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Interlaced wire medium with quasicrystal lattice
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We propose a design of an interlaced wire medium with a quasicrystalline lattice based on fivefold rotation
symmetry Penrose tiling. The transport properties of this structure are studied. We distinguish two transport
regimes, namely, a propagation regime related to the low-frequency interval and localization regime in the high-
frequency interval. While the former is observed in structures both with and without the translation symmetry
property, the latter is exclusive for aperiodic structures only. We show that the localization regime is promising
for many applications, including the engineering of effective multichannel devices for telecommunication and
imaging systems.
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I. INTRODUCTION

Interlaced wire media (IWM) [1] have been in the focus
of attention in the past decade due to their unique properties
of wave transport [2,3], because of the rapid phase variation
along the propagation direction in a structure consisting of
more than two independent interpenetrating metallic grids.
Many reports have considered, among other phenomena, the
broadband negative group velocity in the low-frequency range
with a coupling effect depending on the propagation direc-
tion [4], the longitudinal nature of the electromagnetic waves
supported by the double-grid IWM [2], the rotation of polar-
ization and phase control [5,6], the design of graded refractive
index lenses [7], and IWM with an arbitrarily large number
of photonic bands with a linear dispersion relation in the
low-frequency limit [1].

The most convenient way to analyze the structure is to ex-
ploit the translation symmetry leading to Bloch solutions. This
allows us to use many powerful concepts of solid-state physics
such as reciprocal space, wave vectors, and the Brillouin zone.
However, translation symmetry inherently limits the possible
transport properties attributed to waves with either purely
real or complex wave numbers. In particular, no intrinsic
localization of waves occurs in periodic systems. Disordered
structures enable a number of transport phenomena, but they
only make sense for values under statistical averaging over a
large ensemble of various occurrences.

Quasicrystals are between the two extreme cases. They
have a rigorous ordering of their elements without any transla-
tion symmetry. Recent research in the field of electrodynamics
of quasicrystals [8] has revealed some interesting phenomena
that are not related to periodicity, including Dirac conical dis-
persion [9], intrinsic wave localization [10,11], the quantum
spin Hall effect [12–14], superconductivity [15], the exis-
tence of surface plasmons [16], and phenomena in topological
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Anderson [17] and Chern [18,19] insulators. Notably, the ab-
sence of the condition for exploiting the Bloch theorem results
in the quasicrystal analysis being based in most cases on the
simulation of the wave equations over large samples usually
of the size of dozens of wavelengths.

The metallic wire grids forming IWM are supposed to have
a complex topology in three-dimensional (3D) space for the
separate grids not to be connected to each other. Although
a weak deviation from the periodic arrangement of IWM is
easily implemented, the observation of the aforementioned
effects related to the absence of translation symmetry requires
either a very large sample, the size of which is limited by
restricted computing facilities, or a strong decline from the
translation symmetry typical for quasicrystals. The latter is
a challenging problem since it involves both restrictions of
IWM topology and quasicrystal spatial ordering which have
to be met simultaneously.

In this paper, we propose a design of IWM in an aperiodic
structure based on a Penrose-type quasicrystal with C5 rota-
tion axis symmetry. We study the wave transport properties
of the designed IWM system by using a full-wave simulation
of the electromagnetic problem. We discover three transport
regimes, namely, the static and propagation regimes that are
similar to IWM with translation symmetry and also an ex-
clusive quasicrystal regime of wave localization. The latter
provides the benefit of a multichannel antenna design with
large decoupling coefficients.

II. DESIGN OF QUASICRYSTALLINE INTERLACED
WIRE MEDIUM

Let us recall the conventional Penrose tiling of two-
dimensional space. The quasicrystal is composed of two
different tiles (or unit cells) that are a pair of rhombuses
with the same edge length. The thick one has angles of
72◦ and 108◦ and the thin one has angles of 36◦ and 144◦
[see Fig. 1(b)]. A regular quasicrystal structure is supposed
to cover the entire plane by closely packing the two unit
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FIG. 1. (a) Design of quasicrystalline interlaced wire medium
based on the Penrose tiling pattern. (b) Two unit cells of Penrose
tiling that are thick and thin parallelepipeds (based on rhombuses),
which include two nonconnected wires disposed in the top (gray)
and bottom (yellow) planes. (c) Five tiles attached to the same node.
The first subgrid (shown in red color) includes the wires joined to
the central node, and the second one (blue) is formed by the wires
surrounding the central node. The types of tiles are shown in the
bottom plane. The star (c) is highlighted twice on (a).

