linear and nonlinear conductivities are systematically calculated by expanding the current operator Jα
A and Green function

GA with respect to the vector potential A. The derivation is similarly performed as in Ref. [43]. We show the final result of the
NRO conductivity

2σα;βγ (ω; ω1, ω2) = 1

ω1ω2

∫ ∞

−∞

d�

2π i
f (�)

1

2

{
1

2
Tr[Jαβγ (GR(�) − GA(�))] (E8)

+ Tr[JαβGR(� + ω2)Jγ (GR(�) − GA(�)) + Jαβ (GR(�) − GA(�))Jγ GA(� − ω2)] (E9)

+ 1

2
Tr[JαGR(� + ω)Jβγ (GR(�) − GA(�)) + Jα (GR(�) − GA(�))Jβγ GA(� − ω)] (E10)

+ Tr[JαGR(� + ω)JβGR(� + ω2)Jγ (GR(�) − GA(�)) (E11)
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+ JαGR(� + ω1)Jβ (GR(�) − GA(�))Jγ GA(� − ω2) (E12)

+ Jα (GR(�) − GA(�))JβGA(� − ω1)Jγ GA(� − ω)] + [(β, ω1) ↔ (γ , ω2)]

}
, (E13)

where Tr represents the trace over eigenstates of the Bogoliubov quasiparticle. We introduced the retarded (GR) and advanced
(GA) Green functions as

GR(ω) = 1

ω + iη − HBdG
, GA(ω) = (GR(ω))†. (E14)

Here, η > 0 is an infinitesimal parameter building the causality into the Green functions, HBdG is the BdG Hamiltonian having no
electromagnetic perturbation, and [(β, ω1) ↔ (γ , ω2)] means the symmetrization of the applied electric fields due to the intrinsic
permutation symmetry of external fields. The doubling of the conductivity (2σα;βγ ) respects the coefficient 1

2 in Eq. (E6).
The low-frequency behavior of the NRO conductivity is of current interest. Thus, we take the (ω,ω1, ω2) expansion from the

static limit with the frequency conservation condition ω = ω1 + ω2. The leading terms are given by

2σα;βγ (ω1 + ω2; ω1, ω2) = 1

2ω1ω2
Aαβγ + 1

2ω2
Bαβγ + 1

2ω1
B′

αβγ + O(ω0). (E15)

The coefficients are obtained as

Aαβγ =
∫ ∞

−∞

d�

2π i
f (�)

{
1

2
Tr[Jαβγ (GR(�) − GA(�))] (E16)

+Tr[JαβGR(�)Jγ (GR(�) − GA(�)) + Jαβ (GR(�) − GA(�))Jγ GA(�)] (E17)

+1

2
Tr[JαGR(�)Jβγ (GR(�) − GA(�)) + Jα (GR(�) − GA(�))Jβγ GA(�)] (E18)

+Tr[JαGR(�)JβGR(�)Jγ (GR(�) − GA(�)) (E19)

+JαGR(�)Jβ (GR(�) − GA(�))Jγ GA(�) (E20)

+ Jα (GR(�) − GA(�))JβGA(�)Jγ GA(�)] + (β ↔ γ )

}
. (E21)

and

Bαβγ =
∫ ∞

−∞

d�

2π i
f (�)

{
Tr[Jαγ F R(�)Jβ (GR(�) − GA(�)) − Jαγ (GR(�) − GA(�))JβF A(�)] (E22)

+ Tr[JαF R(�)Jβγ (GR(�) − GA(�)) − Jα (GR(�) − GA(�))Jβγ F A(�)] (E23)

+ Tr[JαF R(�)JβGR(�)Jγ (GR(�) − GA(�)) + JαGR(�)Jγ F R(�)Jβ (GR(�) − GA(�))

+ JαF R(�)Jγ GR(�)Jβ (GR(�) − GA(�))

− JαGR(�)Jβ[(GR(�) − GA(�))Jγ F A(�) + JαF R(�)Jβ (GR(�) − GA(�))Jγ GA(�)

− Jα (GR(�) − GA(�))JβGA(�)Jγ F A(�) − Jα (GR(�) − GA(�))Jγ GA(�)JβF A(�)

− Jα (GR(�) − GA(�))JβF A(�)Jγ GA(�)]
}
. (E24)

F R(A)(ω) = ∂ωGR(A) is the frequency derivative of the Green function. The coefficient B′
αβγ is obtained by the permutation

β ↔ γ in Bαβγ .
Simplification of these coefficients is performed by making use of the variational parameter λ as in the density-matrix

formulation. Let us consider the adiabatic switching of λ in the BdG Hamiltonian as

HBdG = lim
λ→0

H (λ)
BdG. (E25)

The right-hand side is written by

H (λ)
BdG =

(
Hk−λ

N 	̂k

	̂
†
k −(H−k−λ

N )T

)
(E26)
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in the crystal momentum (k) basis. Normal-state Hamiltonian and pair potentials are accordingly given in the k representation.
Following the definition of the current operators, we can rewrite the operators by

Jα = lim
λ→0

Jα
λ = lim

λ→0
−∂H (λ)

BdG

∂λα

, (E27)

Jαβ = lim
λ→0

Jαβ

λ = lim
λ→0

∂2H (λ)
BdG

∂λα∂λβ

, (E28)

Jαβγ = lim
λ→0

Jαβγ

λ = lim
λ→0

− ∂3H (λ)
BdG

∂λα∂λβ∂λγ

. (E29)

Owing to the correction to the BdG Hamiltonian, the Green functions are modified. For instance, the retarded Green function is

GR
λ (ω) = 1

ω + iη − H (λ)
BdG

. (E30)

Differentiating the Green functions by λ, we obtain

∂GR
λ (ω)

∂λα

= −GR
λ (ω)Jα

λ GR
λ (ω). (E31)

When we make use of the λ switching and the relation (E31), we can simplify the coefficients Aαβγ , Bαβγ , and B′
αβγ . First, we

consider Aαβγ . Based on the adiabatic switching of λ, the current operators and Green functions are converted into those labeled
by λ. For instance, we take the line (E16). The third-order current operator is related with the diamagnetic current operator as
Jαβγ

λ = −∂λα
Jβγ

λ . Accordingly,

Tr
[
Jαβγ

λ

(
GR

λ (�) − GA
λ (�)

)] = −∂λα

{
Tr

[
Jβγ

λ

(
GR

λ (�) − GA
λ (�)

)]} + Tr
[
Jβγ

λ ∂λα

(
GR

λ (�) − GA
λ (�)

)]
, (E32)

= −∂λα

{
Tr

[
Jβγ

λ

(
GR

λ (�) − GA
λ (�)

)]} − Tr
[
Jβγ

λ

(
GR

λ (�)Jα
λ GR

λ (�) − GA
λ (�)Jα

λ GA
λ (�)

)]
. (E33)

Using the cyclic property of trace, the second term in the last line is canceled with Eq. (E18). Performing a similar algebra, we
finally rewrite Aαβγ by

Aαβγ =
∫

d�

2π i
f (�) lim

λ→0
∂λβ

∂λγ
Tr

[
Jα
λ

(
GR

λ (�) − GA
λ (�)

)]
(E34)

= − lim
λ→0

∂λβ
∂λγ

Tr
[
Jα
λ f

(
H (λ)

BdG

)]
(E35)

= lim
λ→0

∂λα
∂λβ

∂λγ

(
− 1

β
Tr

[
log

(
1 + e−βH (λ)

BdG
)])

(E36)

= 2 lim
λ→0

∂λα
∂λβ

∂λγ
Fλ. (E37)

As a result, we reproduce the formula for the nonreciprocal superfluid density effect given by

2σ
α;βγ

NRSF(ω1 + ω2; ω1, ω2) = 1

2ω1ω2
Aαβγ = 1

ω1ω2
f αβγ . (E38)

The obtained formula is the generalized expression of Eq. (D62) and captures the nonreciprocal superfluid density effect in
general NRO responses including those other than the photocurrent generation ω1 = −ω2.

Next, we consider the coefficients of the O(ω−1) term in Eq. (E15). Similarly to Aαβγ , the coefficient Bαβγ is simplified as

Bαβγ =
∫

d�

2π i
f (�) lim

λ→0
∂λγ

Tr
[
Jα
λ

(
GR

λ (�) − GA
λ (�)

)
Jβ

λ F A
λ − Jα

λ F R
λ Jβ

λ

(
GR

λ (�) − GA
λ (�)

)]
. (E39)

Since the λβ derivative is taken over the whole expression, this contribution vanishes in the normal state. Interestingly, this
formula has the similar form to the regular part of the linear static conductivity. The expression is given by

σ
(λ)
αβ = −i

∫
d�

2π i
f (�)Tr

[
Jα
λ F R

λ (�)Jβ

λ

(
GR

λ (�) − GA
λ (�)

) − Jα
λ

(
GR

λ (�) − GA
λ (�)

)
Jβ

λ F A
λ (�)

]
. (E40)

Thus, Eq. (E39) is rewritten as

Bαβγ = −i lim
λ→0

∂λγ
σ

(λ)
αβ . (E41)

The superscript in σ (λ) indicates that the Green functions and current operators contain the parameter λ. We also recast B′
αβγ as

B′
αβγ = −i lim

λ→0
∂λβ

σ (λ)
αγ . (E42)
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We therefore call the low-frequency divergence from Bαβγ and B′
αβγ (static) conductivity derivative effect. The formula is given

by

2σ
α;βγ

sCD = 1

2ω2
Bαβγ + 1

2ω1
B′

αβγ = − i

2
lim
λ→0

(
1

ω1
∂λβ

σ (λ)
αγ + 1

ω2
∂λγ

σ
(λ)
αβ

)
. (E43)