cells with no gaps between them. Thus, each node has to
be attached to the rhombus, whose apex angles sum up to
360◦. This requirement leads to 54 possible stars (a cycle
combination of the rhombuses around their common node).
Nevertheless, due to the matching rules [20], only seven com-
binations remain. Several approaches have been developed to
fit the plane with Penrose tiling by two unit cells [21]. In order
to generate a large-size tiling here we exploit the up-down
approach [22].

Two-dimensional periodic structures are known to be asso-
ciated with one of five possible Bravais lattices, and identical
elements forming the unit cell are located in each site of
the lattice. As to the case of quasicrystalline structures in a
particular Penrose tiling, there exists a kind of generalized
Bravais lattice, the nodes of which are yet to be assigned to
a certain material structure. For example, a quasicrystalline
metasurface can be based on dielectric disks located in the
apex (nodes) of the Penrose tiling [23,24] However, quasicrys-
talline IWM requires a more complex design, as it should
include conductive metallic grids with interconnections be-
tween the adjacent cells. The design of the unit cells implies
a pair of nonconnected subgrids forming the IWM. Two unit
cells of the IWM represented by parallelepipeds (with Penrose
tiles as the bases) contain a pair of �- and U-shaped wires ori-
ented along the diagonals [shown in gray (�) and yellow (U)
in Fig. 1(b)], where the space between the grids is filled with
a host material which in our case is air. When constructing
stars from the tiles [one of the seven possible stars is shown
in Fig. 1(c)], the wires in the adjoined tiles are connected to
each other and form two electrically independent grids: The
first one includes diagonal wires connected to the central node

(shown in red), and the second one includes diagonal wires
surrounding the central node (shown in blue). On the other
hand, each of the grids turns out to be in the upper plane of
the quasicrystal, then in the lower one. In the static limit, the
subgrids have independent electric potentials of φ1 and φ2. As
a result, the electric field vector inside each tile is directed
either up or down and predominantly undergoes an overturn
between neighboring tiles. We note that for periodic IWM [4]
the overturn of the E field takes place with respect to every
neighboring site. For the quasicrystalline IWM there are some
exceptions. For example, Fig. 1(c) shows the adjoining tiles
and four of them have an identical configuration (red wire in
the upper plane and the blue in the bottom plane), but one
has an inverse configuration (red wire in the bottom plane
and the blue in the upper plane). As a result, the electric
field in the static limit flips with respect to the neighboring
tiles with opposite configuration, as in the case of periodic
IWM.

However, the above features do not annihilate the hallmark
property of IWM, i.e., the shift of the light cones from the
origin [3,4] (see below).

Figure 1(a) illustrates the procedure of converting Penrose
tiling to a quasicrystalline IWM. As a result, the proposed
structure is a metasurface which has two flat boundaries (up-
per and bottom) formed by the two subgrids of the interlaced
wire medium. The described design of the wire configuration
in the unit cells of Penrose tiling allows the generation of a
sample with an arbitrarily large size, and what is essential, the
sample is composed of two nonconnected subgrids.

III. ELECTROMAGNETIC PROPERTIES OF
QUASICRYSTAL IWM

We study the electromagnetic transport of the proposed
structure by using a full-wave simulation with the time do-
main solver of CST Microwave Studio software. The source
of energy is a discrete port connected between the subgrids at
the center of a 665-tile sample with a diameter of 276 mm
[Fig. 2(a)]. The material of the wires is a perfect electric
conductor (PEC), the wire radius is 1 mm, the tile side a is of
10 mm, the sample thickness is 5 mm, and the host medium
is air. We found that the quasicrystalline IWM support trans-
verse electric (TE) modes, i.e., the dominant component of
the electric field oscillates along the normal direction (z axis),
whereas the in-plane components of the amplitude Ex, Ey av-
eraged over each tile tend to vanish.