Finally, we present the symmetry analysis of the anomalous NRO conductivity in Eq. (E15). First, we discuss the nonrecip-
rocal superfluid density effect in the Green function representation. Taking Eq. (E16), we apply the time-reversal operation θ to
what is in the parentheses. Owing to the antiunitary property of θ , the expression is transformed as

Tr[Jαβγ (GR(�) − GA(�))] = Tr[θ (GR(�) − GA(�))†θ−1θJαβγ †
θ−1] (E44)

= Tr[(GR(�) − GA(�))(−Jαβγ )] (E45)

= −Tr[Jαβγ (GR(�) − GA(�))] (E46)

= 0. (E47)

The time-reversal operation is performed in the first line and the T -odd property of Jαβγ is implemented in the second line. As a
result, the nonreciprocal superfluid density is forbidden by the T symmetry. It is similarly forbidden by the P symmetry, while
the PT symmetry does not make any symmetry constraint.

Following parallel calculations, we can classify Bαβγ by the T and PT symmetries. Imposing the T symmetry, the first term
in Eq. (E22) is transformed as

Tr[Jαγ F R(�)Jβ (GR(�) − GA(�))] = −Tr[Jαγ (GR(�) − GA(�))JβF R] (E48)

since the T parities of the paramagnetic and diamagnetic current operators are odd and even, respectively. Performing similar
symmetry operations for other terms of Bαβγ , we obtain the T -symmetric component given by the antisymmetric part of the
linear conductivity tensor

B(T )
αβγ = − i

2
lim
λ→0

∂λγ

(
σ

(λ)
αβ − σ

(λ)
βα

)
. (E49)

Since the σ
(λ)
αβ − σ

(λ)
βα is expressed by the Berry curvature, this anomalous NRO response is given by the Berry curvature

derivative. We reproduce the expression for the Berry curvature derivative by performing the trace. Using the eigenstates of
the BdG Hamiltonian H (λ)

BdG, we get the relation∫
d�

2π i
f (�)Tr

[ − Jα
λ F R

λ (�)Jβ

λ

(
GR

λ (�) − GA
λ (�)

) + Jα
λ

(
GR

λ (�) − GA
λ (�)

)
Jβ

λ F R
λ (�)

]
=

∑
a �=b

fab

E2
ab

(
Jα
λ

)
ab

(
Jβ

λ

)
ba (E50)

=
∑
a �=b

fa[(ξλα )ab(ξλβ )ba − (α ↔ β )], (E51)

and Eq. (E51) is recast as ∑
a �=b

fa[(ξλα )ab(ξλβ )ba − (α ↔ β )] =
∑

a

−iεαβγ �γ
a fa. (E52)

Finally, we rewrite the static conductivity derivative effect for T -symmetric case by

2σ
α;βγ

sCD(T ) = 1

2ω2
B(T )

αβγ + 1

2ω1
B′(T )

αβγ (E53)

= − i

2
lim
λ→0

[
1

ω1
εαγ δ∂λβ

(∑
a

�δ
a fa

)
+ 1

ω2
εαβδ∂λγ

(∑
a

�δ
a fa

)]
(E54)

= − i

2

(
εαγ δ

Bβδ

d

ω1
+ εαβδ

Bγ δ

d

ω2

)
(E55)

in the low-frequency regime.
Next, we consider the symmetry constraint of the PT symmetry on the coefficient Bαβγ . On the basis of the parallel

discussion, the antisymmetric component is forbidden. Accordingly, Bαβγ is expressed by the symmetric component

B(PT )
αβγ = − i

2
lim
λ→0

∂λγ

(
σ

(λ)
αβ + σ

(λ)
βα

)
, (E56)
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which leads to the Drude derivative D̂d defined by

Dγ ;αβ

d = iB(PT )
αβγ = lim

λ→0
∂λγ

(∫
d�

2π

(
−∂ f (�)

∂�

)∑
a

(
Jα
λ

)
aa

(
Jβ

λ

)
aa2 Im

[(
GR

λ (�)
)

aa

]2

)
. (E57)

This represents the intraband effect. The Drude derivative D̂d vanishes in the absence of the Bogoliubov quasiparticles since
it contains the Fermi-surface factor ∂� f (�). Note that the parameter λ does not break the PT symmetry and we can directly
apply the PT symmetry to Eq. (E39). The obtained result is the same as Eq. (E57). As a result, we obtain the static conductivity
derivative effect for PT -symmetric case as

2σ
α;βγ

sCD(PT ) = 1

2ω2
B(PT )

αβγ + 1

2ω1
B′(PT )

αβγ (E58)

= − i

2ω1
Dβ;αγ

d − i

2ω2
Dγ ;αβ

d . (E59)
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