Our study reveals three frequency intervals: quasistatic at
about 0.1 GHz and less, low (0.38–4 GHz), and high (4–
12 GHz) with different electromagnetic properties (see details
below). The properties are studied by means of two comple-
mentary approaches. The first one is the examination of the
electric field distribution in real space. It allows us to estimate
the value of the effective refraction index in the low-frequency
range and shows a qualitative difference between the prop-
agation and localization regimes. In addition, we obtain the
localization length of the wave in the quasicrystalline IWM
in the high-frequency interval. The second approach is an
analysis of the reciprocal (Fourier) space that also reveals the
difference between the quasicrystalline and periodic IWM.
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FIG. 2. (a) A finite sample of the quasicrystal consisting of 665 tiles. The star marks the source connected to two grids. The source
has vertical orientation for generating z polarization of the electric field. (b) The spectrum of power losses. The transport regimes of
propagation (low-frequency interval) and localization (high-frequency interval) are separated by the shadings. Electric field Ez distribution
for the (c) quasistatic, (d), (e) propagation, and (f), (g) localization regimes.

A. Analysis in real space

Figure 2(a) shows the scheme of our simulations. We study
the frequency f -dependent power loss factor P( f ) of a dipole
source located at the center of the sample. The factor is ob-
tained from the simulated S parameter as P = 1 − S2

11, where
S2

11 is the energy reflected back to the discrete port. The wires
are made of PEC so that the coefficient P corresponds to the
energy leakage to free space only.

Two well distinguishable frequency ranges are clearly seen
in the power loss spectrum [see Fig. 2(b)]. A comb of narrow
high-quality (Q) factor peaks is observed in the low-frequency
interval (below a frequency of about f ≈ 4 GHz), whereas
the high-frequency interval contains a number of low-Q wide
bands. The electric field distributions corresponding to the
modes demonstrate the different patterns for the low- and
high-frequency intervals. In the limiting case of the qua-
sistatic regime [Fig. 2(c)] the field represents the patterns
of the Penrose tiling with “rounded” rhombus unit cells of
opposite phases. We observe an almost constant amplitude
and abrupt phase changing at the rhombus edges due to the
torsion of the subgrids with a spatial displacement from tile to
tile. The patterns of the narrow peaks reveal the recognized
Mie-type modes of two-dimensional circular particles [see
examples in Figs. 2(d) and 2(e)]. It is important to men-
tion that the field distributions corresponding to the narrow
resonance modes are a superposition of the rapid oscillation
due to IWM design based on Penrose tiling and the standing
wave pattern due to interference of a propagating wave. The
effective refractive index n of IWM is evaluated from the size
of the sample (276 mm), and the order and the frequency of
a particular resonance. Thus for the resonance at 0.38 GHz
[Fig. 2(d)] the effective refractive index is n = 1.43, and
for the mode at 1.5 GHz [Fig. 2(e)] the effective refractive
index is n = 1.45. Moreover, it should be noted that the

refraction index of the quasicrystalline IWM in the low-
frequency range has no dependence on the direction of prop-
agation, which is seen from the isotropic distribution of the
field, that is, the fivefold rotational symmetry of the Penrose
lattice does not lead to anisotropy of the effective refraction
index due to the spatial dispersion characteristic of the wire
media [25,26].

At the high-frequency region, the electric field distribution
is poorly structured, so neither Penrose tiling nor standing
wave patterns are observed. Instead, the electromagnetic en-
ergy is localized near the source. Wave propagation along the
quasicrystalline IWM was also not found. We show below
that the intensity decay rate of the field increases with the
frequency, which leads to the shrinking of the energy dis-
placement area [compare the distributions shown in Figs. 2(f)
and 2(g)].

To determine the type of function and the decay rate, we
calculate the average electric field as a function of the distance
between the source and the annular area [Fig. 3(a)], where
the averaging takes place, as follows, I (r) = ∑

S(r) |Ez|/S(r),
where S(r) is the square of the annular region.

As can be seen from Fig. 3(b), the averaged electric
field decays exponentially with an attenuation coefficient
α as I (r) ∝ e−αr . Following this procedure, the attenua-
tion coefficient was found for field distributions in the
frequency range of 0.1–12 GHz with a step of 0.05 GHz
[Fig. 3(c)]. In the low-frequency range (below 4 GHz)
the root-mean-square deviation from the exponential depen-
dence is significant and the attenuation coefficient undergoes
strong fluctuations, so the localization description is not
suitable for this range. In the high-frequency range (above
4 GHz), the attenuation coefficient shows almost linear growth
with frequency and the deviation from the model becomes
weak. Thus, this interval allows intrinsic wave localization.
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FIG. 3. Field pattern in the localization regime. (a) Electric field Ez distribution at 10 GHz. A ring of width w and radius r for the averaging
procedure is shaded. (b) Red circles are the angular averaged intensity of the electric field as a function of radius. The black dashed line is the
fitting with exponential function ∝ exp(−αr). (c) Spectrum of the attenuation coefficient α. The high-frequency interval corresponding to the
localization regime is shown by shading.

We note here that such localization is forbidden in struc-
tures possessing translation symmetry because of the Bloch
theorem.

B. Analysis in reciprocal space

Now we describe the results of the examination of our sam-
ple in reciprocal space, which is another powerful approach in
the investigation of the transport properties. According to this
technique, the distribution of plane-wave amplitudes depend-
ing on their wave vectors at a certain frequency is obtained
by performing a Fourier transform of the Ez field distribu-
tion (Fig. 4). Similar to the case of a periodic IWM [3,4]
its quasicrystalline counterpart studied here supports spatial
harmonics with nonzero wave vectors [see multiple dark spots

in Fig. 4(a)] located at the nodes of the quasicrystal lattice
in reciprocal space. Also, we notice that the amplitude of
the Fourier harmonic at the origin k = 0 tends to zero in
the quasistatic case. Tenfold rotational symmetry C10 of the
pattern in the reciprocal space is related to the C5 symme-
try of our quasicrystalline IWM structure in real space and
the time inversion symmetry that has caused the inversion
symmetry in the reciprocal space of wave vectors. Since the
C10 rotational axis is not compatible with translation sym-
metry, the nodes in the reciprocal space are arranged in a
quasicrystal lattice as well. For the quasicrystals, there are
no efficient theoretical methods providing us with benefits
compared with those following from the Bloch theorem,
so we just exploit numerical data obtained by a Fourier
transform.

FIG. 4. Electric field Ez distribution over the quasicrystalline IWM in reciprocal (Fourier) space. Reciprocal space at (a) quasistatic (at
0.1 GHz) and (b) propagation (at 1.5 GHz) regimes. Cross section of the reciprocal space and frequency axes containing a node at k =
(3.4, 0)π/a along (c) the kx axis and (d) the ky axis. The node is marked by a red dot in (a). The red dotted lines in (c) and (d) highlight the
linear isotropic dispersion dependence in the interval below 4 GHz.
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It is instructive to analyze the dispersion dependence in
reciprocal space. For structures with translation symmetry
each node in reciprocal space is known to correspond to the
apex of the light cone repetition due to the uncertainty of the
wave vector up to any reciprocal lattice vector. In the present
case of an aperiodic structure, we observe similar behavior of
the maximum in reciprocal space. Let us consider the node
at kxa/π ≈ 3.4, ky = 0 marked in red in Fig. 4(a) related to
almost zero frequency 0.1 GHz. Figure 4(b) shows reciprocal
space at a frequency of 1.5 GHz. The distribution maximum
originating at the marked node is expanded into a small circle
marked in red. Figure 4(c) [as well as Fig. 4(d)] shows the cut
of reciprocal space along kx (and ky) versus frequency. A light
cone typical for isotropic media with an apex at the considered
node is well defined [see the red dotted lines in Figs. 4(c)
and 4(d)]. We evaluate the effective refractive index from
the slope of the light cone according to the linear dispersion
relation

|k − knode| = n
ω

c
, (1)

where k is the wave-vector coordinate of reciprocal space,
knode is a node of the quasicrystal lattice in reciprocal space, n
is the effective refractive index, ω is the angular frequency,
and c is the vacuum speed of light. The obtained value of
the refractive index n = 1.6 ± 0.2 is the same for two cross
sections of the reciprocal space passing through the selected
node point. We notice that it agrees with the values obtained
from the Mie mode analysis in real space (see above). Thus,
the light properties correspond to the convectional propaga-
tion regime of structures allowing homogenization. However,
above a frequency of 4 GHz the light cone disappears, which
matches the change in the spectrum shown in Fig. 2(b).

IV. MULTICHANNEL DEVICE

The localization regime shows two unique properties of
quasicrystalline IWM, which are an exponential decay of the
energy generated by a source and a rapid spatial variation of
the phase. These advantages make it possible to use such a
medium in the engineering of multichannel devices, since one
of their main requirements is a low transmission coefficient
between ports located in different positions. It allows us to
enhance the signal-to-noise ratio and the efficiency of the
beam forming. In particular, such devices are in high demand
for applications in 5G communicators [27–30] and receiving
coils for magnetic resonance imaging [31–36]. In addition,
Micco et al. [37] reported that a single-channel leaky wave
antenna made of dielectric rods arranged according to a 12-
fold symmetric aperiodic tiling shows broadside radiation at
multiple frequencies, with high directivity and low sidelobes.

We examine a promising multichannel device based on
quasicrystalline IWM. Several ports are connected between
the subgrids. The operating frequency range is assumed to
be within the high-frequency interval related to the localiza-
tion regime. We find that the energy radiated from one port
(source) reaches the second one (receiver) with a significant
attenuation due to both wave localization and radiation to the
free space.

In order to demonstrate transmission between ports in a
multichannel device, eight ports are connected between two

FIG. 5. Eight-channel antenna design. (a) Spatial locations of an
arbitrary distributed ports. S matrices at (b) 6 GHz and (c) 2.17 GHz
include reflection (i = j) and coupling (i �= j) coefficients. The aver-
age values of radiation efficiency (power loss) Pi = 1 − ∑

j S2
i j were

(d) 97% at 6 GHz and (e) 20% at 2.17 GHz.

grids at arbitrary locations in the quasicrystalline IWM sam-
ple [Fig. 5(a)]. We also provided a matching procedure for
each port for minimization of the energy reflection back to
the transmission line. We selected an operation frequency at
6 GHz with a bandwidth of 3%. We notice that the Q factor in
the high-frequency region is very low, which makes it possible
to increase the bandwidth using broadband matching schemes.
The result is represented as an S matrix [Fig. 5(b)], which
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shows both reflection coefficients Sii (signal reflected from
the port i back to the transmission line) and coupling coef-
ficients Si j , i �= j (signal transmitted between ports i and j).
Obviously, the highest coupling coefficient corresponds to the
nearest disposed ports 1 and 2 (distance 26.2 mm or 0.52λ),
but it takes small values and does not exceed −14.2 dB or
3.8% in energy units. Such a relatively small coupling leads
to a high radiation efficiency [Fig. 5(d)] since the energy
supplied to a port is radiated predominantly to free space,
and just a small portion of it is received by the other ports.
In the case of PEC metal, the radiation efficiency is equal to
the power loss [Eq. (2)] and the average value over all ports is
about 97%,

Pi = 1 −
∑

j

S2
i j × 100%. (2)

We compare this result with that corresponding to the
propagation regime which is also available in periodic IWM.
The coupling coefficient remains significant and surpasses
−5 dB [Fig. 5(c)], which leads to a dramatic drop down to
20% in radiation efficiency [Fig. 5(e)]. Thus, the localiza-
tion regime related to the high-frequency interval gives the
proposed quasicrystalline IWM the unique electromagnetic
properties essential for varied applications.

V. CONCLUSION

We have proposed the design of a quasicrystalline IWM
structure based on Penrose tiling. The complex analysis
of electromagnetic properties by means of two comple-
mentary methods in real and reciprocal space has been
performed. We have distinguished two frequency intervals
with different transport properties. The low-frequency interval
corresponds to the propagation regime. A similar transport
regime is observed in periodic IWM structures as well. The
high-frequency interval relates to the localization regime.
Such a regime occurs in aperiodic structures only and is
not possible in structures with translation symmetry. We
have discovered that the unique localization regime is ben-
eficial for the design of multichannel devices appropriate
for applications in microwave communication and imaging
systems.
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